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Abstract. The nearly analytic discrete method (NADM) is a perturbation method
originally proposed by Yang et al. (2003) [26] for acoustic and elastic waves in elastic
media. This method is based on a truncated Taylor series expansion and interpolation
approximations and it can suppress effectively numerical dispersions caused by the dis-
cretizating the wave equations when too-coarse grids are used. In the present work, we
apply the NADM to simulating acoustic and elastic wave propagations in 2D porous
media. Our method enables wave propagation to be simulated in 2D porous isotropic
and anisotropic media. Numerical experiments show that the error of the NADM for the
porous case is less than those of the conventional finite-difference method (FDM) and
the so-called Lax-Wendroff correction (LWC) schemes. The three-component seismic
wave fields in the 2D porous isotropic medium are simulated and compared with those
obtained by using the LWC method and exact solutions. Several characteristics of wave
propagating in porous anisotropic media, computed by the NADM, are also reported
in this study. Promising numerical results illustrate that the NADM provides a useful
tool for large-scale porous problems and it can suppress effectively numerical dispersions.

Key words: Porous media; nearly-analytic discretization; three-component seismic wavefield;
anisotropy; numerical dispersion.

1 Introduction

Usually, the oil/gas reservoir shows fractures, cracks, or pores, so it is a two-phase medium.
On the basis of both the two-phase property of porous media and the analyses of the
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solid/fluid interaction and coupling mechanisms, Biot established the theory of the elastic-
wave propagation in a porous medium with saturated fluids for the low frequency [1] and
the high frequency [2] cases, which is extraordinarily valuable for solving the problem of
prospecting for oil and gas. Based on this theory, Biot predicted the slow P-wave that
had been verified in the subsequent experiment [19]. To solve Biot’s two-phase model and
study the wave propagation in porous media with fluids, different numerical methods ( [4,
6, 7, 13, 22, 23], others) have been proposed and studied.

Among various methods for seismic modeling in a porous medium, the finite-element
method is one of most effective ones [23]. However, it requires expensive computational
costs and large storage space compared with the finite-difference method (FDM), which
prevents it from solving problems in higher dimension or large models. The FDM for
modeling wave propagation is another popular tool due to its rapidity and lesser storage.
Unfortunately, the conventional finite-difference methods with orders 2 and 4 often suffer
from seriously numerical dispersion when too few samples per wavelength are used or when
the models have large velocity contrast, or artifacts caused by source at grid points [9, 25].
Higher order FD (finite difference) methods such as high-order compact FD schemes also
have numerical dispersions, and generally involve much more grid points when computing
a displacement value at a grid-point (e.g. [5, 21]). Although numerical dispersions can
also be suppressed via using a flux-corrected transport (FCT) technique [27], the FCT
method can hardly recover the lost resolution by the numerical dispersion when the spa-
tial sampling becomes too coarse [25]. On the other hand, acoustic and elastic waves have
inherent dispersions as the waves propagate in a porous medium with fluids. This implies
that two kinds of dispersions (numerical dispersion and wave dispersion) might appear si-
multaneously in wave fields if the conventional FD methods are used to compute the wave
fields in a porous medium. In such a case, it is not a good idea to use the FCT technique
to eliminate the numerical dispersions because we do not know how to choose the proper
control parameters used in the FCT method for suppressing the numerical dispersions [25,
30]. The pseudo-spectral method [12, 15, 16] is attractive as the space operators are exact
up to the Nyquist frequency. However, it requires the Fourier transform of the wave-field,
which is computationally expensive for 3-D models and has difficulty in handing sharp
boundaries [18]. The so-called nearly analytical discrete method (NADM), recently devel-
oped for solving acoustic and elastic equations [24, 26] and initially reported by Konddoh et

al. (1994) [14] for solutions of parabolic and hyperbolic equations, can effectively eliminate
the numerical dispersions without any additional treatments and has very high numerical
accuracy. Moreover, compared with the conventional FD and finite-element methods for
the single-phase case, the NADM requires less memory and is computationally cheaper
[26].

