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Abstract. In this paper, a divergence-free and pressure-oscillation-free projection
method for solving the incompressible Navier-Stokes equations on the non-staggered
grid is presented. The exact discrete projection method is used to compute the velocity
field, which ensures the discrete divergence of the velocity field is zero. In order to
eliminate the odd-even decoupling in the pressure field, a filtering procedure is pro-
posed and applied to the pressure field. We have shown this filter recovers the grid
scale ellipticity in the pressure field and the odd-even decoupling can be removed
effectively. The proposed numerical scheme is further verified through numerical ex-
periments.
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1 Introduction

Conventional numerical methods for solving the incompressible Navier-Stokes (N-S)
equations in terms of the primitive variables are mainly applied on the marker-and-
cell (MAC) [13] type staggered grids. For this type of grids, the pressure, density and
other scalars are stored in the mesh cell center, the velocities are stored at the mesh cell
faces and the momentum equations are solved by constructing separate control volumes
around them. This arrangement makes the stencil for the pressure gradient terms in the
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momentum equations very compact. The continuity equation can be also computed di-
rectly requiring no interpolations. These two features make the staggered grid approach
capable of capturing all resolvable modes and thereby preventing the odd-even decou-
pling or the “checkerboard” modes of the pressure field.

However, the use of the staggered grids adds geometrical complexity by the introduc-
tion of multiple control volumes. Furthermore, the staggered grid schemes become very
awkward when generalizing to curvilinear meshes and unstructured grids that are com-
monly used to handle the complex geometries. The use of staggered grids for complex
geometries leads to either high memory requirements, or inefficient solution methods or
complicated equations with additional source terms [27].

An alternative form of the control volume and fluid variable positioning technique,
namely the non-staggered or collocated grid arrangement, stores all the variables at the
same physical location and employs only one set of control volumes. This approach
reduces the geometrical complexity and shortens the long computational time needed in
the conventional staggered methods and is becoming increasingly popular in practical
applications.

A significant shortcoming of the non-staggered grid approach is the so called odd-
even coupling phenomenon or the occurrence of ”checkerboard” modes in the pressure
field. When the NS equations are solved by the projection methods [5-8,14-20,23,25], this
phenomenon has also been observed [22].

There are two types of projection methods, namely the ”exact” discrete projection
methods and the approximate projection methods [1]. In the exact projection method, the
discrete Poisson equation is defined as the product of the discrete divergence operator
and the discrete pressure gradient operator, and the discrete divergence of velocity is
zero, or more precisely, small quantity within the convergence tolerance of the solution
of the discrete Poisson equation. When second-order central difference approximations
are implemented for both operators, the discrete Poisson equation corresponds to a non-
compact sparse stencil and produces an oscillatory pressure field [22].

If the discrete Poisson equation is derived through a straightforward discretization of
the continuous Laplacian operator, the resulting projection scheme is called the approx-
imate projection method [1]. In this case, the discrete divergence of velocity is not zero,
but is rather a function of the truncation error. For the pressure-free projection methods,
the approximate projection procedure can effectively remove the checkerboard modes in
the pressure field [27]. However, for the incremental-pressure projection method, it is
generally not sufficient to eliminate the pressure oscillations [16]. Therefore, other sup-
plementary measurements must be used. These measurements include the momentum
interpolation technique [21] and its variants [3,4,9], various filters designed by Lai [16]
and Riders [22], and the fourth-order ”compact equivalent” approximation of the dis-
crete Poisson equation [10].

Although the approximate projection methods perform well in many practical appli-
cations, they inevitably produce velocity fields that are not divergence-free in the discrete
sense. The non-divergence-free velocity fields sometimes have adverse effects on the ac-
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curacy of the numerical solutions [22]. In this paper, a procedure for the implementation
of the second order incremental-pressure projection scheme on collocated grids is pre-
sented. In this approach, the exact discrete projection method is used to compute the
velocity field, which ensures the discrete divergence-free property. In order to eliminate
the odd-even decoupling in the pressure field, a filtering procedure is proposed and ap-
plied to the pressure field. Using the theory proposed in [3,24], we have shown this filter
recovers the grid scale ellipticity in the pressure field and the odd-even decoupling can
be removed effectively. It should be noted that the emphasis of this paper is not to study
the projection method itself, but rather to design the solution procedure of the projection
method on the non-staggered grid so that the numerical solution is divergence-free and
pressure-oscillation-free.

