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Abstract. In this paper, the zero-temperature string method and the nudged elas-
tic band method for computing the transition paths and transition rates between
metastable states are investigated. The stability, accuracy as well as computational cost
of the two methods are discussed. The results are verified by numerical experiments.

AMS subject classifications: 92-08, 92E20, 65M12

Key words: Transition path, transition state, string method, nudged elastic band method, stabil-
ity, accuracy and cost.

1 Introduction

The string method [4,5] and the nudged elastic band (NEB) method [9] have been widely
used in the study of transition paths and transition rates between metastable states.
Both methods have been successfully applied to continuous models, empirical poten-
tial models and first-principles calculations, see [4, 10, 18–20] for the string method, and
[2, 8, 12, 13, 21–23] for the NEB method.

In this paper, we focus on the zero-temperature string (ZTS) method and the NEB
method. The ZTS method and the NEB method have some similarities. First, both meth-
ods evolve a chain of images of the system between the initial state and the final state.
Second, the potential forces are decomposed into components normal and tangential to
the path in both methods. Third, both methods minimize the energy in the plane normal
to the path at each image. On the other hand, the two methods are different in several as-
pects. In the NEB method, extra spring interaction between the adjacent images is added
to ensure continuity of the path. The systems move in a force field which is a combina-
tion of the normal component of the potential force and the tangential component of the
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spring force. In the ZTS method, the images are points on a string, i.e., a smooth curve
with intrinsic parametrization such as arc length or energy-weighted arc length, which
connects two metastable states. The string evolves to the minimal energy path (MEP)
under the normal component of the potential force subject to some constraint.

We give a detailed theoretical analysis of the ZTS and the NEB methods, including
the stability, accuracy and computational cost. An adaptive time step is obtained from
the stability conditions for each method. Then the computational cost is estimated. A
good choice for the elastic constant is obtained for the NEB method. These choices of
the parameters make the methods more efficient or more accurate. As for the accuracy of
the transition path, both methods have first order accuracy under L2-norm and L∞-norm.
Two techniques to improve the accuracy at the transition state are discussed.

The rest of this paper is organized as follows: In Section 2, the ZTS method and the
NEB method are briefly reviewed. In Section 3, the stability conditions of the ZTS method
and the NEB method are provided. We analyze the accuracy in Section 4. Estimates of
the computational cost of the two methods are presented in Section 5. We conclude the
paper in Section 6.

2 ZTS method and NEB method

In this section, we briefly review the ZTS method and the NEB method (see [4,9] for more
details).

2.1 ZTS method

Consider the example of a system modelled by the following stochastic equation

Ẋε =−∇V(Xε)+
√

2εẆ, (2.1)

where V(X) is the potential energy of the system, Ẇ is a white noise, and ε is a param-
eter representing the strength of the white noise. Suppose the potential energy has two
minima A and B. Let ϕ be a smooth curve, i.e., a string, connecting the two minima of
the potential energy , A and B. By definition, ϕ is a MEP if

0=(∇V(ϕ))⊥, (2.2)

where
(∇V(ϕ))⊥=∇V(ϕ)−(∇V(ϕ)·τ̂)τ̂,

with τ̂ = ϕα/|ϕα| being the unit tangent vector along ϕ, and α the intrinsic parameter of
the string. Equivalently, the MEP ϕ is a curve that minimizes V in the hyperplane normal
to itself. One way of finding solutions of Eq. (2.2) is to follow the dynamics determined
by

ϕt =−(∇V(ϕ))⊥+γτ̂, (2.3)



1222 C. Jin / Commun. Comput. Phys., 2 (2007), pp. 1220-1243

where the scalar field γ≡γ(α,t) is a Lagrange multiplier determined by the parametriza-
tion of the string. The simplest choice is to parameterize ϕ by normalized arc length so
that α=0 at A and α=1 at B. In this case, Eq. (2.3) is subject to the constraint

(|ϕα|)α =0, (2.4)

which determines γ. Other parametrizations can also be straightforwardly implemented
by modifying the constraint (2.4). For instance, a parametrization by energy-weighted
arc length which increases the resolution at the transition states is achieved using the
constraint

[ f (V(ϕ))|ϕα|]α =0,

where f (z) is some suitable monitor function satisfying f ′(z)>0.

2.2 NEB method

In the NEB method, a set of images {ϕi}N
i=0 of the system are connected by springs to

simulate a path. Here ϕ0 and ϕN are two known stable states A and B, respectively. The
force acting on image i (i=1,2,··· ,N−1) is

Fi =−(∇V(ϕi))
⊥+(F̃i)

||, (2.5)

where F̃i = k(ϕi+1−2ϕi+ϕi−1) is the spring force, k is the elastic constant of the springs,
and (F̃i)

|| =(F̃i,τ̂i)τ̂i is the component of F̃i parallel to the path. The images move under
the forces defined by Eq. (2.5).

