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Abstract. In this paper, we introduce a three-dimensional numerical method for com-
puting the wake behind a flat plate advancing perpendicular to the flow. Our numer-
ical method is inspired by the panel method of J. Katz and A. Plotkin [J. Katz and
A. Plotkin, Low-speed Aerodynamics, 2001] and the 2D vortex blob method of Krasny
[R. Krasny, Lectures in Appl. Math., 28 (1991), pp. 385-402]. The accuracy of the
method will be demonstrated by comparing the 3D computation at the center section
of a very high aspect ratio plate with the corresponding two-dimensional computa-
tion. Furthermore, we compare the numerical results obtained by our 3D numerical
method with the corresponding experimental results obtained recently by Ringuette
[M. J. Ringuette, Ph.D. Thesis, 2004] in the towing tank. Our numerical results are
shown to be in excellent agreement with the experimental results up to the so-called
formation time.
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1 Introduction

This work is inspired by our desire to develop a 3D computational method to study the
fluid dynamics of flying animals like birds or fish. Flight has fascinated the human mind
since its early days of development. The gracefulness and the perfection of a bird in the
air inspired us to try to emulate some particular aspects of its superb ability. The fluid
dynamics in the flight of a bird is extremely complex and interesting. In particular, we
are interested in understanding the way that the wake is generated and its effect on the
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wing. A number of computational methods have been developed to study fluid dynamics
of the motion of a moving surface. However, it is still a challenge to develop an accurate
and efficient three dimensional computational method which can be used to simulate the
flight of a bird.

There have been many theoretical and computational studies to understand the fluid
dynamics instability for flow past a flexible object. Starting with the work of Sir James
Gray who was the head of Cambridge University’s Zoology Department from 1937 to
1961, the theory of animal locomotion stimulated G. I. Taylor in making two pioneering
investigations. One involved the swimming of snakes and eels, and the other one initiated
hydrodynamic studies of flagellar propulsion. However, the main contributions to this
domain came later on from Sir James Lighthill and Professor Theodore Wu. Lighthill laid
a theoretical foundation for the swimming of slender fish, while Wu made an extension
of classical oscillating airfoil aerodynamics to a linear theory of flexible lifting-surface
locomotion, to examine the performance of bending wings of birds in flapping flight and
the lunate tails of fast-swimming percomorph and acombroid fishes and rays in swimming.

Re-emphasizing the importance of Wu’s (scaling of aquatic locomotion-[21]), Lighthill’s
(scaling of aerial locomotion) and Weis-Fogh'’s (hovering flight) work in fish and bird
locomotion, we should also review the advances made in the field of wing theory and free-
surface numerical methods. One of the pioneers in the study of a wing in flight was T.
Theodorsen with his theory of instability and the mechanism of flutter [18]. In 1931, Kaden
introduced similarity variables for describing the roll-up of a semi-infinite plane vortex-
sheet ( [17], p. 147). During the 1950s, several authors presented approximate asymptotic
solutions in which the spiral vortex generated behind a sharp edge was replaced by a
single point vortex, an example of which was given by [16]. Moore in 1976 [12] studied
and verified the stability of a class of vortex sheets roll-up, but could not verify the stability
of the problem as noted by Pullin in 1978 [14]. In the same work of Pullin, he obtained for
the first time regular and well-defined start-up vortex spirals from an accurate numerical
solution of the Birkhoff-Rott equation (inviscid flow) written in similarity variables. These
results were later used by Krasny to validate his method.

In 1991, Krasny [10] generalized Chorin’s vortex blob method [3] and applied it to study
the evolution of the wake forming at the edges of a flat plate advancing perpendicular to
the flow. Moreover, he presented strong numerical evidence suggesting that the vortex
blob method converges past the vortex sheet singularity formation time, as the smoothing
parameter tends to zero. Later on, in 1994, Nitsche and Krasny [13] generalized the vortex
blob method to study the vortex ring formation at the edge of a circular tube. Comparison
between the numerical simulation and the corresponding experiment indicated that the
model captured the basic features of the ring formation process. Then, in 2001, a very
interesting model was presented by Chamara and Coller [2] for a pair of airfoils with two
degrees of freedom: pitching and heaving. Their study sheds interesting light in finding the
optimal configuration of the two-airfoil system for which the two oscillatory instabilities
due to the flutter occur simultaneously.

In the study of animal locomotion, Dickinson et al. designed interesting experiments to
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measure the unsteady forces on a robotic fruit fly wing and demonstrated the role of wing
rotation in force generation [6]. In a related effort, Wang in 2000 [20] tried to quantify
the vortex dynamics of a flying insect and identified a minimal two-dimensional model
that produces sufficient lift. Later, in 2004, Wang, Birch and Dickinson [19] compared
computational, experimental and quasi-steady forces in a generic hovering wing undergoing
sinusoidal motion along a horizontal stroke plane. In particular, they investigated unsteady
effects and compared two-dimensional computations and three-dimensional experiments
in several qualitatively different kinematic patterns.