This paper is organized as follows. In Section 2, we review the second-order incre-
mental pressure projection method proposed by Brown et al. [7] for completeness. The
pressure filtering technique is presented in Section 3. The ellipticity of the present method
is discussed in Section 4. Sections 5 and 6 present the numerical results and the conclu-
sions, respectively.

2 The second order projection method

The unsteady incompressible N-S equations in primitive variable form are written as

∂u

∂t
+∇·(u⊗u)+∇p=υ∇2u+f, (2.1)

∇·u=0, (2.2)

where u, p, υ and f are the velocity vector, pressure, kinematic viscosity of the fluid, and
body force, respectively. We notice that the density is already absorbed in the pressure
term and is not shown in Eq. (2.1). The initial conditions are

u(x,0)=u0,

and the boundary conditions are

ub =w.

In this paper, we only consider the two-dimensional finite volume scheme for solving
the N-S equations on uniform rectangular cells for simplicity, though it is straightforward
to extend the numerical scheme to three-dimensional and general control volume cases.
A collocated cell arrangement is used, in which all flow variables are stored at the center
of a cell or control volume.

Eqs. (2.1) and (2.2) are discretized using a second-order incremental-pressure projec-
tion method. This method is similar to that proposed by Brown et al. [7] except that
the exact discrete projection is adopted. The projection method is a predictor-corrector
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scheme. In the predictor step, an intermediate velocity is computed according to the
discrete equations

(u∗)n+1
i,j −un

i,j

∆t
+D(u⊗u)n+1/2

i,j +Gqn+1/2
i,j =

υ

2
Lh[(u∗

i,j)
n+1+un

i,j]+fn+1/2
i,j , (2.3)

where qn+1/2 is an estimation of the pressure at time level n+1/2 which is taken as
qn+1/2 = pn−1/2, ∆t is the time step, and D, G and L are the discrete divergence, gradient
and Laplacian operators respectively. These operators are defined as:

D(∗)i,j = Dx[i·(∗)]+Dy[j·(∗)], (2.4)

Dx(•)=
(•)i+1,j−(•)i−1,j

2∆x
, Dy(•)=

(•)i,j+1−(•)i,j−1

2∆y
, (2.5)

G(•)i,j =
(•)i+1,j−(•)i−1,j

2∆x
i+

(•)i,j+1−(•)i,j−1

2∆y
j, (2.6)

Lh(•)i,j =
(•)i+1,j−2(•)i,j +(•)i−1,j

∆x2
+

(•)i,j+1−2(•)i,j+(•)i,j−1

∆y2
, (2.7)

where (∗) is a vector or a tensor and (•) is a scalar or a vector. The i and j are unit basis
vectors in x and y directions, respectively. To ensure the temporal second-order accuracy,
the convection term is treated with the Adams-Barshforth method,

D(u⊗u)n+1/2
i,j =1.5D(u⊗u)n

i,j−0.5D(u⊗u)n−1
i,j ;

and the time derivative and the diffusion term have been discretized using the Crank-
Nicholson scheme.