In a continuum formulation, the NEB method can be written as

ϕt =−(∇V(ϕ))⊥+ k̃ (ϕαα)
||, (2.6)

where the path is parameterized by the arc length parameter α and

k̃ = lim
△α→0

k(△α)2. (2.7)

For simplicity of notation, we will use k for this k̃ in the following discussion.

3 Stability

Usually, Eqs. (2.3) and (2.6) are solved by finite difference schemes. In this section, we
consider the stability of these two equations. Based on the stability conditions, we present
the stable finite difference schemes and adaptive time steps.

Since Eqs. (2.3) and (2.6) are nonlinear partial differential equations, we linearize them
and present the stability conditions for the linearized equations. Consider a potential
V(x) where x is in n-dimensional space. Let ϕ be a path parameterized by α. The MEP is
denoted by ϕ0.
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3.1 The stability of the ZTS method

The ZTS method can be written as
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where δϕ1 is the length of the projection of δϕ on ê1, i.e., δϕ1 = (δϕ, ê1). Substituting
(3.2) in the second equation of (3.1), we obtain the linearized equation of the constrained
equation

∂2δϕ1

∂α2
=0. (3.3)

Now consider the first equation of (3.1). Note that the tangent can be written as
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Hence by some simple calculations, we obtain
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and

δτ̂ = τ̂− τ̂0 =−
∣
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For simplicity, we will use the tensor product. Let a = (a1,a2,··· ,an) ∈ Rn and b =
(b1,b2,··· ,bn)∈ Rn be two n-dimensional vectors, and the tensor product of a and b be a
matrix a⊗b whose elements are

(a⊗b)ij = ai∗bj, ∀ i, j=1,2,··· ,n. (3.7)

Suppose c=(c1,c2,··· ,cn) is another n-dimensional vector. It is easy to verify that

(a,b)c=(c⊗a)b. (3.8)

Since δϕ1 =(ê1,δϕ), the variation of the unit tangent can be written as

δτ̂ = τ̂− τ̂0 =
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∂δϕ

∂α
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Using the Taylor expansion, we obtain

∇V(ϕ0+δϕ)=∇V(ϕ0)+∇2V(ϕ0)δϕ, (3.10)

(∇V(ϕ0+δϕ),τ̂)τ̂ =(∇V(ϕ0)+∇2V(ϕ0)δϕ, ê1+δτ̂)(ê1+δτ̂). (3.11)

We have

∇V(ϕ0)=(∇V(ϕ0), ê1) ê1, (3.12)

where the fact that

(∇V(ϕ0))
⊥=0 (3.13)

is used. Substituting (3.10) and (3.11) in the first equation of (3.1) and using (3.9) and
(3.12), we obtain the linearization of the first equation of (3.1) as follows

∂δϕ
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)
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where the fact that

(ê1⊗ ê1)
2 = ê1⊗ ê1 (3.14)
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is used. Thus, the linearized equations of (3.1) can be written as
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For the zeroth order term including δϕ (where no derivative in α is involved), the general
stability condition is stated as follows:

max{‖(ê1⊗ ê1− I)∇2V(ϕ0)‖}△t≤const. (3.16)

In principle, the constant can be any value if we want to compute on a finite time interval.
However, we are interested in path convergent to the steady state, so we shall require that
△t be in the stability region of the time-stepping scheme, i.e.,
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Considering the first order term involving
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be verified that B= I− ê1⊗ ê1 satisfies
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Thus if λ is an eigenvalue of B then λ2 is also an eigenvalue of B. So the eigenvalue of B
is either 1 or 0. When we use an upwind scheme, the stability condition for the first order
term is
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Consequently, the stability condition for the ZTS method is
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3.2 Stability of the NEB method

The equation for the NEB method is written as

ϕt =−(∇V(ϕ))⊥+k

(

∂2 ϕ

∂α2

)||
, (3.20)

where α is the arc length parameter.
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Let ϕ= ϕ0+δϕ, where δϕ is a small variation of ϕ0. Similar to the analysis of the ZTS
method, the spring force can be written as

(
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Here τ̂, δτ̂, and ê1 are defined in Section 3.1. Substituting (3.10), (3.11) and (3.21) in (3.20),
we are led to the linearized equation
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where the leading order terms cancel out since ϕ0 is a MEP.
Now we are going to analyze these three terms, respectively. It is seen the first term
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As for the second term
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where
(
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From (3.24), (3.26) and (3.29), we obtain the stability condition of the NEB method as
follows,
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3.3 Stable finite difference schemes

As we have seen, upwind schemes are needed to solve both the ZTS equation and the
NEB equation, which has also been illustrated in [6] from physical and numerical points
of view. Suppose there are N+1 images {xj}N

j=0 on the string of the ZTS method or the

band of the NEB method. The energies of the images are denoted by V(xj)(j=0,1,··· ,N).
For simplicity, we denote the potential force by f j =−∇V(xj).

