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Abstract. A fundamental issue in CFD is the role of coordinates and, in particular,
the search for “optimal” coordinates. This paper reviews and generalizes the recently
developed unified coordinate system (UC). For one-dimensional flow, UC uses a mate-
rial coordinate and thus coincides with Lagrangian system. For two-dimensional flow
it uses a material coordinate, with the other coordinate determined so as to preserve
mesh othorgonality (or the Jacobian), whereas for three-dimensional flow it uses two
material coordinates, with the third one determined so as to preserve mesh skewness
(or the Jacobian). The unified coordinate system combines the advantages of both Eu-
lerian and the Lagrangian system and beyond. Specifically, the followings are shown
in this paper. (a) For 1-D flow, Lagrangian system plus shock-adaptive Godunov
scheme is superior to Eulerian system. (b) The governing equations in any moving
multi-dimensional coordinates can be written as a system of closed conservation par-
tial differential equations (PDE) by appending the time evolution equations – called
geometric conservation laws – of the coefficients of the transformation (from Cartesian
to the moving coordinates) to the physical conservation laws; consequently, effects
of coordinate movement on the flow are fully accounted for. (c) The system of La-
grangian gas dynamics equations is written in conservation PDE form, thus providing
a foundation for developing Lagrangian schemes as moving mesh schemes. (d) The
Lagrangian system of gas dynamics equations in two- and three-dimension are shown
to be only weakly hyperbolic, in direct contrast to the Eulerian system which is fully
hyperbolic; hence the two systems are not equivalent to each other. (e) The unified
coordinate system possesses the advantages of the Lagrangian system in that contact
discontinuities (including material interfaces and free surfaces) are resolved sharply.
(f) In using the UC, there is no need to generate a body-fitted mesh prior to comput-
ing flow past a body; the mesh is automatically generated by the flow. Numerical
examples are given to confirm these properties. Relations of the UC approach with the
Arbitrary-Lagrangian-Eulerian (ALE) approach and with various moving coordinates
approaches are also clarified.
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1 Introduction

Computational Fluid Dynamics (CFD) uses large scale numerical computation to solve
problems of fluid flow. It has been known since its onset that the numerical solution to a
given flow depends on the relation between the flow and the coordinates (mesh) used to
compute it. Each of the two well-known coordinate systems for describing fluid flow –
Eulerian and Lagrangian – has advantages as well as drawbacks. Eulerian method is rel-
atively simple, but its drawbacks are: (a) it smears contact discontinuities badly, and (b)
it needs generating a body-fitted mesh prior to computing flow past a body. Lagrangian
method, by contrast, resolves contact discontinuities (including material interfaces and
free surfaces) sharply, but it too has drawbacks: (a) the gas dynamics equations could not
be written in conservation partial differential equations (PDE) form, rendering numerical
computation complicated, and (b) it breaks down due to cell deformation.

The objective of this paper is to review and generalize the recently developed uni-
fied coordinate system (UC) mostly by the author and his collaborators [1–16]. To put
it in perspective we shall first comment on the relative merits of the existing coordi-
nate systems, mainly, Eulerian, Lagrangian, Arbitrary-Lagrangian-Eulerian (ALE), and
the moving mesh (coordinate).

1.1 Theoretical issues

For more than 200 years, two coordinate systems have existed for describing fluid flow:
Eulerian system is fixed in space, whereas Lagrangian system follows the fluid. An im-
mediate question is “are they equivalent to each other theoretically?” This question must
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have been asked by numerous researchers in fluid mechanics, and the answer presum-
ably was positive. Surprisingly, the first mathematical proof of equivalency, meaning
the existence of a one-to-one map between the two sets of weak solutions obtained by
using the two systems, was given as late as 1987 by Wagner [17] and holds only for one-
dimensional flow (Note: in the presence of a vacuum, the definition of weak solution for
the Lagrangian equations must be strengthened to admit test functions which are discon-
tinuous at the vacuum). For two- and three-dimensional flows, Hui et al [1, 2] showed
that they are not equivalent to each other theoretically (see Section 5.4).

1.2 Computational issues

Computationally, Eulerian and Lagrangian systems are not equivalent even for one-
dimensional flow. For 1-D flow, we shall show [18,19] in Section 2 that Lagrangian system
plus shock-adaptive Godunov scheme [6, 20] is superior to the Eulerian one.