Based on the above-mentioned points, in this paper we try to extend the NADM for
the single-phase case to the two-phase case and present the robust NADM that is suitable
for simulating acoustic and elastic waves propagating in 2D fluid-saturated porous media.
Although the extension is not a difficult task, it is still far from being straightforward. To
derive the NADM for the underlying problem, we first divide the order-two time derivatives
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of coupling the solid and fluid displacements as presented in the Appendix A. Then, we
convert the transformed wave equations into a system of first-order partial differential
equations with respect to time. Finally, we design the NADM for the two-phase anisotropic
case as that for the single-phase case [26].

2 Basic porous wave equations

Consider a 2D homogeneous porous medium. Acoustic and elastic waves propagating in
the transversely isotropic (TI) porous medium can be described by the following equations
[1] for the low frequency case:

ρ11





üs
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where üs
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(1− ϕ)ρs + ρa, ρ22 = ϕρf + ρa, and ρ12 = −ρa. c11, c13, c33, c44, c66, Q1, Q3, and R are the
elastic constants of the porous medium. ρa is the additional density, and ρs and ρf are the
densities of the solid and the fluid, respectively. bii (i = 1, 3) are the dissipative coefficients
determined by ηϕ2/kii with the viscosity η, the porosity ϕ, and the permeability kii in the

i-direction. F f
i and F s

i are the total extraneous forces acting on the fluid and the solid
in the i-direction, respectively. Specially, for the isotropic porous medium case we have
c13 = λ, c11 = c33 = λ + 2µ, c44 = c66 = µ, Q1 = Q3 = Q, k11 = k33, and b11 = b33. In
other words, we can characterize the porous elasticity in terms of four elastic parameters
λ, µ, Q, and R for the porous isotropic medium. Let
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Then we can rewrite (2.1) and (2.2) as (see Appendix A)
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For computational purposes, let us introduce the following vectors:
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It follows immediately that
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where m, k, and l are nonnegative integers.

3 Nearly-analytic discrete method

On the basis of the above definitions, and using the values at the time tn and the truncated
Taylor series expansion, we obtain the following computational formulae, which similar to
those of the NADM for the single-phase case [26]:
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where ∆t denotes the time increment. The expressions forP , ∂
∂t

P , and ∂2

∂t2
P , which can

be easily obtained using simple derivative operations, are listed in Appendix B.

Obviously, the more series terms (∂kP
∂tk

)ni,j(k = 0, 1, 2, . . .) are kept in formulae (3.1) and

(3.2), the more accurate the values of U
n+1

i,j and W
n+1

i,j are. However, from a computational
perspective, it is impossible to use the infinite Taylor series expansion. Instead, we refer to
the truncated Taylor series expansions (3.1) and (3.2) that might lead to lower accuracy of

U
n+1

i,j and W
n+1

i,j because of the loss of wavefield information included in the higher-order
terms in the Taylor series. To capture the lost wavefield information and further increase
the computational accuracy, based on the “analysis thought” [14], we can approximately
incorporate the lost information by using the connection relations and introducing the
interpolation function. One way for this is to use implicit schemes that lead to costing
storage because of the use of directly central-differencing the high-order time derivatives

of U included implicitly in (∂kP
∂tk

) (k = 1, 2) in (3.1) and (3.2). To avoid these prob-
lems, we propose converting these high-order time derivatives to the spatial derivatives
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( ∂k+lU
∂xk∂zl )

n
i,j (2 ≤ k + l ≤ 5) for (3.1) and (3.2) and (∂k+lW

∂xk∂zl )
n
i,j (2 ≤ k + l ≤ 3) for equation

(3.2). A similar conversion has been used in the high-order FD methods [5] and so-called
Lax-Wendroff correction methods [3]. However, the way in which the NADM deals with
the high-order spatial derivatives is significantly different from these used in high-order
FD, Lax-Wendroff, and compact FD methods [17, 21]. The NADM is also different from
the optimally accurate FDM developed by Geller and Takeuchi [10, 20], which uses a
predictor-corrector scheme. The NADM introduces the following interpolation function,
according to the Taylor series expansion on two variables,
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so that we determine these high-order spatial derivatives in terms of the following inter-
polation conditions between the grid point (i, j) and its eight neighboring nodes such as
(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1), (i − 1, j − 1), (i − 1, j + 1), (i + 1, j − 1), and
(i + 1, j + 1). For the case under our consideration, we choose M = 5. Let us take the
grid point (i − 1, j) as an example to illustrate these interpolation relations:
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Here ∆x is the spatial increment in the x-axis direction. Similarly, the other twenty-one
connection relations at the nodes (i − 1, j + 1), (i − 1, j − 1), (i, j + 1), (i, j − 1), (i + 1,
j + 1), (i + 1, j), and (i + 1, j − 1) can be easily written. According to these connection