Since the eigenvalues of the matrix B = I− ê1⊗ ê1 are all non-negative, we know the
upwind scheme of the tangent for Eq. (3.15) in the ZTS method should be

τ̂j =















xj+1−xj

△αj
if ( f j,τ̂j)≤0

xj−xj−1

△αj
if ( f j,τ̂j)>0

j=1,2,··· ,N−1, (3.31)
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where △αj is the distance between xj+1 and xj if ( f j,τ̂j)≤ 0 (or between xj−1 and xj if
( f j,τ̂j)>0), which is an approximation of the arc length. For a smooth potential surface,
the upwind scheme is

τ̂j =















xj+1−xj

△αj
if Vj−1 <Vj <Vj+1

xj−xj−1

△αj
if Vj−1 >Vj >Vj+1

j=1,2,··· ,N−1. (3.32)

When xj is a minimum or maximum along the path, i.e., Vj < Vj−1 and Vj < Vj+1; or
Vj >Vj−1 and Vj >Vj+1, the tangent is computed by

τ̂j =(xj−xj−1)△Vj+1+(xj+1−xj)△Vj, (3.33)

where △Vj = |Vj−Vj−1|. Finally, we normalize the tangents so that their lengths satisfy
|τ̂j|=1 (j=1,2,··· ,N−1).

For the NEB method, from (3.22), we know that the upwind scheme of the tangent
relates not only to the potential, but also to the forces of the springs. The upwind scheme
of the NEB method is

τ̂j =















xj+1−xj

△αj
if ( f j+ f̃ j,τ̂j)≤0

xj−xj−1

△αj
if ( f j+ f̃ j,τ̂j)>0

j=1,2,··· ,N−1, (3.34)

where

f̃ j = k
xj+1−2xj+xj−1

(△αj)2

is an approximation of the spring force at image j. When the points on the path distribute
uniformly, the forces of the springs are zero. It is known that the forces of the springs
make the points on the path distribute uniformly. The spring force becomes very small
when the path converges to the MEP. So in practice, we also use Eqs. (3.32) and (3.33) to
approximate the tangents in the NEB method.

Now we give the algorithms for the ZTS method and the NEB method. For the ZTS
method, because of the intrinsic description of the string, it is very simple to implement
an efficient algorithm which solves (2.3) using a time-splitting scheme. The string is
discretized into a chain of images which move under the potential force −(∇V(ϕ))⊥.
After a number of steps depending on the accuracy for the constraint, a reparametrization
step is applied to conserve the constraint. This is illustrated in Algorithm 3.1.

For the NEB method, the implementation of the NEB method is presented in Algo-
rithm 3.2.
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Algorithm 3.1:

1. Give an initial discrete string, for example, interpolate the two metastable states linearly. Denote

the images on the string by {x0
j }N

j=0.

2. Move the images using the following finite difference scheme

xn+1
j −xn

j

△t
= f n

j −( f n
j ,τ̂n

j )τ̂n
j , j=1,2,··· ,N−1, (3.35)

where τ̂j is given by the upwind scheme of the ZTS method. If max
0<j<n

| f n
j −( f n

j ,τ̂n
j )τ̂n

j |<ε, ε≪1,

then stop.

3. If
min△αi
max△αj

< c, 0< c<1, reparameterize the string using interpolation to enforce the constraint.

4. Goto step 2.

Algorithm 3.2:

1. Give an initial discrete path, for example, interpolate the two metastable states linearly. We

denote the images on the path by {x0
j }N

j=0.

2. Move the images using the following difference scheme

xn+1
j −xn

j

△t
= f n

j −( f n
j ,τ̂n

j )τ̂n
j +( f̃

j
i ,τ̂n

j )τ̂n
j , j=1,2,··· ,N−1, (3.36)

where f̃ n
j = k(xn

j+1−2xn
j +xn

j−1)/(△αj)
2 is the force of the spring and τ̂j is computed by the

upwind scheme of the NEB method. If max
0<j<N

| f n
j −( f n

j ,τ̂n
j )τ̂n

j |< ε, ε≪1, then stop.