In three dimensions we should point to the work of Brady, Leonard and Pullin in
1998 [1] who provided a three-dimensional computational method to track the evolution
of regularized three-dimensional vortex sheets through an irrotational, inviscid, constant-
density fluid. Also, in 2001, Lindsay and Krasny [11] developed a fast adaptive Lagrangian
particle method for computing free vortex sheet motion in three dimensional flow. To
be able to do all the computations efficiently, they also included an adaptive treecode
algorithm.

In this paper we propose a three-dimensional numerical method for a flat plate ad-
vancing perpendicular to the flow. The three-dimensional approach for the computation
of the bound circulation is inspired from the panel method presented in “Low speed aero-
dynamics” by J. Katz and A. Plotkin [9]. This is combined with Krasny’s two-dimensional
method to solve for the free sheet vortex elements. The accuracy of the method will be
demonstrated by comparing the 3D computation at the center section of a very high as-
pect ratio plate with the corresponding two-dimensional computation. For a high aspect
ratio plate, the three dimensional effect at the center section of the plate is very small.
We found excellent agreement between our 3D computations and the corresponding 2D
ones. We also perform careful computations to compare our results with a recent physical
experiment by Ringuette at Caltech involving a three-dimensional flat plate advancing
perpendicular to the flow [15]. Our numerical results match very well the experiments by
Ringuette in terms of the total circulation along chord-wise sections of the wake until the
so-called formation time. After the formation time, Ringuette observed that vortex sepa-
ration occurred and circulation grew slower than the circulation obtained by our numerical
method. This discrepancy could be due to the viscous effect which cannot be modeled
accurately by our inviscid model based in potential flow theory.

The three-dimensional results are important for developing a more complex three di-
mensional theory. This could be the first step toward a more in-depth analysis. Currently,
our 3D numerical method still does not capture accurately the true 3D effect near the
corners of the plate due to our simplified approximation of the circulation along the longi-
tudinal and transversal sections by a two-dimensional model. In our future work, we plan
to develop a more accurate 3D theory that captures the essential 3D nonlinear effects. One
way to achieve this is to generalize a recent theory of Wu [22] to three space dimensions.
In Wu’s theory, strong nonlinear effect of the flow is captured analytically. This provides
very accurate approximation to the amount of vorticity shed at the trailing edge of the
plate, which has leading order effect on the overall accuracy of the computation. We have
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already performed very thorough computational study of Wu’s method in [8] for various
severe tests. We found that the numerical method based on Wu’s theory can capture
accurately the leading singular effect near the trailing edge, which improves the accuracy
when dealing with some highly nonlinear movements. Generalization of Wu’s theory to
three dimensions is a challenging task. The results obtained in this paper can provide the
basis for our future study along this direction.

The rest of the paper is organized as follows. In Section 2, we will review Krasny’s
vortex blob method for the two dimensional case and present a numerical experiment for
a wing advancing upward, normal to the flow. In Section 3, we will present our three-
dimensional computational method. We will test our 3D numerical method for a high
aspect ratio plate and compare our results with those obtained by the two-dimensional
vortex blob method. We will also perform some very interesting comparison with the
experiments obtained by Ringuette [15]. Section 4 is devoted to some concluding remarks.

2 Vortex formation at the edges of a free falling 2D plate

In this section, we will review Krasny’s two dimensional vortex blob method which is used
to compute fluid motion of a flat plate advancing normal to the flow. In this case, the flow
generates a vortex sheet roll-up at the edges of the plate. In the next section, we will show
how to generalize Krasny’s method to three space dimensions by borrowing ideas from the
panel method of J. Katz and A. Plotkin [9]. The two dimensional method presented in
this section will be later used to check the accuracy of our three dimensional method for
a very high aspect ratio plate.

2.1 Description of the 2D vortex blob method

In two space dimensions, we can define a vortex sheet by a curve z(I',¢) in the complex
plane, where I' is circulation. The velocity distribution along the vortex sheet will be
chosen as the average of the velocity distributions above and below the vortex sheet.
Using the Biot-Savart law, one can derive an evolution equation for the vortex sheet as
follows (as known as the Birkhoff-Rott equation)

0z . . 1
—(I',t) = /K(z(F,t) —z([,t))dl, K(z)= (2.1)

t C2mz’

where the Cauchy principal value of the integral is taken, and z stands for the complex
conjugate. The Biot-Savart kernel K(z) has a simple pole singularity at z = 0. In the
vortex blob method, the singular kernel K in (2.1) is replaced by a regularized one, Ks,
with § being a small smoothing parameter. As ¢ approaches to zero, Ks(z) approximates
K(z) for z # 0. For the two-dimensional vortex sheet problem, Krasny [10] uses the
following regularization for Ks:

|22

Ks(z) = K(z)m

(2.2)
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With such regularization, the integral equation fro z(T',¢) is no longer singular.