relations, we can obtain the analytic expressions of
(

∂k+lU
∂xk∂zl

)n

i,j
(2 ≤ k + l ≤ 5) expressed

by the displacement U and its gradient at the mesh point (i, j) and its neighboring grids
(see Appendix C).

Note that, when computing Un+1
i,j , the NADM uses not only the values of the displace-

ment U at the mesh point (i, j) and its neighboring grid points, but also the values of
the partial derivatives of U with respect to time t and space x, z (see equations (3.1) and
(3.2)). As a result, the NADM retains more wavefield information in both the function
Un and its first partial derivatives. Therefore, the NADM can effectively suppress the
loss of information included in the higher-order terms of the Taylor expansion, resulting
in great numerical accuracy and less numerical dispersions. The introduction of the local
connection relations (3.4) improves greatly the continuity and derivability of the approx-
imate function Un (because Un is an approximate variable during data processing) and
furthermore stabilizes the NADM [26].

For the high-order derivatives of the so-called velocity W
n
i,j at the grid-point (i, j) and

time tn, we can compute using the following backward difference method presented in the
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previous study for the single-phase case [26]:

(

∂k+lW

∂xk∂zl

)n

i,j

=
1

∆t

[

(

∂k+lU

∂xk∂zl

)n

i,j

−
(

∂k+lU

∂xk∂zl

)n−1

i,j

]

, (3.5)

where 2≤ k + l ≤3.

4 Error analysis

Using the Taylor series expansion, we find that the errors of ∂m+lU
∂xmzl on 2 ≤ m+l ≤ 3 and 4 ≤

m+ l ≤ 5) are O(∆x4 +∆z4) and O(∆x2 +∆z2), respectively, caused by the interpolation

approximation. The error of ∂m+l+1U
∂t∂xmzl (2 ≤ m+ l ≤ 3) is O(∆t+∆x4+∆z4), due to the use

of the backward difference approximation (3.5) and the interpolation method. Therefore,
the error introduced by the NADM is of the order of O(∆t2 + ∆x4 + ∆z4) because of the
use of equations (3.1) and (3.2) and the interpolation approximation, i.e. the NADM for
the two-phase case is fourth-order accurate in space and second-order in time. This is the
same as that for the single-phase case [26].

We take the acoustic wave equation in the 2D porous medium as an example to illus-
trate the accuracy of the NADM. In such a case, based on equation (2.3), the acoustic
equation without the external force in a two-phase isotropic medium can be simplified to
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√−αρ22µ. In order to investigate the numerical error of the

NADM for the porous problem, we choose the following initial conditions:
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where f0 is the wave peak frequency and θ0 is an incident angle at time t = 0.
Obviously, the analytical solution for the initial problem (4.1)-(4.2) is given by
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Table 1: Comparison of maximum Er(%) for different cases and different methods.

Methods Second-order FD Fourth-order LWC NADM

Case 1 : h = 20m ∆t = 10−4s 50.542 0.7245 0.0682

Case 2 : h = 40m ∆t = 5 × 10−4s 179.961 11.862 0.6774

Case 3 : h = 50m ∆t = 9 × 10−4s 223.435 26.993 0.7481

Figure 1: The relative errors of the second-order FDM (− −), LWC (—), and the NADM (— −) measured by
Er are shown in a semi-log scale for the 2-D initial problem (4.1)-(4.2). The spatial (∆x = ∆z) and temporal
increments are 20m and 10−4s, respectively.

For comparison, we also use the second-order FDM and the so-called LWC (fourth-
order compact scheme [5]) to solve the initial problem (4.1)-(4.2).