The situation in 2-D and 3-D flows is more complicated: Eulerian and Lagrangian
system each has advantages and drawbacks. In general, Eulerian method is relatively
simple, because the gas dynamics equations can be written in conservation PDE form,
which provides the theoretical foundation for shock-capturing computation. However, it
has two drawbacks: (a) it smears contact discontinuities badly, and (b) it needs generating
a body-fitted mesh prior to computing flow past a body, but mesh generation is tedious,
time-consuming and requires specialized training.

Lagrangian method, by contrast, resolves contact discontinuities (including material
interfaces and free surfaces) sharply, because they coincide with Lagrangian coordinates.
It, too, has two drawbacks: (a) it may break down due to cell deformation, because a
Lagrangian computational cell is literally a fluid particle with finite – though small –
size and hence deforms with the fluid and (b) the gas dynamics equations could not be
written in conservation partial differential equations (PDE) form, rendering numerical
computation complicated. In this regard, we note that as late as 1999 Serre [21] stated
“Writing the equations of gas dynamics in Lagrangian coordinates is very complicated
if (dimension) D≥2”. Interesting enough, it was shown [1] in the same year that with
the unified coordinates it is easy to derive the Lagrangian gas dynamics equations in
conservation PDE form (see Section 5.4).

Early efforts to combine the advantages of both Lagrangian and Eulerian systems
have resulted in the famous Particle-in-Cell method [22, 23] and the Marker-and-Cell
method [24–27]. The highly original idea of Harlow developed in the Particle-in-Cell
method of separating a computational cycle into a Lagrangian phase plus a convective, or
remap/rezone, phase has been widely used in many hydrodynamic computer codes, in
particular, in the celebrated Arbitrary-Lagrangian-Eulaerian (ALE) code [28–33]. While
ALE has achieved greatly in resolving contact discontinuities, an important phase of its
computation – the remap/rezone phase – requires the intervention of the user [32], al-
though new ideas have recently been proposed [33] to avoid it (more will be said about
ALE in Sections 3.3 and 3.4).
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Several moving mesh methods have also been developed [34–40], which require satis-
fying one or more space (or geometric) conservation equations, which are either derived
mathematically or given intuitively, in addition to the physical conservation laws. While
these are necessary condition(s), it is not certain whether the effects due to coordinate
movement on the flow are fully taken into account (see Section 5.3 for more comments).

The unified coordinate system [1–16] has been developed against the above back-
ground. For two-dimensional flow UC uses a material coordinate and the other coordi-
nate is determined so as to preserve mesh othorgonality (or the Jacobian), whereas for
three-dimensional flow it uses two material coordinates, with the third one determined
so as to preserve mesh skewness (or the Jacobian). In the one-dimensional case, it coin-
cides with the Lagrangian system (see Section 6, Remark 6.3). It will be shown in this
paper that UC has advantages of both Eulerian and Lagrangian system and beyond. Its
relation with ALE and moving mesh methods will also be clarified.

This paper is organized as follows. In Section 2, we show that for 1-D flow, La-
grangian system with shock-adaptive Godunov scheme is superior to Eulerian system.
Section 3 comments further on the current methods for computing multi-dimensional
flow based on various coordinate systems, pointing out their relative merits and short-
comings. Section 4 states the requirements for an “optimal” coordinate system. Section
5 derives the conservation PDE form equations in arbitrary coordinates. Section 6 dis-
cusses the properties of the UC system. Section 7 describes the computation procedure.
Typical results for 2-D computation are given in Section 8 and, finally, conclusions are
given in Section 9. For simplicity, we consider inviscid flow of a γ-law perfect gas, but
comments and examples on viscous flow computation will be given in Section 8.

2 One-dimensional flow

For one-dimensional flow, it is shown in Section 6 that unified coordinate system coin-
cides with the Lagrangian one. We shall now show that Lagrangian coordinates plus
shock-adaptive Godunov scheme [6, 20] is superior to Eulerian coordinates.

We begin with the Euler equations of gas dynamics in Cartesian coordinates (t,x) for
a γ-law gas

∂

∂t





ρ
ρu
ρe



+
∂

∂x





ρu
ρu2+p

u(ρe+p)



=0,

e=
1

2
u2+

1

γ−1

p

ρ
.