We will use the trapezoidal rule to approximate the velocity integral. Let I be param-
eterized by a Lagrangian variable a.. Therefore, the interface position z(T',t) is a function
of av as well. We discretize a by a uniform grid with mesh size h, and denote o; = jh with
J being integer. Further, we denote I'j = I'w(cyj)h, and 2(I'(oj),t) = z;(t). With these
notations, the integral equation can be discretized by the trapezoidal rule as follows:

827 ZK(; )T (2.3)

Furthermore, by discretizing in time using a 4th order Runge-Kutta method or a multi-step
method, one can obtain a fully discrete system for the evolution of z;(t).

In Krasny’s method [10], the plate coincides with the interval —1 < x < 1 and it moves
vertically with speed 1/2. The flow contains a bound vortex sheet, which is discretized
with point vortices, and a free vortex sheet, which is discretized with vortex blobs. At
every time step, a new filament is released from both edges of the plate. It follows from
equation (2.3), the velocity at a vortex element centered at (z;,y;) is given by

dj dyj, (—(yj — y&), (x5 — 1))k
(Ea E) - Z 271'((37]' _ J;k)2 4 (yj — yk)2 n 52) (24)

We remark that § is set to zero whenever the index k refers to one of the bound point
vortices. Along the bound sheet, since the plate is horizontal, i.e., y is constant, the bound
vortex sheet strength ~(z,t) satisfies a Cauchy singular integral equation of the first kind,

1 [P y(Etde

2 1 (2 —7)

v(z,t). (2.5)

The reason for using point vortices on the bound sheet is because the resulting linear
system for a general right side may not be invertible if the kernel is smoothed, as Krasny
pointed out. To provide better resolution at the edges, the bound point vortices are
not placed uniformly on the plate, instead they cluster toward the edges according to
xj = cosbj,0; = jm/n and equation (2.5) is satisfied at the midpoint of each interval.
To close the system, we need another equation. To find this extra equation, we use the
fact that the total circulation is conserved in accordance with Kelvin’s theorem. When
supplemented with this additional equation, equations (2.5) transform into a linear system
which is invertible. Upon solving this linear system, we obtain the strengths v(x;,t).

Now it comes to the important question: how to generate the first released free vortice
from the edge of the plate. To do this, one needs to take into account the viscous effect.
Krasny uses the Kutta condition to determine the circulation of the first released free
vortice near the edge of the plate:

dr 1



Hou, Stredie and Wu / Commun. Comput. Phys., 1 (2006), pp. 207-228 212

where v ~ AT'/Az is calculated by a finite difference formula. Here, U_ and U, are
the one-sided velocities at the edge, U is the average velocity, and v is the vortex sheet
strength at the edge. The slip velocities satisfy

1
U--Up=7, 5U+0)=T. (2.7)

Further, we need to enforce a separating flow condition to prevent an attached slip flow
from contributing to the shedding process. This condition is enforced by setting Uy = 0
if Uy < 0 and similarly setting U_ = 0 if U_ < 0. Krasny’s method also uses an adap-
tive point insertion technique and an adaptive time step to provide adequate numerical
resolution.

Krasny performed numerical experiments to compare his results with the ones obtained
by Pullin in 1978. Pullin used point vortices to represent the vortex sheet with a single
point vortex to represent the inner spiral turns. Moreover, Pullin used conformal mappings
to determine the strength of the bound vortex sheet. Krasny found that the pair of
counter-rotating vortices forming in the recirculating region behind the plate agree very
well between the two methods.

2.2 A numerical example

In this subsection, we present a numerical example using Krasny’s vortex blob method
to model the wake behind a two-dimensional plate advancing perpendicular to the flow.
More details can be found in [10].

The implementation of Krasny’s method consists of the following steps: (i) form a
linear system for the circulation at the discrete vortices, (ii) solve the linear system to
obtain the circulation, (iii) determine the velocity of the currently released free filament.
The system will be formed based on the evolution equation (2.1) with a smoothed kernel
given by (2.2). The discretization of this equation is given by (2.4). The unkowns of
the linear system are the circulation of the bound point vortices. Since the problem is
symmetric we have a stationary point in the center of the plate with zero circulation.