In our numerical experiments, the parameters are chosen as follows: the grid number
N = 150, the frequency f0 = 15Hz, the elastic constant µ = 4.38 GPa, the solid-fluid
coupling additional density ρ12 = −0.42g/cm3, the solid density ρs = 2.5g/cm3, the fluid
density ρf = 1.0g/cm3, the porosity ϕ = 0.3, and θ0 = π/4. The relative error (Er) is the
ratio of the RMS of the residual (un

i,j − u(tn, xi, zj)) and the RMS of the exact solution
u(tn, xi, zj). Its explicit definition is

Er(%) = 100 ×



















N
∑

i,j=1

[

un
i,j − u(tn, xi, zj)

]2

N
∑

i,j=1

[u(tn, xi, zj)]
2



















1

2

. (4.3)

Figs. 1-3 show the computational results of the relative error Er at different times for
cases of different spatial and time increments, where three lines of Er for the second-
order FDM (line FDM), the fourth-order LWC (line LWC), and the NADM (line NADM)
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Figure 2: The relative errors of the second-order FDM (− −), LWC (—), and the NADM (— −) measured by
Er are shown in a semi-log scale for the 2-D initial problem (4.1)-(4.2). The spatial (∆x = ∆z) and temporal
increments are 40m and 5 × 10−4s, respectively.

Figure 3: The relative errors of the second-order FDM (− −), LWC (—), and the NADM (— −) measured by
Er are shown in a semi-log scale for the 2-D initial problem (4.1)-(4.2). The spatial (∆x = ∆z) and temporal
increments are 50m and 9 × 10−4s, respectively.

are shown in a semi-log scale. From Figs. 1-3 we can conclude that the numerical error
introduced by the NADM measured by Er is less than those of the conventional FDM and
the fourth-order LWC. In these figures, the maximum relative errors for different cases are
listed in Table 1. From these error curves and Table 1 (∆x = ∆z = h), we find that Er

increases corresponding to the increase in the time and/or spatial increments for all the
three methods. As Figs. 1-3 illustrates, the NADM has the highest numerical accuracy
among all three methods.
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Table 2: Medium parameters used in Example 1.

λ µ Q R ρs ρf ρa ϕ b11 b33

(GPa) (GPa) (GPa) (GPa) g cm−3 g cm−3 g cm−3

7.24 4.38 1.14 0.331 2.5 1.0 0.42 0.3 225 225

5 Wave fields modeling

In this section, we investigate the efficiency of the NADM for the isotropic (Example 1) and
transversely isotropic (TI) (Example 2) porous cases, and compare against the so-called
LWC method [5] by wave-field modeling.

Example 1 To investigate the efficiency of the NADM for the fluid-saturated porous
case and properties of elastic waves propagating in the two-phase medium with both the
energy dissipation and the viscous phase boundary, we choose the medium constants listed
in Table 2. The spatial and time increments are ∆x = ∆z = 50m and ∆t = 2 × 10−3sec,
respectively. The computational domain is 0 ≤ x ≤ 10km, 0 ≤ z ≤ 10km and the number
of grid points is 201 × 201. The source is an explosive source that is at the center of the
computational domain and has a Ricker wavelet with a peak frequency of f0 = 15Hz. The
time variation of the source function is sin(2πf0t) exp(−4π2f2

0 t2/16) [29].

Fig. 4 shows the 3-component snapshots computed by the NADM, where Fig. 4(b)
presents the wavefield snapshot of the us

2 component at time t = 2.5s and Figs. 4(a)
and 4(c) show wavefield snapshots of horizontal and vertical components (us

1 and us
3)

at time t = 1.3s. It can be easily verified from Fig. 4(b) that the wavefront of the
us

2 component snapshot (S-wave in 2D isotropic porous medium) is a cycle, and from
Figs. 4(a) and 4(c) that the fast compressional wave (fast P-wave) and shear wave (S-wave)
are simultaneously presented in wavefield snapshots of us