To solve Eq. (2.3) numerically, a certain ”artificial” boundary condition must be used.
According to Brown et. al [7], this boundary condition is chosen as

u∗
b =w. (2.8)

In the corrector step, the intermediate velocity (u∗)n+1 is decomposed into a solenoidal
vector un+1 and a curl-free vector expressed as the gradient of a potential, ∇φn+1, accord-
ing to the Helmholtz-Hodge theorem. In discrete form, it can be written as

(u∗)n+1
i,j =un+1

i,j +∆tGφn+1
i,j , (2.9)

Dun+1
i,j =0. (2.10)

Using Eqs. (2.9) and (2.10), we have

L2hφn+1
i,j =

1

∆t
D(u∗)n+1

i,j , (2.11)
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where L2h = DG. It is easy to derive that

L2hφn+1
i,j =

φn+1
i+2,j−2φn+1

i,j +φn+1
i−2,j

4∆x2
+

φn+1
i,j+2−2φn+1

i,j +φn+1
i,j−2

4∆y2
. (2.12)

The boundary condition of Eq. (2.11) is

∂φn+1
b

∂n
=0, (2.13)

where ∂
∂n stands for the normal derivative. Eqs. (2.9)-(2.13) are called the exact discrete

projection because we require Eq. (2.10) to be satisfied exactly.
When φn+1 is available after solving Eqs. (2.11) and (2.13), the velocity un+1 is cor-

rected by using Eq. (2.9). The pressure can be updated according to [11]

pn+1/2
i,j =qn+1/2

i,j +φn+1
i,j −0.5υ∆tLhφn+1

i,j . (2.14)

Eq. (2.14) is called the consistent or rotational form pressure updating formulation. Its
advantage over the traditional pressure updating method

pn+1/2
i,j =qn+1/2

i,j +φn+1
i,j

has been discussed in [7].

3 The pressure filtering technique

The non-compact stencils of the discrete operator L2h make Eq. (2.11) lack of grid level
coupling. The non-physical oscillations in the pressure field can be therefore produced. It
has been observed that although the distribution of φ and p is highly oscillatory, the fields
Gφi,j, L2hφi,j and Gpi,j, L2h pi,j are generally smooth. The reasons for this phenomenon are
quite simple: in Eq. (2.11), the coupling is achieved on every other grid point and the
operators G and L2h cannot sense the grid level oscillations of the potential and pres-
sure field. In order to achieve the grid level coupling and prevent the occurrence of the
oscillations, we propose to use the filtering procedure

Lh(•̄)= L2h(•) (3.1)

to smooth out the nonphysical oscillations, where (•) stands for the unfiltered field, and
(•̄) stands for the corresponding field after smoothing. Lh is the standard discrete Lapla-
cian operator with compact five-point stencils defined in Eq. (2.7). This procedure is
second-order accurate since

Lh(•)−L2h(•)=O(h2),

where h = max(∆x,∆y). Therefore, the smoothing procedure will not affect the second-
order accuracy of the projection scheme.
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The solution procedures presented in Section 2 must be slightly modified to accom-
modate the filtering algorithm. Firstly, the estimated pressure is now

qn+1/2 = p̄n−1/2, (3.2)

where p̄ is the filtered pressure. Secondly, the pressure is updated by

p̃n+1/2
i,j = p̄n−1/2

i,j +φn+1
i,j −0.5υ∆tLhφn+1

i,j , (3.3)

and is smoothed by

Lh( p̄n+1/2
i,j )= L2h( p̃n+1/2

i,j ). (3.4)

We note in the present approach, the quantity being filtered is the pressure instead of the
potential φ; therefore, the velocity correction procedure, Eq. (2.9), is not affected by the
pressure filtering and the discrete divergence of the corrected velocity field remains to be
zero as in the ordinary exact discrete projection methods.

It is apparent that in the present approach, two discrete Poisson equations must be
solved in the projection procedure. Therefore, the present approach is computationally
more expensive than the approximate projection methods. It should be pointed out that
for some approximate projection methods, the solutions of two Poisson equations are also
required with one Poisson equation being similar to Eq. (2.11) and another one being the
result of the MAC projection procedure [22]. The MAC projection procedure is adopted
to ensure the balance of the volumetric flux across a control volume. Because the present
method is divergence-free, the MAC projection procedure is not needed in the present
approach. In this paper, the Poisson equations, Eq. (2.11) and Eq. (3.4), are both solved
using the GMESR algorithm presented in [26].