(2.1)

Here u is velocity, p pressure, ρ density and e specific total energy. System (2.1) is hyper-
bolic and in conservation form. We transform (2.1) to the Lagrangian coordinates (λ,ξ)
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by







dt=dλ,

dx=udλ+
1

ρ
dξ,

(2.2)

to get

∂

∂λ





1/ρ
u
e



+
∂

∂ξ





−u
p

up



=0. (2.3)

System (2.3) is also hyperbolic and in conservation form, and Wagner [17] showed that
solutions to (2.1) and to (2.3) are equivalent theoretically. However, they give different
numerical solutions, as demonstrated by Example 1 in Figs. 1a and 1b [18, 19] for a Rie-
mann problem (taken from [41]), whose solution consists of two shocks and a contact
discontinuity in between. It is seen that while shock resolutions are similar, Lagrangian
computation resolves the contact much better than Eulerian. This is because a contact line
is a material line and hence coincides with Lagrangian coordinate, whereas it does not
coincide with Eulerian coordinate. In passing, we note with interest that in their seminal
papers, von Neumann [42] and Godunov [43] both use Lagrangian system (2.3), instead
of Eulerian system (2.1).

The error near the contact discontinuity (Fig. 1b) in Lagrangian computation is as-
sociated with the well-known “wall over-heating” phenomena first discovered by von
Neumann [44], but can be remedied using the shock-adaptive Godunov scheme [19, 20],
instead of the classical Godunov scheme. In the shock-adaptive Godunov scheme shocks
are fitted, using the Riemann solution with no extra cost, so we can replace the energy
conservation equation by the entropy conservation equation which holds in the smooth
flow region. Accordingly, (2.3) becomes

∂

∂λ





1/ρ
u

p/ργ



+
∂

∂ξ





−u
p
0



=0. (2.4)

Computations using (2.4) resolve both shock and contact discontinuities sharply, as
shown in Fig. 1c. We therefore conclude that Lagrangian (or UC) computation with
shock-adaptive Godunov scheme is superior to Eulerian computation for 1-D flow, and
is most robust, accurate and efficient. Indeed, all other known difficulties of Eulerian
method, namely, start-up errors, slow moving shocks, low-density flow, sonic-point
glitch, and wall-overheating, etc., are also avoided or cured [19].
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A Riemann Problem (Godunov-MUSCL scheme)

(a) (b)

(c)

Adaptive-Godunov Scheme

Figure 1: Numerical solutions to a Riemann prob-
lem. (a) Eulerian, (b) Lagrangian, (c) Lagrangian
with shock-adaptive Godunov scheme. (solid lines:
exact; dots: computed)

3 Multi-dimensional flow – Comments on current computa-

tional methods

In this section, we make further comments on existing methods for computing multi-
dimensional flow based on different coordinates. A conservation law in arbitrary coordi-
nates written in integral form is

d

dt

∫

Ω~Q(t)

UdΩ=−
∫

∂Ω~Q(t)

F ·⇀ndS, (3.1)

where t is a time variable, U the conserved variable, F(U) the flux, Ω an arbitrary control

volume moving with arbitrary velocity ~Q, and~n the unit normal vector on the surface of
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Ω. For gas dynamics, (3.1) is given in details as


















































d

dt

∫

Ω~Q(t)

ρ dΩ=−
∫

∂Ω

ρ
(

⇀

q−
⇀

Q
)

·⇀ndS,

d

dt

∫

Ω~Q(t)

ρ qj dΩ=−
∫

∂Ω

[

ρ qj

(

⇀

q−
⇀

Q
)

+p
⇀

j
]

·⇀ndS, j=1,2,3

d

dt

∫

Ω~Q(t)

ρ e dΩ=−
∫

∂Ω

[

ρ e
(

⇀

q−
⇀

Q
)

+p
⇀

q
]

·⇀ndS.

(3.2)

Here ~q is fluid velocity and e = 1
2

⇀

q
2
+i(p,ρ), i being the specific internal energy. The

essence of CFD is to solve (3.2) for every small cell Ω.

3.1 Eulerian computation

In this case ~Q = 0 and hence cells Ω are independent of time t. Assuming the flow vari-
ables to have continuous first derivatives, application of Gauss divergence theorem to
(3.1) yields

∂U

∂t
+∇·F(U)=0. (3.3)

Eq. (3.3) is in conservation PDE form and thus provides a foundation for shock-capturing
methods [64,65]. This is the most important advantage of Eulerian coordinates. However,
Eulerian computation has two drawbacks:

• Contact discontinuities (including material interfaces and free surfaces) are badly
smeared, because they do not coincide with coordinate surfaces; typically contact
smearing increases with number of computational time steps.