1 and us
3 component records. For

the viscous phase boundary case, we can also observe the damping vibration (Figs. 4(a)
and 4(c)) while we did not observe the slow P-wave in our experiment. This coincides
with the strong attenuation of the slow P-wave, which means the slow P-wave can hardly
be observed in practical seismic observations because real media are generally two-phase
materials with viscous phase boundaries. Actually, in this case, the wave equation becomes
a diffusion equation. Therefore, the slow P-wave propagation shows the diffusivity or
heat conductivity and its attenuation is very high [28]. As interpreted by Geertsma and
Smit (1961) [11], the third terms on the left-hand side of equations (2.1) and (2.2) are
dominating and the solution of the poroelastic wave equation degenerates to that of a
diffusion equation. The computations of generating the results in Fig. 4 were performed
on a Pentium 4 with 256 MB memory, and it took about 34 minutes for generating
wavefield snapshots of horizontal and vertical components (Figs. 4(a) and 4(c)), and about
20 minutes for generating Fig. 4(b).

To examine the validity of the NADM, we compare numerical results computed by the
NADM and the so-called LWC method with 4-order accuracy. The snapshots of seismic
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Figure 4: Snapshots of seismic wave fields for solid three-components in the porous isotropic medium (Example
1), generated by the NADM on the coarse-grid step, for (a) us

1 component and (c) us
3 component at time

t = 1.3sec, and (b) us
2 component at time t = 2.5sec.
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Figure 5: Snapshots of seismic wave fields for solid three-components in the porous isotropic medium (Example
1), generated by the LWC on the coarse-grid step, for (a) us

1 component and (c) us
3 component at time

t = 1.3sec, and (b) us
2 component at time t = 2.5sec.
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Table 3: Medium parameters used in Example 2.

c11 c13 c33 c44 c66 Q1 Q3 R ρs ρf ρa ϕ b11 b33

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) (GPa) g cm−3 g cm−3 g cm−3

26.4 6.11 15.6 4.8 9.6 1.14 0.95 0.331 2.34 1.0 0.083 0.108 225 350

wave-fields modeled by the LWC are presented in Fig. 5. We can see that the wavefronts of
seismic waves simulated by two kinds of methods at the same time are basically identical
(see Figs. 4 and 5). However, the snapshots in Fig. 5 simulated by the 4th-order LWC
present strong numerical dispersion, and the corresponding results in Fig. 4 computed by
the NADM show that the NADM has almost no numerical dispersion even if the space
increment chosen is 50m without any additional treatments. It indicates that the NADM
enables wave propagation to be simulated in large-scale porous models through using the
coarse computation grids. Meanwhile, from Fig. 5 generated by the LWC we can see that
the wavefront of the S-wave is slightly anisotropic. In other words, the velocity of the S-
wave at different propagating directions is different. It shows that the LWC on the coarse
grid can produce numerical anisotropy, initially noticed by Blanch and Robertsson (1997)
[3].

To further test the efficiency of the NADM, the snapshot, computed by the 4th-order
LWC on the fine-grid step (∆x = ∆z = 15m and ∆t = 6 × 10−4sec) so that the grid
dispersion caused by the LWC is eliminated, is shown in Fig. 6, whereas Fig. 4(b) is
generated on the coarse-grid step (∆x = ∆z = 50m and ∆t = 2 × 10−3sec) resulting
in the same Courant number (c0∆t/∆x, c0 notes the sound velocity). Figs. 4(b) and 6
show that the NADM on a coarse grid can provide generally identical result to the LWC
on a finer grid but with less memory and less computational cost. In other words, the
NADM on a coarse grid can obtain generally identical exact solution as the high-order
LWC converges [3, 5]. In our experiment, the NADM took about 20 minutes CPU time to
generate Fig. 4(b), whereas the LWC used roughly 162 minutes to generate Fig. 6 under
the same computing environment. The required storage for the LWC method is about
2.3 times of that for the NADM. When computing a value at a grid point, the NADM
involves only 3 grid points in a direction while the 4th-order LWC needs 5 grid points
[5]. The demand of more grid points in high-order LWC methods prevents the algorithms
from efficient parallel implementation and artificial boundary treatment.