4 The regularity (ellipticity) of the pressure filtering procedure

As shown in [24], a scheme solving the incompressible N-S equations must be regular
elliptic in order that the solution is smooth. In the present section, the regularity of the
present method will be discussed. For simplicity, we neglect the advection and forcing
terms in the N-S equations and consider the corresponding Stokes equations only.

We apply the discrete Laplace and the Fourier transform in time and spatial directions
respectively to the proposed projection method. Denoting the transform of (•) as (•̂), we
have

(•)n
i,j =(•̂)estn+ξ(kxxi+kyyj), (4.1)

where ξ =
√
−1. Applying Eq. (4.1) to Eqs. (2.3), (2.11), (2.9), (3.3) and (3.4) (neglecting
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the advection and forcing terms), we obtain

[
1

∆t
− υ

2
L̂h

]
û∗es∆t−

(
1

∆t
− υ

2
L̂h

)
û+D̂x̂̄pe−s∆t/2 =0, (4.2)

[
1

∆t
− υ

2
L̂h

]
v̂∗es∆t−

(
1

∆t
− υ

2
L̂h

)
v̂+D̂ŷ̄pe−s∆t/2 =0, (4.3)

L̂2hφ̂=
1

∆t

[
D̂xû∗+D̂yv̂∗

]
, (4.4)

û= û∗−∆tD̂xφ̂, v̂= v̂∗−∆tD̂yφ̂, (4.5)

̂̃pes∆t/2 = ̂̄pes∆t/2+(1−0.5υ∆tL̂h)φ̂es∆t, L̂ĥ̄p= L̂2h
̂̃p, (4.6)

where ”̂” over an operator denotes the symbol of this operator in wave number space.
Eliminating û∗, v̂∗, φ̂, ̂̃p and ̂̄p from Eqs. (4.2)-(4.6), we reach the following system of
equations: 


Â 0 D̂xP̂

0 Â D̂yP̂

D̂x D̂y 0








û
v̂
̂̄p



=0, (4.7)

where

Â=

(
1

∆t
− υL̂h

2

)

es∆t−
(

1

∆t
+

L̂h

2

)

, P̂=
L̂hes∆t/2

L̂2h

.

The determinant of Eq. (4.7) is

Det=−Âes∆t/2B̂, (4.8)

where

B̂=(D̂xD̂x+D̂yD̂y)
L̂h

L̂2h

.

It is apparent that the operator B̂ stands for the velocity-pressure coupling effect, there-
fore B̂ is considered only in the ellipticity analysis [2,3,24]. If B̂ has no real zeros for all
realizable wave number components (0 < kx∆x ≤ π, 0 < ky∆y ≤ π), then the system is
regular elliptic.

Armfield [2] used the h-ellipticity measure Eh of B̂ to measure its degree of ellipticity,
which is defined by

Eh = min
0< kx∆x,ky∆y,k′x∆x,k′y∆y≤π

L̂h(kx∆x,ky∆y)

L̂h(k′x∆x,k′y∆y)

∣∣∣∣∣
B̂(k′x∆x,k′y∆y)

B̂(kx∆x,ky∆y)

∣∣∣∣∣.

According to this definition, we have 0≤Eh≤1. When Eh =0, the B̂ or the corresponding
numerical procedure is not elliptic; when Eh > 0.7, B̂ is called strong elliptic. Armfield
pointed out that the h-ellipticity measure Eh has a strong relation with the smoothness of
the pressure field. For the projection method on staggered grid, Eh =1 and the pressure
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field is always smooth; for the unfiltered exact projection method on the non-staggered
grid, Eh =0 and the odd-even decoupling in the pressure field will be observed.

We remark that in [18], the h-ellipticity measures of the pressure-free approximate
projection method [27] and the incremental-pressure approximate projection method sup-
plemented with the momentum interpolation technique [21] or the technique proposed
by Armfield [3] have been computed. It is shown that the h-ellipticity measures of these
schemes are all functions of ReG, where

ReG =
h2

∆tυ

and h=∆x=∆y is the mesh size. For most range of ReG, Eh<0.7, and Eh will become very
small as ReG increases to a large value. Therefore, these methods are only weak elliptic
for large ReG and small oscillations in the pressure fields may still occur in such a case.