• For flow past a body, it is necessary to generate a body-fitted mesh prior to flow
computation; mesh generation remains a tedious and time-consuming process after
more than three decades of research.

3.2 Lagrangian computation

In this case ~Q=~q , hence cells Ω move and deform literally with the fluid. The most impor-
tant advantage of Lagrangian computation is that it can resolve contact discontinuities
(including material surfaces and free surfaces) sharply, because the latters coincide with
Lagrangian coordinates. However, Lagrangian computation, too, has two drawbacks:

• Due to cell movement and deformation-both are unknown a priori-the integral
equation (3.2) could not be easily written in conservation PDE form (1-D flow is
a fortuitous exception, see Eq. (2.3) above). This has serious consequences. To be-
gin with, lack of conservation PDE form has prevented any Lagrangian scheme to
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be a scheme on a moving mesh in Eulerian space; the design of such a scheme has
great historical importance as well as practical application, as pointed out in [45,46].
Furthermore, without conservation form PDE, additional computation procedure is
needed to tract the movement of the cells in using (3.2). This is usually done by us-
ing staggered meshes in order to reduce the error (due to interpolation) for the ve-
locity which controls the mesh movement. But switching between meshes requires
interpolations of flow variables and geometries, producing numerical diffusion.

• Computation may break down due to cell deformation. This is because a La-
grangian computational cell is literally a fluid particle with finite size, no matter
how small, and hence deforms with the fluid. A great effort in Lagrangian compu-
tation is to prevent it from breaking down by using special treatments; ALE method
represents such a successful treatment.

3.3 The Arbitrary-Lagrangian-Eulerian (ALE) computation [28–33]

In this method a computational cycle consists of a computation phase in Lagrangian
space followed by a remap/rezone phase to the Eulerian or ALE space. In the Lagrangian
phase, it has the advantages as well as the drawbacks of the Lagrangian computation
mentioned above, namely, it resolves contact discontinuities sharply but, due to the lack
of conservation PDE form, it uses staggered meshes and hence produces numerical dif-
fusion arising from switching between the meshes. Moreover, numerical diffusion is also
introduced in the remap/rezone phase of the computation, because it too requires in-
terpolations of the flow variables and of geometries. Indeed, it was demonstrated by
Hall [47] that rezoning results in the type of errors encountered in Eulerian solutions and
that with continuous remapping/rezoning, ALE computation is equivalent to Eulerian
computation. The remap/rezone phase is, however, needed in order to prevent compu-
tational breakdown.

3.4 The unified coordinates computation

Details of the unified coordinate approach will be given in Sections 6 and 7 later. Here in
order to compare with the ALE approach, we summarize its main features. These are: the
governing equations are written in conservation PDE form and the mesh velocity is cho-
sen such that, for 2-D flow, one of its coordinates coincides with material coordinate (in
the 3-D case, two coordinates are material). The former property shares with the advan-
tage of Eulerian method, whereas the latter shares with the advantage of the Lagrangian
method.

The UC approach and the ALE approach share the same spirit that they both combine
the best features of Lagrangian and Eulerian approach [31, p. 198] and that the coordi-
nates move at an arbitrary velocity [32, p. 239]. However, the strategies are quite dif-
ferent. In the ALE approach, “the general strategy is to perform a Lagrangian step and
to follow it with a remap step that maps the solution in the distorted Lagrangian mesh
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onto the spatially fixed Eulerian mesh or the ALE mesh” [32, p. 236], [31, p. 198]. This
is usually done by employing a staggered mesh. Furthermore, the rezoning strategies
are not generally prescribed; instead, “rezoning requires the intervention of the user, . . . ,
and the success of the method depends heavily on the skill and patience of the user”
[32, p. 322]. In the UC approach, since the governing equations are in conservation PDE
form the computation is done in one step as if it were an Eulerian computation, but
without numerical diffusion across contact discontinuities (see examples in Section 8),
thus avoiding the numerical diffusion arising from the use of staggered mesh and from
remapping/rezoning. The possible computational breakdown is prevented by requiring
the mesh to be orthogonal (in 2-D), or to be skewness-preserving (in 3-D).