In our implementation we take N 4+ 1 = 81 points on a plate with radius R = 1
which moves upward with a velocity Uy = 1/2. The plate reaches this velocity after an
acceleration that takes ¢t = 0.01. During this acceleration the time-steps are smaller than
dt = 0.01 but they increase linearly. When the velocity becomes constant (at Uy = 1/2),
the time step becomes constant as well, with dt = 0.01. We choose this approach to make
the transition from velocity zero to the steady state velocity smoother. In the computation,
the blob is chosen to be § = 0.2 and the grid points for the bound vortex distribution along
the wing have a cosine distribution so that we have more points and therefore a better
resolution at the edges of the plate. The boundary condition requires that there be no
normal flow through the plate. This means that we need to match the normal velocity
from (2.4) with the advancing velocity of the plate. This will be done at the midpoint
of each subinterval [z}, zj41], which gives N equations. However we need to compute the
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N=80, dt=0.01, delta=-2, U0=.5, 400 t-steps
251
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Figure 1: Krasny's method for a wing advancing upward, normal to the flow, with adaptive speed Uy = 0.5,
blob 6 = 0.2, variable time-step dt ~ 0.01. Plot after 400 time steps having N = 80 bound vortex points.

circulation at every bound point, which has a total of N + 1 unknowns. We need one more
equation. This extra equation can be obtained by the fact that we have a stationary point
in the center of the plate with zero circulation. Hence, we have a linear system with N +1
equations and N + 1 unknowns which will be solved by inverting the matrix in Matlab
with the inv function. This provides the circulation on the plate.

The sheet strength value at the edge of the plate ., will be computed by a finite
difference formula applied to the bound circulation v ~ AT'/Az. The edge strength will
allow us to compute the circulation and the velocity of the newly shed vortex. For that
we will use (2.6). First, we compute the averaged slip velocities U at both edges of the
plate. This will be done using relation (2.4). Then we compute the slip velocities above
and below the edge Uy and U_ using (2.7). If either U} or U_ is negative, we set it to
zero to prevent attached slip flow. With the updated U, and U_ we recompute U, which
will be now the tangential velocity of the currently released vortex filament, and compute
the circulation of this free filament from (2.6).

Remark 2.1. In (2.6), dI'/dt represents the time variation of the total circulation of the
free sheet. Moreover, the newly shed vortex filament is released tangentially to the plate,

i.e. in the z-direction, with the computed tangential velocity U.

The numerical computation for Fig. 1 is performed with the data described above and
a blob size § = 0.2. The plot is obtained after 400 time-steps. We can see a very nice
roll-up which agrees very well with the results obtained by Krasny [10] and Pullin [14].

3 Three-dimensional model

In this section, we will present a three-dimensional computational method to study the
vortex motion behind a wing advancing upward. Our three dimensional model is motivated
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by a panel-method and Krasny’s vortex-blob method for two space dimensions. We will
first describe our 3D method for a square flat plate. Later on, we will apply our 3D method
to a rectangular plate with very high-aspect ratio. In this case, the three dimensional effect
is relatively small near the center section of the plate. We then compare the numerical
results obtained by our 3D method with those obtained by the corresponding 2D method
and find very good agreement. We also compare our numerical results with some recently
performed physical experiment in a towing tank. The agreements are excellent before the
formation time.

We now describe our 3D numerical method. First, we would like to form a linear
system using the Biot-Savart law by imposing the normal flow conditions on the plate,
and to determine the circulation of the plate filaments by solving this system. We apply
a rectangular mesh over the plate and use more mesh points near the corners and edges
to give a better resolution. The mesh will form some panels on the wing and we will
apply the no-through flow condition in the center of each one. After computing the bound
circulation for the panels, we will compute the circulation for each filament on the plate,
and then apply the two-dimensional method along all the longitudinal and transversal
sections. The two-dimensional method will be used to compute the circulation of the
currently shed vortex filament. Note that the filament is shed at every time step along
the mesh lines. The circulation of all the other free filaments will be preserved in time.
Thus we have all the quantities to compute the velocities of all the free filaments. We
then move these filaments to the updated locations and go to the next time step. We will
describe the algorithm in some details in the next subsection.

We should point out that the above procedure does not capture all the three dimen-
sional effect of the Euler equations. By using a two-dimensional method to compute the
circulation along all the longitudinal and transversal sections, we make certain approxi-
mation of the 3D Euler equations. The approximation is relatively poor near the corners
of the plate. On the other hand, certain essential 3D effect is captured by our model using
the panel method to be described below. As you will see in our numerical experiments,
our 3D numerical method gives a reasonably good approximation to the fully 3D physical
experiments for a plate advancing upward to the flow, despite the approximation we make
in the model.