Example 2 In this example, we choose the transversely isotropic porous model with
a vertical symmetry axis (TIV) and medium parameters listed in Table 3. The remain-
ing computational parameters (e.g. coarse spatial and time increments, computational
domain, frequency) and computer environment are the same as those in Example 1.

The wavefield snapshots of components for us
1, us

2, and us
3 at time 1.3s are given in

Fig. 7. We can see from Fig. 7(b) that the wavefront of quasi SH -wave (qSH ) is an
ellipse and the quasi P -(qP) and quasi SV -waves (qSV ) (Figs. 7(a) and 7(c)) show the
directional dependence on propagation velocities. The qSV wavefronts can have cusps
and triplications depending on the value of C13 [8]. Triplications can be observed in the



540 Yang, Peng, Lu and Terlaky / Commun. Comput. Phys., 1 (2006), pp. 528-547

Figure 6: Snapshots of acoustic wave fields for solid us
2 component at time t = 2.5sec in the porous isotropic

medium (Example 1), generated by the LWC on a finer grid.

horizontal component qSV -wavefronts (shown in Fig. 7(a)) and in the vertical component
qSV -wavefronts presented in Fig. 7(c). In addition, different arrival times for qP - and qS -
waves and shear-wave splitting in the porous TIV medium can be seen from the wavefield
snapshots shown in Fig. 7. On the same computer, it took the NADM about 34 minutes
to generate Figs. 7(a) and 7(c) and about 13 minutes to generate Fig. 7(b).

6 Discussion and conclusions

The NADM for fluid-saturated porous media (including isotropic and anisotropic cases),
which is similar to that for single-phase media [26], is developed via the Taylor series expan-
sion and the interpolation approximate method, i.e., the time derivatives are approximated
analytically by a truncated Taylor series and the space derivatives are calculated using the
interpolation approximation. On the basis of such a structure, we have first to convert
these high-order time derivatives to the spatial derivatives, which is similar to the high-
order FD or so-called LWC methods [3, 5]. However, the NADM in approximating the
high-order spatial derivatives is different from these high-order FD, LWC, and compact
FD methods that use a discrete expression to approximate the original wave equation. The
NADM uses simultaneously both the wave displacement and its gradients to approximate
the high-order derivatives (see formulae (C.1-C.5)). When computing Un+1

i,j , the NADM
uses not only the values of the displacement U at the mesh point (i, j) and its neighboring
grid points, but also the values of the displacement gradient and the so-called velocity
W

n
. As a result, the NADM retains more wavefield information in both the function Un

and its gradients and the velocity W
n
. Therefore, the NADM can effectively suppress the

loss of wavefield information included in the higher-order terms of the Taylor expansion,
resulting in great numerical accuracy and less numerical dispersions. In fact, the numer-
ical error of the NADM is less than those of the conventional 2-order FDM and 4-order
LWC for the three models that we have presented. Wave-field modeling illustrates that
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Figure 7: Snapshots of seismic wave fields for solid three-components at time t = 1.3sec in the porous TIV
medium (Example 2), generated by the NADM on the coarse-grid step, for (a) us

1 component, (b) us
2 component,

and (c) us
3 component.
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the NADM can effectively suppress numerical dispersions when too-coarse computation
grids are used. These numerical results also illustrate that simultaneously using both the
wave displacement and its gradients to approximate the high-order derivatives is impor-
tant for decreasing the numerical dispersion caused by the discretization of wave equations
because wave displacement gradients include important wavefield information. It suggests
that we should consider the wave displacement gradient and velocity fields as we design a
new numerical method to solve the porous acoustic and elastic wave equations.

We observe that if the same number of grid points is used, the CPU time of the NADM
is more than that of the high-order LWC. However, since the NADM yields less numeri-
cal dispersion than the LWC with 4-order accuracy, we can increase the time increment
through adopting coarser spatial increments to achieve the same accuracy as that of the
LWC on a finer grid with smaller time steps. Hence, to achieve the same accuracy, the
NADM takes less CPU than that of the LWC. As observed in our experiment, the compu-
tational speed of the NADM is 8 times faster than that of the 4th-order LWC on a finer
grid. On the other hand, although the NADM involves additional gradient and velocity
fields that require additional storage space, the required memory of the NADM based on
coarse grids is only about 43% of storage space of the 4th-order LWC on a finer grid.