4 The “optimal coordinate system”

Can we have a coordinate system that combines the advantages of Eulerian and La-
grangian, while avoiding their drawbacks? Such a system would be “optimal” in some
sense (whether or not a system is optimal depends on the criteria, which are necessar-
ily subjective). Specifically, we want the system to possess the following properties for
compressible flow computation:

• Conservation PDE form exists, as in Eulerian;

• Contact discontinuities are sharply resolved, as in Lagrangian;

• Mesh can be automatically generated to fit given body shapes;

• Mesh is orthogonal;

• Mesh is uniform; and more.

We regard the first three properties as most important and shall first investigate, in
the next section, the existence of conservation PDE form of the governing equations in
arbitrary coordinates.

5 Derivation of conservation form PDE

5.1 The transformation

We introduce arbitrary coordinates, (λ,ξ,η,ζ), via a transformation from Cartesian
(t,x,y,z) as follows:

dt=dλ,

dx=Udλ+Adξ+Ldη+Pdς,

dy=Vdλ+Bdξ+Mdη+Qdς,

dz=Wdλ+Cdξ+Ndη+Rdς.

(5.1)
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From (5.1), we get

D~Q

Dt





ξ
η
ς



=0, (5.2)

where
D~Q

Dt ≡ ∂
∂t +

~Q·∇−→x . So the coordinates (ξ,η,ζ), and hence the computational cells,

move with velocity ~Q=(U,V,W).

There are two special cases: Eulerian when ~Q=0 and Lagrangian when ~Q=~q. In the
general case, we have a coordinate system with three degrees of freedom: U, V and W
are arbitrary. On the other hand, the nine coefficients A,B,. . .,R in the transformation are
not arbitrary, but must satisfy a set of compatibility conditions for dx, dy and dz to be
total differentials. These conditions are:

∂A

∂λ
=

∂U

∂ξ
,

∂L

∂λ
=

∂U

∂η
,

∂P

∂λ
=

∂U

∂ς
,

∂B

∂λ
=

∂V

∂ξ
,

∂M

∂λ
=

∂V

∂η
,

∂Q

∂λ
=

∂V

∂ς
, (5.3a)

∂C

∂λ
=

∂W

∂ξ
,

∂N

∂λ
=

∂W

∂η
,

∂R

∂λ
=

∂W

∂ς
,

∂A

∂η
=

∂L

∂ξ
,

∂A

∂ς
=

∂P

∂ξ
,

∂L

∂ς
=

∂P

∂η
,

∂B

∂η
=

∂M

∂ξ
,

∂B

∂ς
=

∂Q

∂ξ
,

∂M

∂ς
=

∂Q

∂η
, (5.3b)

∂C

∂η
=

∂N

∂ξ
,

∂C

∂ς
=

∂R

∂ξ
,

∂N

∂ς
=

∂R

∂η
.

We note that of the eighteen conditions in (5.3), only nine of them are independent. We
shall take the first nine conditions, (5.3a), which all involve λ-derivative and are called
time-evolution, to be the independent conditions; the remaining nine, called differential
constraints, then hold for all time provided they hold initially.

5.2 Derivation of governing equations in conservation PDE form

Consider conservation of mass equation, which can be written as

0 =
∂ρ

∂t
+

∂(ρuj)

∂xj
(j=1,2,3)

=
∂(ρuα)

∂xα
(α=0,1,2,3),(x0 = t,u0 =1)

=
∮

∂Ω

ρuαd̂xα (5.4)
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after using Gauss divergence theorem. Here x0 = t, u0 =1, Ω is any control volume, and
the summation convention has been used. We define















d̂x0 = dx1dx2dx3,

d̂x1 =−dx2dx3dx0,

d̂x2 = dx3dx0dx1,

d̂x3 =−dx0dx1dx2,

and















x̂0 =(x1,x2,x3),
x̂1 =(x2,x3,x0),
x̂2 =(x3,x0,x1),
x̂3 =(x0,x1,x2).

d̂ξβ and ξ̂β are defined similarly. From the transformation we get

d̂xα =Uαβd̂ξβ, (5.5)

where ξ0 =λ, ξ1 = ξ, ξ2 =η, ξ3 =ς, and

Uαβ =
∂x̂α

∂ξ̂β

. (5.6)

Hence,

0=
∮

∂Ω

ρuα d̂xα =
∮

∂Ω

ρuαUαβd̂ξβ.