3.1 Velocity for the bound sheet

Next we will compute the velocity field induced by each vortex panel. It is known that
the velocity induced by a vortex filament of strength I and a length of dl is given by the
law of Biot and Savart

- D(dlx7)
av = ———=. 1
v 473 (3-1)
From Fig. 2 the magnitude of the induced velocity is
s
dV = ﬂ (3.2)

A7r?



215 Hou, Stredie and Wu / Commun. Comput. Phys., 1 (2006), pp. 207-228

Figure 2: Velocity induced by vortex segment AB at location C.

Since we are interested in the flow field induced by a straight segment, let us use the
above equations to calculate this effect. Let AB be such a segment, with the vorticity
vector directed from A to B. Let C be a point in space whose normal distance to line AB

is rp. Since
_ ™ _ 2
= and  dl = rp(csc”6)do, (3.3)

sin 0
we can integrate between A and B to find the magnitude of the induced velocity

r % r
V= / sin 0df = (cos 1 — cosBs). (3.4)

dmry Jo, 4mry
Now let 7g,71 and 75 designate the vectors A_B,A_C’ and BC, respectively, as shown in
Fig. 2. Then we have

IREREE] TR T
rp=-———, costh = , cosfy = ,
To ToT1 ror2

where for a vector 7, we denote by r its magnitude. Substituting these expressions into
equation (3.4) and noting that the direction of the induced velocity is given by the unit
vector L

1 X T9

|71 x 13|’

LT X S
gL rixn [r?),(T_l_T_Q)]_ (3.5)

47 |1 X 75]? ryooT2

we get

In order to implement this, we write the components of the induced velocity V = (u, v, w)

u=K (7”1 X T2)x
o K- (7‘1 y T2)y : K = 47r|r1F><r2|2 (r(;ﬂ.lm _ n;;”z) (3.6)
w=K (7“1 X 7”2)2
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where

{ To:T1 = (332 - $1)($p - 951) + (y2 - yl)(yp - yl) + (22 - Zl)(Zp - 21), (3 7)
ro-re = (x2 — 21)(xp — @2) + (y2 — y1) (Yp — y2) + (22 — 21)(2p — 22), '

and |r1 x r9|? = (11 x r9)2 + (r1 x 7“2)3 + (11 x 12)2,

{ r1=/(2p —21)? + (yp —v1)% + (2 — 21)% (3.8)
ro =/ (2p — 22)2 + (Yp — ¥2)? + (2p — 22)%, '

and
(r1 X r2)e = (Yp — y1)(2p — 22) — (2p — 21) (Yp — ¥2),
(r1 xr2)y = —(xp — 1) (2p — 22) + (2p — 21)(7p — 72), (3.9)
(11 X 12): = (2p — 21)(Yp — v2) — (Yp — y1)(zp — 72).

We will consider a 2 by 2 square plate and a N by N grid on top of it, with N odd so
that a vortex point will be placed in the center of the plate. By imposing the no-through
flow conditions in the center of the mesh panels we will get (N — 1)? linear equations
using formula (3.5). To each panel we assign a circulation I'; j, meaning that all filaments
bordering that panel will have the same circulation I'; ;. At time ¢ = 0T, before anything
is shed into the free sheet, the linear system will look like this

anl' +aele +aslis+ o +ayvo2lvo1),v—1) = Uo
agil'i 1 +agel o +aslis+ ... +ag v 2l'(v_1),v—1) = Vo
(3.10)

anv-12al1 +aw_rzole + o ooz, w12l w-1),w-1) = Vo,

where the left hand side of each equation represents the sum of the velocities induced on a
given panel by the (n —1)? panel circulations. Whenever we compute the velocity induced
by a panel on a certain point (center of panels), we implicitly consider the contribution
from each segment filament bordering the panel so that every such segment will give two
contributions. One segment filament will enter the calculations from both panels it belongs
to, having opposite oriented circulations in the two panels. Hence, in our 3D numerical
method, the circulation of each filament is the difference of the circulations of the panels
that the filament borders. Specially, after solving the linear system for the circulation of
each panel, we will compute the circulation of each filament as the difference of circulations
of the panels which have the filament as a common interface, see Fig. 3. We get

Ffl = Fi,j—l—l - Fijy and ng = Fi—f—l,j - F” (311)

Note that the velocity induced by a filament is taken into consideration two times, one
time for every panel it belongs to. These filament circulations are the ones that we will be
using in the next subsection to analyze the two dimensional flow along each longitudinal
and transversal plate section.
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Figure 3: Computing the filament circulations from the panel circulations.