For the present method, it is easy to show that (D̂xD̂x+D̂yD̂y)= L̂2h. Therefore,

B̂= L̂h,

and the h-ellipticity measure of the present scheme is Eh=1, which means that the present
method has the same property of ellipticity with the projection method on a staggered
grid and therefore the odd-even decoupling in the pressure field can be removed effec-
tively.

5 Numerical tests

Case 1. The forced flow problem. In this test case [7], the fluid flows in a channel with
periodic boundary conditions in the x-direction. A no-slip condition is prescribed at y=0,
while a nontrivial slip condition is specified at y = 1. The N-S equations are augmented
with a forcing term in order that the solution is

u=cos(2π(x−ω(t)))(3y2−y),

v=2πsin(2π(x−ω(t)))y2(y−1),

p=− ω̇(t)

2π
sin(2π(x−ω(t)))(sin(2πy)−2πy+π)

+υcos(2π(x−ω(t)))(sin(2πy)+2πy+π),

where ω(t)=1+sin(2πt2), and the viscosity is set to υ=1. In the numerical simulation,
the ratio ∆t/h is set to be 0.5. We apply the present projection scheme on a series of N×N
grids with N equal to 32, 64, 128, 256, and 512, respectively. The errors of the computed
velocity and pressure in both the 2- and ∞-norm at t=1 are reported in Fig. 1 as functions
of ∆t in double logarithm scale. The second-order convergence rate is observed in both
norms. Therefore, the introduction of the pressure filtering procedure dose not affect the
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Figure 1: Errors in the pressure and u-component of
velocity at t=1 computed using the present projection
scheme for Case 1.

x

y

0 0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: The pressure contours for Case 1 at t=1.

Figure 3: Streamlines of Case 2 when Re=400.
Computational results are obtained using the present
method on a 128×128 grid.

Figure 4: The v-component velocity profiles at
the cavity’s horizontal centerline for Case 2 when
Re=400. Computational results are compared to
Ghia’s results [14] on a 128×128 grid.

second-order accuracy of the present scheme. The pressure contours are shown in Fig. 2,
which exhibit no odd-even decoupling.

Case 2. Lid-driven cavity flows. The ”lid-driven cavity” flows have been established as
a standard ”benchmark” test for numerical methods of incompressible fluid dynamics
[12]. Fig. 3 depicts the stream lines of the Re=400 flows using the present method on the
128×128 uniform grid. The present method accurately reproduces the formation of the
primary and two secondary vortices, with flow structures similar to those given in [12].
Fig. 4 presents a comparison of the velocity distributions at the horizontal centerline of
the cavity that are computed using the present method and the vorticity-stream-function
method [12] respectively. The agreement is excellent.



Y. X. Ren, M. Liu and H. Zhang / Commun. Comput. Phys., 2 (2007), pp. 746-759 755

Figure 5: Streamlines of Case 2 when Re=10000.
Computational results are obtained using the present
method on a 128×128 grid.

Figure 6: The pressure contours for Case 2 when
Re=10,000. Computational results are obtained us-
ing the present method on a 128×128 grid.

Figure 7: Same as Fig. 6, except by using the un-
filtered exact projection method. The odd-even de-
coupling is clearly observed.

Figure 8: Same as Fig. 6, except by using the ap-
proximation projection method with the momentum
interpolation method. Some minor odd-even decou-
pling is observed.