An interesting topic for future study is to consider the parallel computing for local
difference operators in NADM to further improve its efficiency. It is also of interest to
study the stability condition and test the algorithm in 3D media.

Appendix A: Wave equation transformations

Let the right sides of equations (2.1) and (2.2) equal to D and D̃, respectively, i.e.,

D =









c11
∂2us

1

∂x2 + (c13 + c44)
∂2us

3

∂x∂z
+ c44

∂2us
1

∂z2 + Q1
∂2u

f
1

∂x2 + Q1
∂2u

f
3

∂x∂z
+ F s

1

c66
∂2us

2

∂x2 + c44
∂2us

2

∂z2 + F s
2

c44
∂2us

3

∂x2 + (c13 + c44)
∂2us

1

∂x∂z
+ c33

∂2us
3

∂z2 + Q3
∂2u

f
1

∂x∂z
+ Q3

∂2u
f
3

∂z2 + F s
3









,

D̃ =









Q1
∂2us

1

∂x2 + Q3
∂2us

3

∂x∂z
+ R

∂2u
f
1

∂x2 + R
∂2u

f
3

∂x∂z
+ F f

1

F f
2

Q1
∂2us

1

∂x∂z
+ Q3

∂2us
3

∂z2 + R
∂2u

f
1

∂x∂z
+ R

∂2u
f
3

∂z2 + F f
3









.

Then we can rewrite equations (2.1) and (2.2) as

ρ11

∂2

∂t2
U s + ρ12

∂2

∂t2
Uf − B

∂

∂t
(Uf − U s) = D, (A.1)

ρ12

∂2

∂t2
U s + ρ22

∂2

∂t2
Uf + B

∂

∂t
(Uf − U s) = D̃, (A.2)

where U s = [us
1, u

s
2, u

s
3]

T , Uf =
[

uf
1 , uf

2 , uf
3

]T

, and B = diag(b11,b11,b33).
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It follows from (A.1) and (A.2) that

∂2

∂t2
Uf = α

[

B(ρ12 + ρ11)
∂

∂t
(Uf − U s) + ρ12D − ρ11D̃

]

, (A.3)

∂2

∂t2
U s = α

[

−B(ρ12 + ρ22)
∂

∂t
(Uf − U s) + ρ12D̃ − ρ22D

]

, (A.4)

where α = 1/(ρ2
12 − ρ11ρ22). Let

U =
[

uf
1 , uf

2 , uf
3 , us

1, u
s
2, u

s
3

]T

, F s = [F s
1 , F s

2 , F s
3 ]T , F f =

[

F f
1 , F f

2 , F f
3

]T

.

Then we can rewrite (A.3) and (A.4) into the form

∂2

∂t2
U = C1

∂

∂t
U + C2

∂2

∂x2
U + C3

∂2

∂x∂z
U + C4

∂2

∂z2
U + F, (A.5)

where

F = α

[

ρ12F
s − ρ11F

f

ρ12F
f − ρ22F

s

]

,

C1 = α

[

(ρ12 + ρ11)B −(ρ12 + ρ11)B
−(ρ12 + ρ22)B (ρ12 + ρ22)B

]

,

C2 = α

















ρ12Q1 − ρ11R 0 0 ρ12c11 − ρ11Q1 0 0
0 0 0 0 ρ12c66 0
0 0 0 0 0 ρ12c44

ρ12R − ρ22Q1 0 0 ρ12Q1 − ρ22c11 0 0
0 0 0 0 −ρ22c66 0
0 0 0 0 0 −ρ22c44

















,

C3 = α

















0 0 ρ12Q1 − ρ11R 0 0 ρ12c134 − ρ11Q
0 0 0 0 0 0

ρ12Q3 − ρ11R 0 0 ρ12c134 − ρ11Q3 0 0
0 0 ρ12R − ρ22Q1 0 0 ρ12Q1 − ρ22c134

0 0 0 0 0 0
ρ12R − ρ22Q3 0 0 ρ12Q3 − ρ22c134 0 0

















,

C4 = α

















0 0 0 ρ12c44 0 0
0 0 0 0 ρ12c44 0
0 0 ρ12Q3 − ρ11R 0 0 ρ12c33 − ρ11Q3

0 0 0 −ρ22c44 0 0
0 0 0 0 −ρ22c44 0
0 0 ρ12R − ρ22Q3 0 0 ρ12Q3 − ρ22c33

















.