3. Goto step 2.

3.4 The choice for the time step

For a not very complex problem we can obtain max0<j<N |(∇V(xj)
⊥|< ε after hundreds

or thousands of steps. We choose the time step according to (3.18) for the ZTS method,
and (3.24) and (3.29) for the NEB method, respectively, which is

dt=C min
0<j<N

{ △αj

|( f j,τ̂j)|

}

(3.37)

for the ZTS method, and

dt=C min
0<j<N

{

△αj

|−( f j,τ̂j)+k( ∂2 ϕ
∂α2 ,τ̂j)|

,
(△αj)

2

2k

}

(3.38)
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for the NEB method, where C∈ (0,1) is a constant.
When △αj decreases, the time step of the NEB method decreases rapidly since the

time step is proportional to (△αj)
2, and the number of steps increases rapidly. To achieve

a reasonable time step for the NEB method, we need to choose a small elastic constant
k. However, when k is very small, the band has a low order accuracy. Thus it is diffi-
cult to choose an optimal elastic constant. We have to choose different elastic constants
for different problems. Even for the same problem, we have to choose different elastic
constants for bands with different number of images to achieve better accuracy.

Although the stability condition of the linearized equation is not the same as that of
the corresponding nonlinear equation, it is usually used as a reference for the correspond-
ing nonlinear equation. Here we illustrate this for the ZTS method and the NEB method
with the double well potential

V(x1,x2)=(x2
1−1)2+x2

2. (3.39)

The MEP can be computed exactly
{

(ϕ0(α))1 =−1+2α

(ϕ0(α))2 =0
(0≤α≤1), (3.40)

where (ϕ0(α))i (i=1,2) is the ith element of ϕ0(α). Denote

f =−∇V(ϕ0)=

(

−4x1(x2
1−1)

0

)

,

H =∇2V(ϕ0)=

(

4(3x2
1−1) 0
0 2

)

,

ê1 =
∂ϕ0

∂α

∣

∣

∣

∣

∂ϕ0

∂α

∣

∣

∣

∣

−1

=

(

1
0

)

.

We can rewrite the linearized equation for the NEB method as

∂δϕ

∂t
=k(ê1⊗ ê1)

∂2δϕ

∂α2
+(ê1⊗ ê1− I)Hδϕ−( f , ê1)

∣

∣

∣

∣

∂ϕ0

∂α

∣

∣

∣

∣

−1

(I− ê1⊗ ê1)
∂δϕ

∂α

=C0δϕ+C1
∂δϕ

∂α
+kC2

∂2δϕ

∂α2
,

where

C0 =

(

0 0
0 −2

)

, C1 =− ( f , ê1)

2

(

0 0
0 1

)

and C2 =

(

1 0
0 0

)

.

Thus we obtain a simple version














(

∂δϕ

∂t

)

1

= k

(

∂2δϕ

∂α2

)

1
(

∂δϕ

∂t

)

2

=−2(δϕ)2−
f1

2

(

∂δϕ

∂α

)

2

.
(3.41)
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For simplicity, we use ϕ for δϕ in the finite difference equation. The finite difference
equation for (3.41) is as follows














































ϕm+1
j (1)= ϕm

j (1)+C2(1,1)k
ϕm

j+1(1)−2ϕm
j (1)+ϕm

j−1(1)

(△αj)2
△t,

ϕm+1
j (2)= ϕm

j (2)+C0(2,2)ϕm
j (2)△t+



















C1(2,2)
ϕm

j+1(2)−ϕm
j (2)

△αj
△t, if C1(2,2)≥0,

C1(2,2)
ϕm

j (2)−ϕm
j−1(2)

△αj
△t, if C1(2,2)<0,

j=1,2,··· ,N−1,

(3.42)

where ϕm
j (i) (i=1,2) is the ith element of ϕm

j . Here we have used the upwind scheme for

the second equation. These are linear equations and the corresponding stability condition
can be found by using the Fourier method. For the first equation of (3.42), the optimal
time step is

△t1 =
(△αj)

2

2kC2(1,1)
. (3.43)

Using the Fourier method to the second equation of (3.42), we achieve the optimal time
step for the second equation

△t2 =min







1,
−2C0(2,2)+2 |C1(2,2)|

△αj

2 C1(2,2)2

(△αj)2 +C0(2,2)2−2 |C1(2,2)|C0(2,2)
△αj







. (3.44)

So the optimal time step for the NEB method is

△t=min{△t1,△t2}. (3.45)

The linearized equation for the ZTS method is































(

∂δϕ

∂t

)

1

=0,
(

∂δϕ

∂t

)

2

=−2(δϕ)2−
f1

2

(

∂δϕ

∂α

)

2

,
(

∂2δϕ

∂α2

)

1

=0.