Using Gauss divergence theorem, we get

∂Kβ

∂ξβ
=0, (5.7)

where Kβ =ρuαUαβ. Eq. (5.7) is the mass equation written in conservation form in the ar-
bitrary coordinate system. We can similarly derive the momentum and energy equations
in conservation PDE form. To summarize, we have































∂(ρuα)

∂xα
=0 (α=0,1,2,3)

∂(ρujuα)

∂xα
+

∂p

∂xj
=0 (j=1,2,3)

∂(ρuα H)

∂xα
− ∂p

∂x0
=0

(5.8)

in the Cartesian coordinates, and



































∂Kβ

∂ξβ
=0 (β=0,1,2,3)

∂
(

Kβuj+pUjβ

)

∂ξβ
=0

∂
(

KβH−pU0β

)

∂ξβ
=0

(5.9)
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in arbitrary coordinates. Here H = e+p/ρ.
The physical laws are now written in conservation PDE form, (5.9), in arbitrary co-

ordinates, including the Lagrangian. However, (5.9) is not a closed system, because it
contains (through Uαβ) new unknowns: the coefficients A,B,. . .,R in the transformation
(5.1). (Note: this explains why, as pointed out earlier, in Lagrangian coordinates, the
physical laws alone cannot be written in closed conservation PDE form; the 1-D case,
Eq. (2.3), is just a fortuitous exception). Although unknown, these coefficients are never-
theless related to the mesh velocity (U,V,W) via the compatibility conditions (5.3a). To
have a system of PDE that is closed and in conservation form it is, therefore, necessary
and sufficient to append the time evolution equations, (5.3a), to the physical conservation
laws, (5.9). Eq. (5.3a) will be called geometric conservation laws (GCL). In this regard, Eu-
lerian coordinates are a degenerate case in that the geometric conservation laws reduce
to triviality, and the physical conservation laws alone suffice as a closed system.

We conclude that Eqs. (5.9) and (5.3a) form a closed system of fourteen conservation
PDE, containing fourteen unknowns: ρ,p,~q,A,B,. . .,R (the mesh velocities (U,V,W) in
these equations will be determined in Section 6). These are:

∂(ρJ)

∂λ
+

∂(ρX)

∂ξ
+

∂(ρY)

∂η
+

∂(ρZ)

∂ς
=0,

∂(ρJqj)

∂λ
+

∂(ρXqj +p~J1)

∂ξ
+

∂(ρYqj +p~J2)

∂η
+

∂(ρZqj +p~J3)

∂ς
=0, (j=1,2,3)

∂(ρJe)

∂λ
+

∂(ρXe+p~J1 ·~q)
∂ξ

+
∂(ρYe+p~J2 ·~q)

∂η
+

∂(ρZe+p~J3 ·~q)
∂ς

=0,

∂A

∂λ
=

∂U

∂ξ
,

∂L

∂λ
=

∂U

∂η
,

∂P

∂λ
=

∂U

∂ς
,

∂B

∂λ
=

∂V

∂ξ
,

∂M

∂λ
=

∂V

∂η
,

∂Q

∂λ
=

∂V

∂ς
,

∂C

∂λ
=

∂W

∂ξ
,

∂N

∂λ
=

∂W

∂η
,

∂R

∂λ
=

∂W

∂ς
.

(5.10)

Here X =(~q− ~Q)·~J1, Y =(~q− ~Q)·~J2, Z=(~q− ~Q)·~J3 and

~J1 =





MR−NQ
NP−LR
LQ−MP



, ~J2 =





CQ−BR
AR−CP
BP−AQ



, ~J3 =





BN−CM
CL−AN
AM−BL



, J =

∣

∣

∣

∣

∣

∣

ALP
BMQ
CNR

∣

∣

∣

∣

∣

∣

.