3.2 Velocity for the free sheet

We found a very simple and elegant way to solve for the free sheet. At this point we
know how to solve for all the quantities on the bound sheet. We also know the circulation
along all the chord-wise and span-wise sections. From now on, we will switch to the
two-dimensional method and apply it for all these sections with the given steady-state
bound circulation, imported from the three-dimensional model. As in Section 2.2, we
will compute for every such two-dimensional slice the sheet strength value at the edge e,
which will give us the slip velocities U at both edges. Furthermore, we will compute the
slip velocities above and below the edge and impose the non-attached slip flow condition.
With the updated slip velocities we will recompute U, which is now the velocity of the
currently released vortex filament, and recompute the circulation of this free vortex from
(2.6).

Having all the information about the first free vortex element we can now move it
according to U. Going to the next time step, we will solve the corresponding section’s two-
dimensional linear system. However, from now on the contributions from the previously
released free vortices will enter the system. Their circulation will be known since it is
preserved in time, and therefore, as discussed in Subsection 2.1, we can write the system
as

AT = b, (3.12)

where A is the matrix of coefficients from the two-dimensional model, I is the new bound
circulation to be computed, and b is the known vector, including the circulation induced by
the free vortex elements. We can look at this system as a perturbed system from its original
state. Consider b = b+ db, where b is the vector from time step one consisting only of the
imposed normal velocities. We add to this normal velocity some perturbation §b which
is in fact the velocity induced by the free vortices. Then, we can also write I = ' + 6T,
where I' is the wake-less bound circulation imported from the three-dimensional model.
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Figure 4: (a) three-dimensional high aspect ratio wing and section being considered; (b) Plot of steady-state
circulation as given by Eq. (3.5).

Hence we get

A(T + 6T) = b+ 6b. (3.13)

But A, I and b solve the initial linear system at time ¢ = 0 so AT' = b and therefore (3.13)
becomes
A - 6T = b (3.14)

Solving this system we get 61" and hence the new bound circulation I' + 6I". All the other
quantities: the edge strength, the slip velocities and the velocities of the free vortices, are
computed at every time step from the two-dimensional model, using the known bound
circulation.

3.3 A 3D computation for a very high aspect ratio plate

To check the accuracy of our three-dimensional method, we apply our 3D numerical
method for a very high aspect ratio plate, and compare our results with the correspond-
ing computations obtained by the two-dimensional method. For a very high aspect-ratio
plate, the three-dimensional effect in the center section should be very small. We ex-
pect the center section to behave very similar to the two-dimensional plate we studied in
Section 2.2. We analyze a three-dimensional plate of length 62 and width 2. The mesh
consists of 31x31 points and they are placed according to some cosine distribution so that
we have more points in the corners and therefore better accuracy. We will compare the
steady-state circulation (no wake influence) of the center section of this plate with the
two-dimensional model which has a length of 2 and a mesh of 31 points as well. The wings
will advance upward with a speed U = 1.

Fig. 4(a) shows the wing and the section we are considering and Fig. 4(b) shows what
the steady-state panel circulation looks like on the wing. To get similar results to the two-
dimensional case we have to use Eq. (3.11) and compute the circulation of the filaments
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Figure 5: (a)&(b) chord-wise sections; (c)&(d) span-wise sections; (a) Superposition of circulation obtained in
the two-dimensional case and the one obtained in the three-dimensional center chord-wise section; (b) Circulation
obtained in the three-dimensional case, on an edge chord-wise section; (c) Circulation for the three-dimensional
case on the central span-wise section; (d) Circulation for the three-dimensional case on an edge span-wise
section.

on the section being considered. Plotting this on top of the two-dimensional circulation
(see Fig. 5(a)) we get results so close they are almost indistinguishable. The norm of
their difference is very small, around 2.4842 - 10~*. This difference is still larger than the
computer precision, showing the presence of the three-dimensional effect.

Fig. 5(b) shows the circulation in the section which is closest to the edge of the wing in
a chord-wise section. We can notice that even though the shape looks similar, the absolute
value of the circulation of the filaments is lower than in the center section, being about half
of the latter. Fig. 5(c) shows the circulation along the center section in a span-wise plane,
and this is quite different than the other two. The circulation being very small for the
main part of this section shows that the edge effects become very small as we go further
from the plate’s edges. In fact it says that only about 22% of the plate near every edge
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will feel the finite-wing effect. The last plot, Fig. 5(d), gives the circulation on the plate
for a section near the edge in a span-wise plane. Note that this is significantly smaller
than the circulation for the corresponding center section, being about 6 times smaller. In
conclusion, our model proves to be very accurate when compared with the two-dimensional
one. Figs. 5(b), 5(c) and 5(d) show how important the three-dimensional effect is in the
motion of the plate, especially at the edges. They also show that the finite-plate effect
tends to reduce the vorticity in the near-edge cross sections compared to the center ones.