(3.46)

The time step of Eq. (3.46) is just determined by the second equation and it is just the same
as the second equation of (3.41). So the optimal time step for the linearized equation of
the ZTS method for the double well potential is

△t=△t2, (3.47)
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(a) The NEB method
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Figure 1: The relation between the optimal time step and the normalized arc length in the NEB method and
the ZTS method for the double well potential. (a): The NEB method, and (b): the ZTS method.

where △t2 is given by Eq. (3.44).

In our numerical experiments, we choose the time step as dt = C∗△t, (0 < C < 1),
where △t is the optimal time step.

So far we have obtained the optimal time step for the linearized equation. The optimal
time step of the corresponding nonlinear equation usually can be approximated by that
of the linearized equation, which is illustrated in Fig. 1.

This example has some special property. The diffusion term and the lower order term
are separable for the NEB method. Thus we can obtain an optimal elastic constant. If
we choose the time step from the second equation of (3.42) , we obtain an optimal elastic
constant

k=0.5
(△α)2

C2(1,1)△t
. (3.48)

Under the stability condition, for the same △t, the smaller the k is, the bigger the time
step is and the faster the band converges to the solution. This is illustrated by numerical
experiments in Fig. 1(a).

4 Accuracy

Using Algorithms 3.1 and 3.2 we can obtain an approximate MEP. In this section, we shall
analyze the accuracy of the numerical MEP and the transition state (TS) which is the most
important point on the MEP.
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4.1 Pathway

For the accuracy of the numerical MEP, the most natural way is to measure the distance
between the numerical MEP and the exact MEP. The steady state equation of the ZTS
method and the NEB method is

0=−(∇V)⊥=−∇V+(∇V,τ̂)τ̂. (4.1)

Let f (ϕ)=−∇V(ϕ). Then (4.1) becomes

0= f (ϕ)−( f (ϕ),τ̂)τ̂. (4.2)

The finite difference equation of (4.1) is formulated as















f (xj)−
(

f (xj),
xj+1−xj

△α

)

xj+1−xj

△α
=0 if f (xj)≤0

f (xj)−
(

f (xj),
xj−xj−1)

△α

)

xj−xj−1

△α
=0 if f (xj)>0

j=1,2,··· ,N−1. (4.3)

Here we use the upwind scheme and assume the distances △α between the adjacent
points are equal. Let {ϕj}N

j=0 be N+1 points on the exact MEP, that is,

0= f (ϕj)−( f (ϕj),τ̂j)τ̂j.

Suppose △α≡|ϕj−ϕj−1| (j=1,2,··· ,N) are equal. Then we have

f (ϕj)−
(

f (ϕj),
ϕj+1−ϕj

△α

)

ϕj+1−ϕj

△α

= f (ϕj)−
(

f (ϕj),
ϕj+△ατ̂j+O((△α)2)−ϕj

△α

)

ϕj+△ατ̂j+O((△α)2)−ϕj

△α

= f (ϕj)−
(

f (ϕj),
△ατ̂j +O((△α)2)

△α

)

△ατ̂j+O((△α)2)

△α

= f (ϕj)−
(

f (ϕj),τ̂j

)

τ̂j−
(

f (ϕj),τ̂j

)

O(△α)−
(

f (ϕj),O(△α)
)

τ̂j. (4.4)

Thus

f (ϕj)−
(

f (ϕj),
ϕj+1−ϕj

△α

)

ϕj+1−ϕj

△α
=O(△α). (4.5)

The same result can be obtained for the second equation of (4.3). Then we know that the
difference equation is consistent and the accuracy is of first order.

Usually the exact MEP is unknown and it is very difficult to obtain an analytical one.
We give a numerical MEP with enough points as the exact MEP. Here we compute a MEP
of 1200 points as the exact one, denoted by Φ = {ϕj}1200

j=0 , and compare the MEP of less
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(a) LEPSH potential (b) Mueller potential
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Figure 2: Two typical two-dimensional potential contour.

points X = {xj}N
j=0(N≪1200) to the MEP Φ. We define the error under the L∞-norm as

the distance between two MEPs, that is

‖Φ−X‖L∞
= max

0<j<N
min

0<i<1200
{|ϕi−xj|}. (4.6)

The error under the L2-norm is defined by

‖Φ−X‖L2
=

(

N−1

∑
j=1

min
0<i<1200

{|ϕi−xj|2△αj}
)

1
2

. (4.7)

In our experiments, we choose N such that the normalized arc length interval is 1/N =
j/300, j=1,2,··· ,10. From (4.5) we may expect that the ZTS method and the NEB method
have a first order accuracy for the errors under the L∞-norm and the L2-norm. Here we
use two typical two-dimensional examples to test our results. The two typical examples
are:

• (LEPS potential coupled with harmonic oscillator). We consider the system involv-
ing four atoms A, B, C and D confined in a line. Atom B can form a chemical bond
with either A or C, and can interact with the fourth atom D in a harmonic way. The
form of the potential can be found in [9]. A contour plot of the potential surface is
given in Fig. 2.