A high Reynolds number case with Re=10,000 is also computed on the 128×128 uni-
form grid. Unlike Ghia et al. [12] who utilized a steady-state model, our calculations
show that the flow field is unsteady in this case, which was also reported in [20] where a
high-order Godunov scheme was used. Fig. 5 shows the stream lines at a typical moment.
The pressure contours are reported in Fig. 6. It is clear that a smooth pressure field can be
predicted and no odd-even decoupling occurs. For the purpose of comparison, the pres-
sure fields computed using the unfiltered exact projection scheme and the approximate
projection scheme supplemented with the momentum interpolation technique are shown
in Fig. 7 and Fig. 8 respectively. Clear checkerboard modes can be observed in Fig. 7. In
this case, even the momentum interpolation technique cannot cure the odd-even decou-
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Figure 9: The discrete divergence for Case 2 when Re=10,000. Computational results are obtained using the
approximate projection method with the momentum interpolation technique on a 128×128 grid.

pling completely and small pressure oscillations can be found near the upper-right and
upper-left corners of the cavity in Fig. 8. Moreover, when the momentum interpolation
technique is used, the discrete divergence Du is not zero, which is shown in Fig. 9. The
non-divergence-free velocity field sometimes has adverse effects on the accuracy of the
numerical solutions.

For a further discussion, contours of the u-component of velocity predicted by the
present method for Case 2, when Re=10,000, is presented in Fig. 10. On the scale of
Fig. 10, the contour plots obtained by using the unfiltered exact projection method and
the approximate projection method combined with the momentum interpolation tech-
nique are graphically indistinguishable with Fig. 10. However, the enlarged portions of
the contour plots near the upper-right corner which are displayed in Figs. 11, 12 and 13
for these three schemes respectively reveal the effects of the non-divergence-free velocity
field. The discrete divergence-free projection methods predict a smooth velocity; while
small ”wiggles” are observed in the velocity field computed by the non-divergence-free
approximate projection method.

To study the effects of grid density, the Re=10,000 case is recomputed on the 256×256
grid using the present method as well as the approximate projection method combined
with the momentum interpolation technique. The contour plots for the pressure and the
u-component of velocity near the upper-right corner of the cavity are shown in Fig. 14 and
Fig. 15 respectively. For the approximate projection method, the odd-even decoupling
in the pressure field becomes smaller with the increase of the grid number (and conse-
quently the decrease of ReG), whereas the velocity oscillations due to the non-divergence-
free effect of the velocity field remain visible when compared with the numerical results
of the present method.



Y. X. Ren, M. Liu and H. Zhang / Commun. Comput. Phys., 2 (2007), pp. 746-759 757

Figure 10: The u-component of velocity contours for
Case 2 when Re=10,000. Computational results are
obtained using the present method on a 128×128
grid.

Figure 11: The u-component of velocity contours for
Case 2 when Re=10,000. Computational results are
obtained using the present method on a 128×128
grid. The enlarged view near the upper-right corner.

Figure 12: Same as Fig. 11, except by using the un-
filtered exact projection method.

Figure 13: Same as Fig. 11, except by using the
approximation projection method combined with the
momentum interpolation technique. Some minor os-
cillation in the u-component of velocity field is ob-
served.

6 Conclusion

In this paper, a procedure for the implementation of the second-order incremental-
pressure projection scheme on collocated grids is presented. The exact discrete projec-
tion method is used to compute the velocity field, which ensures the discrete velocity
divergence is zero. In order to eliminate the odd-even decoupling in the pressure field, a
filtering procedure is proposed and applied to the pressure field. We have shown this fil-
ter recovers the grid scale ellipticity in the pressure field. The present projection method
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Present method

Approxmate projection
+momentum interpolation

Figure 14: The pressure contours for Case 2 when
Re=10,000. Computational results are obtained on
a 256×256 grid using the present method (the solid
lines) and the approximation projection method com-
bined with the momentum interpolation technique
(the dash-dotted lines).

Present method

Approxmate projection
+momentum interpolation

Figure 15: Same as Fig. 14, except that the contour
lines of the u-component of velocity are shown.

shares some important properties of the projection method on the staggered grid, e.g.,
the discrete divergence is zero and the h-ellipticity measure Eh is unity. Numerical ex-
periments indicate that the present method is second-order accurate and the odd-even
decoupling in the pressure field can be removed effectively.
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