3.4 Numerical results vs. experiment for a rectangular wing

In this section we compare our 3D numerical method with physical experiments performed
in a towing tank. Before we present the comparison of our numerical results with the
experimental results, we consider some wings with aspect ratios (AR) found in various
birds and insects. Aspect ratio here will be defined as b?/.S, where b is the span of a single
wing, instead of the conventional definition, which is the distance between both wing tips;
S is the single-wing plan-form (top-view) area. Flying insects have AR’s between about
2.75 and almost 6 [6,7] while hummingbirds have AR’s of around 4 [5]; a soaring bird,
such as albatross, has an AR of about 9 [5]. A finite aspect-ratio wing, compared to one
of infinite span, experiences aerodynamic effects due to the tip, which increase relatively
as the aspect ratio decreases. Therefore for low aspect ratio wings the influence of the tip
is very significant.

In this subsection, we compare our numerical results obtained by solving our 3D nu-
merical method with the experiments performed by Ringuette [15] in the GALCIT towing
tank at California Institute of Technology. Given the aspect ratios found in insects and
hummingbirds mentioned above, he made some experiments with flat plates of rectangular
platforms, having AR = 2 and AR = 6. Next, we will compare these experiments with
the result obtained with our numerical method.

One thing the reader should be aware of is the presence of vortex separation in
Ringuette’s work. He argues that the circulation of the vortex ring does not grow indef-
initely. Therefore, the experiments will show separation which happens at a time called
“formation number”. Formation number is the non-dimensional time at which a vortex
achieves its maximum circulation before pinch-off. Pinch-off occurs when a vortex is no
longer being fed by the shear-layer that generated it and the two become distinct enti-
ties in terms of vorticity. This separation was found in the experiment, however we can
not observe this from our numerical experiment. Of course, if we wanted to mimic the
experiment even better we could artificially detach the leading edge vortex (LEV) in our
numerical method and let another one begin forming.

Aspect Ratio 2

For a wing of aspect ratio 2, the effects due to the tip are more prevalent than the
case with AR = 6. It can be seen from Fig. 6 that the vortices near both chord-wise
and span-wise center sections have more roll-ups than the ones near the corresponding
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Figure 6: Wake shape for AR = 2.
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Figure 7: Circulation vs. formation time from (a) Ringuette’s experiment and (b) numerical method, for
AR = 2, triangles - 50% span, circles - 75% span, diamonds - 90% span.

edges. This is in perfect agreement with what we found in the previous subsection, where
we showed (see Fig. 5) that there is more circulation near the bound center sections than
near the edges. This will imply that less circulation is shed in the free sheet near the edges,
making the vortices weaker. Also from the same plots (see Fig. 5) we expect the vortices
to be stronger along the chord wise sections compared to those released along span-wise
sections since the corresponding total circulation is bigger.

In both numerical and experimental setup a plate with chord ¢ = 5 and aspect ratio
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AR = 2 is used (for the experiment the measuring unit was centimeter). The plate velocity
is Up = 6 and for the numerical method we choose a time step of dt = 0.003 and a blob
6 = 0.2. Our numerical bound sheet is represented by a 31x31 point mesh.

In Fig. 7 we make a comparison between the experiment (plot (a)) and our numerical
method (plot (b)). We plot here the total circulation of a chord-wise section in the wake
versus the formation time. The formation time is a non-dimensional time defined as
trorm = Ug - t/c, where c is the chord length. The plots are for three different chord-
wise sections: triangles denote the circulation at 50% of span, circles at 75% of span and
diamonds at 90% of span. It can be seen that the plots look very similar until the pinch-off
occurs. After that, the circulation from the experiment would not grow as fast anymore
and trail after the numerical results. This can be seen even better in Fig. 8.

Plots (a) and (b) show the total circulation at 50% span from experiment and numerical
method, respectively. We can see that the plots are identical until about formation time
tform = 3, i.e., until the plate has traveled three chord lengths. Accordingly, plots (c) and
(d) show the circulation at 75% span while (e) and (f) show the circulation at 90% span.
On the right is always the experimental result. We can see that for the 75% span case the
similarity goes up to tom, = 2 while in the 90% span case up to t form = 1.5. On the left,
we also have the shapes of the corresponding sections taken from the experiment at given
formation times.

Aspect Ratio 6

For a wing of aspect ratio 6, the effects due to the tip are less significant than in the
AR = 2 case. It can be seen from Fig. 9 that the vortices near both chord-wise and
span-wise center sections have more roll-ups than the ones near the corresponding edges.
This is, again, in perfect agreement with what we found in the previous subsection, where
it was showed (see Fig. 5) that there is more circulation near the bound center sections
than near the edges. This implies that less circulation is shed in the free sheet near the
edges, making the vortices weaker. However, in this case this can be seen better along
span-wise sections due to the higher aspect ratio plate. Also, from the same plots (see
Fig. 5) we expect the vortices to be stronger along the chord wise sections compared to
those released along span-wise sections since the corresponding total circulation is bigger.
This is obviously more pronounced here than in the AR = 2 case.