• (Mueller potential). Mueller potential is invented as a nontrivial test example for
reaction path algorithms [15, 16]. A contour plot of the potential surface is given in
Fig. 2.
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(a) L∞-norm error for LEPSH potential
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(b) L2-norm error for LEPSH potential
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(c) L∞-norm error for Mueller potential
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(d) L2-norm error for Mueller potential
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Figure 3: The horizontal coordinate is the normalized arc length interval 1/N and the vertical coordinate is the
error. The solid lines are the results of the ZTS method and the dashed lines are those of the NEB method.

The numerical results are demonstrated in Fig. 3. From our numerical experiments, we
can see that the errors under the L∞-norm and the L2-norm indeed have first order accu-
racy.

Remark 4.1. The L∞-norm error for LEPSH potential has some problems in the 30-point
and 33-point results. This is because the path of the 30-point string cuts the corner where
the error of the point is large and is just the L∞-norm error of the path. The L∞-norm
error, which is an individual point behavior, sometimes can not describe the error of the
path accurately. We can see the L2-norm error, which is an average behaviour of all the
points , makes a correction to this problem.
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Figure 4: The MEP in reaction coordinate.

4.2 Transition state (TS)

The transition state is a special saddle point, which is very important in the dynamics of
complex systems. There are many papers trying to find the saddle points in the energy
potential surface (see [17] and references there). Once we find the saddle points, it is easy
to find the MEP. The TS also has a close relation to the transition rate.

To understand the importance of the transition state more clearly, we first give a brief
introduction to the transition state. Murrell and Laidler defined a transition state as a
stationary point with a single negative Hessian eigenvalue [14]. Stationary points with
one or more negative Hessian eigenvalues are often called saddle points, because they
have a local maximum in one or more degrees of freedom. Fig. 4 gives an illustration for
the transition state, which has appeared in many papers or books. The transition state is
then identified by the highest energy point on the MEP [1]. We refer the reader to [24]
and the references cited therein for more details.

The energy and the negative eigenvalue of the Hessian matrix at the TS are related
to the transition rate. Suppose A and B are two metastable states, and there is only one
transition state C on the MEP which connects A and B. The transition rate for Eq. (2.1)
from A to B can be expressed as [19]

kAB =
(λm|λs|)1/2

2π

√

detH⊥(A)

detH⊥(C)
e−

1
ε ∆V , (4.8)

where λm and λs are the eigenvalues of the Hessian matrix H corresponding to the eigen-
vectors ϕα(0) and ϕα(α∗), ϕ(0) and ϕ(α∗) are the parameter representation of the stable
state A and the transition state C, and △V is the energy barrier defined by

△V =V(C)−V(A). (4.9)
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Thus we need to analyze the following errors:

• The error of the energy barrier.
Since V(A) is known, the error of △V is introduced by the approximation of the
energy at the transition state V(C). We define the error of the energy barrier by

De(X)= |V(C)−V(xi)|, (4.10)

where xi is the approximation of the TS.

• The error of the eigenvalue and detH⊥(C).

We have obtained an approximate MEP using the ZTS method or the NEB method.
With this approximate MEP, we can use interpolation to give an estimation of the TS.
Suppose energies Vj =V(xj) (j =0,1,··· ,N) have the maximum value at ximax on the nu-
merical MEP, where imax ∈ [1,N] is an integer. Let the coordinates and the energy be
functions of arc length α, that is x(α) and V(α). On the four points xi (i= imax−2,imax−
1,imax,imax+1), we define the arc length parameters

α1 =0,

α2 = |x(imax−1)−x(imax−2)|,
α3 = |x(imax)−x(imax−1)|+α2 ,

α4 = |x(imax+1)−x(imax)|+α3 .

We choose α1,α2,α3 and α4 as the interpolation points, and use Lagrange cubic polynomi-
als Px(α) and PV(α) to approximate x(α) and V(α), respectively. We first find the point
α∗ where the Lagrange cubic polynomial PV(α) attains its maximum, then take the point
Px(α∗) as the approximate maximum point of V(x(α)), which is the TS. From numerical
experiments, this interpolation is better than what has been proposed in [6], which uses
the forces at the points.

Now we estimate the accuracy of the TS using this interpolation method.