In the above definitions, c134 = c13 + c44.
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Appendix B: Computational expressions for P , ∂
∂tP , and ∂2

∂t2P

Using the definition of the vector P (2.4), we have

∂

∂t
P =

[

∂

∂t
P,

∂2

∂t∂x
P,

∂2

∂t∂z
P

]T

,
∂2

∂t2
P =

[

∂2

∂t2
P,

∂3

∂t2∂x
P,

∂3

∂t2∂z
P

]T

,

where P is defined by (2.3), i.e.

P = C1

∂

∂t
U + C2

∂2

∂x2
U + C3

∂2

∂x∂z
U + C4

∂2

∂z2
U + F.

Direct calculations can represent the components of P t and P tt by U , W , F . For example,

∂

∂t
P = C1P + C2

∂2

∂x2
W + C3

∂2

∂x∂z
W + C4

∂2

∂z2
W +

∂

∂t
F,

∂

∂x
P = C1

∂

∂x
W + C2

∂3

∂x3
U + C3

∂3

∂x2∂z
U + C4

∂3

∂x∂z2
U +

∂

∂x
F,

∂2

∂t2
P = C1

∂

∂t
P + C2

∂2

∂x2
P + C3

∂2

∂x∂z
P + C4

∂2

∂z2
P +

∂2

∂t2
F.

Similarly, we can easily obtain derivatives of ∂2P
∂t∂x

, ∂2P
∂t∂z

, ∂3P
∂t2∂x

, and ∂3P
∂t2∂z

.

Appendix C: Evaluation of the high-order partial derivatives

of the displacement U

To apply the formula (3.1) to compute the values of U at time tn+1 in synthetic seis-
mograms, we need to approximate some high-order derivatives. To this end, we have
introduced the interpolation relations (3.4), following the “analysis thought” [14]. Using
the interpolation relations such as equation (3.4) between the grid point (i, j) and its eight
neighboring nodes: (i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1), (i − 1, j − 1), (i − 1, j + 1),
(i + 1, j − 1), and (i + 1, j + 1), we can approximate the high-order partial derivatives of
the displacement U at the grid-point (i, j) as follows:

∂2xUn
i,j =

2

∆x2
δ2
xUn

i,j −
1

2∆x
(E1

x − E−1
x )∂xUn

i,j, (C.1)
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n
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i,j, (C.2)
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− 1
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xE1
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xE−1
z − E−1

x E1
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∂3xUn
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z + 8I + E−1
z )∂zU

n
i,j, (C.5)



Yang, Peng, Lu and Terlaky / Commun. Comput. Phys., 1 (2006), pp. 528-547 545

where ∆x and ∆z are the spatial increments in the x- and z-axis directions, Un
i,j, ∂xUn

i,j,

∂zU
n
i,j, and ∂mxkzU

n
i,j denote U (i∆x, j∆z, n∆t), ∂

∂x
U (i∆x, j∆z, n∆t), ∂

∂z
U (i∆x, j∆z, n∆t),

and
(

∂m+kU/∂xm∂zk
)n

i,j
, respectively. Moreover, the notations δ2

z and Ez in equations

(C.1)-(C.5) are the second central difference and displacement operators in the z-direction,
respectively, namely

δ2
zU

n
i,j = Un

i,j+1 − 2Un
i,j + Un

i,j−1, E1
zUn

i,j = Un
i,j+1, E−1

z Un
i,j = Un

i,j−1

The operators δ2
x and Ex in the x-direction can be similarly written. Other computational

formulae are omitted here.

Most formulas and notations above are essentially the same as those used in the original
NADM [26]. The difference is that the displacement is defined by U = [ux, uz, uy]

T in

NADM [26] and by U = [uf
1 , uf

2 , uf
3 , us

1, us
2, u

s
3]

T in our present work.
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