In both numerical and experimental setup, a plate with chord ¢ = 5 and aspect ratio
AR = 6 is used (for the experiment the measuring unit was centimeter). The plate velocity
is Uy = 6, and, for the numerical method, we choose a time step of dt = 0.003 and a blob
6 = 0.2. Our numerical bound sheet is represented by a 31x31 point mesh.

In Fig. 10 we make a comparison between the experiment (plot (a)) and our numerical
method (plot (b)). We plot here again the total circulation of a chord-wise section in
the wake versus the formation time. The plots are for three different chord-wise sections:
triangles denote the circulation at 50% of span, circles at 75% of span and diamonds at
90% of span. It can be seen that the plots look very similar until the pinch-off occurs.
After that, the circulation from the experiment would not grow as fast anymore and trail
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Figure 9: Wake shape for AR = 6.
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Figure 10: Circulation vs. formation time from (a) Ringuette's experiment and (b) numerical method, for
AR = 6, triangles - 50% span, circles - 75% span, diamonds - 90% span.

after the numerical results. This can be seen even better in Fig. 11.

Plots 10(a) and 10(b) show the total circulation at 50% span from experiment and
numerical method, respectively. We can see that the plots are in very good agreement all
the way up to formation time t .., = 4.5, i.e., until the plate has traveled four and a half
chord lengths. Accordingly, plots 10 (c¢) and 10(d) show the circulation at 75% span, while
10(e) and 10(f) show the circulation at 90% span. On the right is always the experimental
result. We can see that for the 75% case the similarity goes up to ttomm, = 3 while in
the 90% case up to tform = 2. On the left, we also have the shapes of the corresponding
sections taken from the experiment at given formation times. The plot of the circulation
of the leading edge vortex is also included in some of these plots (z’s and/or crosses).
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(a) (b)

Figure 12: Wake shape in the case of a square plate. (a) has twice as many vortices as (b).

One can see that after a while the circulation of this LEV will trail the total circulation,
implying separation.

3.5 Numerical results for a three-dimensional square wing

In this subsection, we present our numerical results for a square plate when AR = 1.
In this case, the finite-wing effects are the strongest. Unfortunately we could not find
an experiment to match the square plate model. Based on the previous comparisons for
AR > 1, we are confident our results are qualitatively correct.

For the numerical simulations, we choose a square plate of length 2 represented by a
31x31 point mesh. The plate is moving upward with velocity Uy = 1 and data are collected
every dt = 0.01 time step. The blob again is chosen to be é = 0.2, and the code is stopped
after 400 time steps. This is equivalent to a formation time of 4.

In Fig. 12(a)&(b), we plot a quarter of the wake since the wake is symmetrical. From
this plots we can see very well how the increased circulation shed in the wake near the
center sections makes the vortices stronger, with more roll-ups, while the vortices near the
edges are weaker with fewer roll-ups. Due to the lack of circulation, the edge vortices are
more elongated because the normal velocity is dominant. Plots (a) and (b) are similar,
with the only difference that in plot (b) we have half as many vortices as in (a) for a better
visualization.

Fig. 13 contains a plot similar to the ones we have already seen in AR =2 and AR =6
cases: total circulation versus formation time. This time though, due to the more powerful
finite-wing effects, the separation between the three curves (A’s - 50% span, o’s - 75% span
and ¢’s - 90% span) is even more accentuated.

4 Concluding remarks

The main objective of this paper was motivated by our desire to develop an effective
three dimensional method for the study of the wake behind a flying wing. The three-
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Figure 13: Circulation vs. formation time - numerical results, for AR = 1, triangles - 50% span, circles - 75%
span, diamonds - 90% span.

dimensional method presented here is just a first step in this direction. The current
method shows some very nice behavior compared with the experiment and demonstrates
how efficient a direct generalization of the two-dimensional theory could be when some
three-dimensional considerations are taken into account. The three-dimensional numerical
method we presented here could provide the basis for a further investigation of a possible
generalization of Wu’s method to three dimensions [22]. The current model still gives
relatively poor approximations near the corners of the plate, where the three dimensional
effects are the strongest. Also, it cannot capture the helical patterns observed near the
corners by Ringuette’s experiments. If we can generalize Wu’s theory to three space
dimensions, we can incorporate this three dimensional theory into our numerical method.
Then we can capture the high order nonlinear 3D effects accurately by our numerical
method, which will provide an effective model to simulate accurately the motion of a
moving surface.
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