Lemma 4.1. ( [11]) Let f : [a,b]→ R be (n+1)-times continuously differentiable. Then the re-
mainder Rn f := f −pn for polynomial interpolation with n+1 distinct points x0,··· ,xn ∈ [a,b]
can be represented in the form

(Rn f )(x)= f (x)−pn(x)=
f (n+1)(ξ)

(n+1)!

n

∏
j=0

(x−xj), x∈ [a,b], (4.11)

for some ξ∈ [a,b] depending on x.

Following the above lemma, if the interpolation step is hj = j∗h for some fixed h, the

remainder is R
j
3 f (x)≈Cj4h4, where C is a constant depending on x and j. So

log(R
j
3 f (x))≈ log(C)+4log(j)+4log(h),
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(a) The LEPSH potential
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Figure 5: The horizontal coordinate is log(j), where j∗h is the normalized arc length interval. The vertical

coordinate is the logarithm of the remainder log(R
j
3 f (x)).

which means the logarithm of the remainder and the logarithm of j have a linear relation-
ship. The relations of the logarithm of the errors at the transition state and the logarithm
of {j, j=1,2,··· ,10} are show in Fig. 5 for the Mueller potential and the LEPSH potential.
We can see the results of the Mueller potential are consistent well with the interpolation
lemma. That is the logarithm of the errors at the transition state and the logarithm of
{j, j = 1,2,··· ,10} have almost a linear relationship. However the results of the LEPSH
potential are not consistent with the theory. This is possibly because the fourth derivative
of the potential becomes bigger near the transition state.

4.3 Some improvement on the transition state

In this subsection, we introduce two methods to give a better TS.

• Climbing image method.

This method was developed for the NEB method in [7]. Here we use it also for the
ZTS method. The transition state is a maximum along the MEP and a minimum
in the hyperplane normal to the path. Using this property, we change the move-
ment of the points which have a local maximum energy along the path. We move
these points along the force in the hyperplane normal to the path and against the
force along the path. When the path is reparameterized, the points that have local
maximum along the path do not change. This method is just like the eigenvector-
following method [3]. Near the transition state, the direction of the path is an ap-
proximation of the eigenvector of the negative Hessian eigenvalue. This method
costs only little more time than the standard ZTS method. Using this method, the
accuracy of the energy and the negative Hessian eigenvalue is improved greatly.
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Table 1: Errors for energy barrier for the LEPSH potential.

N Interpolation CI-ZTS WA-ZTS

30 5.10×10−5 5.77×10−15 1.19×10−9

60 2.19×10−6 5.22×10−15 3.48×10−11

100 1.21×10−6 5.33×10−15 3.22×10−11

150 9.35×10−7 5.11×10−15 1.19×10−9

300 1.00×10−6 5.22×10−15 1.20×10−9

• Weighted arc length method.

Since the transition state is very important, we give some changes in the ZTS method
near the transition state. The basic idea is to use a non-equivalent arc length string.
We use small arc length interval near the TS. Here we propose a simple and efficient
choice for the arc length parameter. Let {xi}N

i=0 be the string and ximax be the saddle
point. When reparameterizing the path, we define the parameter (the normalized
arc length) at the points as follows:























αimax = imax
N ,

αimax−1 =αimax−C/N,
αimax+1 =αimax+C/N,
αi = i∗αimax−1/(imax−1), i=1,2,··· ,imax−2,
αi =αi−1+(1.0−αimax+1)/(n−imax−1), i= imax+2,··· ,N,

(4.12)

where C is a constant, for example it can be 1/20 or 1/30. Since the force near the TS
is very small, from Eq. (3.18), we know the time step is not affected in this case. We
need only little more time using this method than using the standard ZTS method.
We only change the motion of the points near the saddle point. It is very simple to
implement.

The weighted arc length method of the NEB method is implemented by using
different elastic constant for different intervals. More precisely, the forces of the
springs are given by

f̃i = ki+1(xi+1−xi)+ki(xi−xi−1), i=1,2,··· ,N−1,

where the elastic constant ki is big near the saddle point and is small near the end
point. A choice for the elastic constant is given in [7].

We use these techniques to the ZTS method and the NEB method for the LEPSH
potential and the Mueller potential. We show the results in Tables 1, and 2 for the ZTS
method. We can see that the accuracy has been greatly improved. The results are similar
for the NEB method.

The weighted arc length ZTS (WA-ZTS) method does not have accuracy as high as
that of the climbing image ZTS (CI-ZTS) method for these two examples. The weighted
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Table 2: Errors for energy barrier for the Mueller potential.

N Interpolation CI-ZTS WA-ZTS

30 3.69×10−4 7.10×10−15 6.35×10−10

60 1.60×10−5 7.10×10−15 2.01×10−9

100 1.88×10−6 7.10×10−15 3.29×10−10

150 4.70×10−6 7.10×10−15 6.25×10−13

300 2.41×10−8 7.10×10−15 1.21×10−13

arc length method aims to accurately calculate the pathway around the saddle point, in
particular the saddle point and the unstable direction. The climbing image method is
a local search technique like the steepest descent method or Newton’s method for local
minima, therefore it is only for the saddle point. When the potential surface is rough,
which is the case in most of the problems that we are interested in, the climbing image
method does not work any more, while the weighted arc length method can still work.

Remark 4.2. In principle, the errors in Tables 1 and 2 for the CI-ZTS should be the ma-
chine error (10−15 or 10−16 if double precision is used), which is independent of the prob-
lem or the parameter N.

5 Computational cost

In this section, we shall estimate the computational cost of the ZTS method and the NEB
method. Suppose there are N+1 points {xj}N

j=0 on the path. When the iteration number

that makes the forces perpendicular to the path satisfy

max
0<j<N

{|(∇V(xj))
⊥|}< ε

(we choose ε = 10−7 in practice) is m, the computational cost can be measured by m×
(N−1). In the ZTS method, the time step is chosen according to Eq. (3.37) for which we
choose C=0.6, i.e.,

△t=0.6 min
0<i<N

{ △αi

( fi,τ̂i)

}

. (5.1)

The iteration number m is expected to be proportional to N, which is inversely propor-
tional to the arc length interval △αi. For the NEB method, the time step depends on the
potential energy and the elastic constant. On the one hand, when the elastic constant is
too small, the path has a lower accuracy. On the other hand, when the elastic constant is
too big, we need to use very small time step to guarantee the stability of the difference
scheme. We have carried out many numerical experiments for the Mueller potential and
the LEPSH potential. We found that the elastic constant can be chosen as k = c/N for
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(a) Cost for the LEPSH potential
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Figure 6: The solid curve gives the computational cost of the ZTS method, the long dashed line shows the
computational cost for the NEB method and the short dashed line represents the computational cost of the
NEB method with the force given by (5.3). The horizontal coordinate is log(N), where 1/N is the normalized
arc length interval △α and the vertical coordinate is the computational cost log(t). Here t=m×(N−1).

accuracy. From (3.24) and (3.29), the elastic constant k=c/N can also guarantee a reason-
able time step. We used c=0.5 in the LEPSH potential and c=30 in the Mueller potential.
Then we chose the time step in the NEB method according to (3.38), which is

△t=0.6 min
0<i<N

{ △αi

|−( fi,τ̂i)+( f̃i,τ̂i)|
,
(△αi)

2

2k

}

. (5.2)

With these choices, in principle, the iteration number m for the NEB method is also pro-
portional to N. We give the relations between log(m×(N−1)) and logN in Fig. 6 for the
ZTS method and the NEB method. The tangent of the line of the NEB method is about
2.8 for the Mueller potential and 2.75 for the LEPSH potential. The tangent of the line of
the ZTS method is about 1.65 for the Mueller potential and 2.03 for the LEPSH potential.
For the two typical examples, the computational cost of the ZTS method is less than that
of the NEB method. Especially for the Mueller potential, the computational cost of the
ZTS method is ten times less than that of the NEB method.

In [6], the spring force in the NEB method is given by

f̃i = k(|xi+1−xi|−|xi−xi−1|)τ̂i, i=1,2,··· ,n−1, (5.3)

where |xi+1−xi| is the distance between xi+1 and xi. In numerical experiments, the
computational cost of this NEB method is almost the same as that of the standard NEB
method.
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6 Conclusions

In this paper, we have presented a detailed theoretical analysis of the ZTS method and the
NEB method. First, we have given the stability conditions. From the stability condition,
we have given an adaptive time step for each method, which makes the computation
more efficient. Second, we have estimated the accuracy of the ZTS method and the NEB
method. The errors of the MEP under the L∞-norm and the L2-norm have first order
accuracy in both methods. Finally, we have estimated the computational cost and found
that the ZTS method costs much less than the NEB method. In addition, the ZTS method
is very simple to implement. While, the NEB method has an additional elastic constant
parameter which is difficult to choose in the implementation.

Another focus of this paper is the discussion of the properties of the transition state.
We have approximated the transition state using interpolation. Two techniques have also
been proposed for the ZTS method to improve the accuracy at the transition state. When
the potential surface is smooth, the climbing image method is recommended, because it
produces the best transition state. However, when the potential surface is very rough, the
climbing image method does not work any more, while the weighted arc length method
can still work.
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