We remark that the 14-equation system in arbitrary coordinates, (5.10), appears to be
much larger than the 5-equation system in Eulerian coordinates, (5.8), but the eigenval-
ues corresponding to the additional nine equations – the geometric conservation laws –
are found to be equal to zero (multiplicity 9), giving rise only to new linearly degenerated
waves and no new nonlinear waves (shocks, etc.). Details of these eigenvalues and their
corresponding eigenvectors are given in [1] for 2-D flow and in reference #2 of [2] for 3-D
flow. Therefore, system (5.10) does not generate spurious nonlinear waves that are not in



W. H. Hui / Commun. Comput. Phys., 2 (2007), pp. 577-610 589

the original system (5.8). Computationally (see Section 7.2 for details), the physical con-
servation laws are first solved, keeping the geometric variables (A,B,. . .,R) fixed, then the
mesh velocity (U,V,W) are computed, and finally the geometric variables are updated
using the geometric conservation laws alone. In this way, even the additional linearly
degenerated waves do not appear (see [1–3, 48, 54]). It is also interesting to observe that

in the special case of Lagrangian coordinates when ~Q=~q, the linearly degenerated wave
corresponding to the zero eigenvalue is not new but is already in the original system.

As to computing time requirement, the bulk of it is spent on solving the physical
conservation laws, which are the same as in Eulerian computation. Additional time used
in updating the geometric conservation laws adds about 3% to the total, while additional
time used to compute the mesh velocity (U,V,W) adds another 5-10%, depending on the
problems at hand.

5.3 Comments on closed system of governing equations in moving coordi-
nates

It is well known [34–37] that when moving coordinates are used an additional conserva-
tion equation, namely the space conservation law (SCL) (or geometric conservation law),
has to be satisfied; otherwise erroneous solutions are obtained and numerical instability
may occur. The emphasis in [34–37] is to use the SCL to ensure that an initially spatially
uniform steady flow remains uniform. The insufficiency of a single SCL for unsteady
flow has since been pointed out and additional necessary conditions suggested [38–40].
In this regard, we note that our geometric conservation laws, (5.3a), are the sufficient and
necessary conditions governing the coordinate movement. Consequently, effects of arbi-
trarily moving coordinates (hence moving mesh) on steady or unsteady, compressible or
incompressible, flow are correctly and fully accounted for through the use of these GCL
in the closed system of governing equations, (5.10). These geometric conservation laws
are also very easy to apply as seen in the examples below; Example 8.7 in particular.

We further remark that the compatibility conditions (5.3b) are not appended to (5.10)
for two reasons: (a) they would make the system over-determined and, (b) they can be
derived from (5.3a), provided (5.3b) are satisfied initially, which can be ensured easily
at the initialization of the computation. Nevertheless, we stress that if (5.3b) were not
satisfied, transformation (5.1) would not be single-valued.

5.4 Lagrangian gas dynamics equations

For simplicity we consider the 2-D case, when (5.1) simplifies to







dt=dλ,
dx=Udλ+Adξ+Ldη ,
dy=Vdλ+Bdξ+Mdη .

(5.11)
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The governing equations (5.10) also reduce to

∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
=0, (5.12)

where

E=

























ρJ
ρJu
ρJv
ρJe
A
B
L
M

























, F=

























ρX
ρXu+pM
ρXv−pL

ρXe+p(uM−vL)
−U
−V

0
0

























, G=

























ρY
ρYu−pB
ρYv+pA

ρYe+p(vA−uB)
0
0

−U
−V

























, (5.13)

with J = AM−BL, X = (u−U)M−(v−V)L and Y = (v−V)A−(u−U)B. The first four
equations in (5.13) are the physical conservation laws and the last four the geometric
conservation laws.

In the special case of Lagrangian coordinates, (5.12) simplifies to

∂E

∂λ
+

∂F

∂ξ
+

∂G

∂η
=0, (5.14)

where

E=

























ρJ
ρJu
ρJv
ρJe
A
B
L
M
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0
pM
−pL

p(uM−vL)
−u
−v
0
0

























, G=

























0
−pB
pA

p(vA−uB)
0
0
−u
−v

























. (5.15)

Remark 5.1. This system of Lagrangian gas dynamics equations was given in conserva-
tion PDE form for the first time for 2-D flow in [1], and for 3-D flow in [2]. It is this con-
servation form PDE that provides a foundation for designing schemes that are moving
mesh schemes in Eulerian space. Indeed, the first such scheme has just been proposed by
Despres and Mazeran [45, 46], who ingeniously incorporate the remaining compatibility
conditions

∂A

∂η
=

∂L

∂ξ
,

∂B

∂η
=

∂M

∂ξ
, (5.16)

which they call free divergence constraints, to re-write Eq. (5.14) into a canonical form.
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Remark 5.2. Whereas system (5.12) is hyperbolic like the Eulerian case, the Lagrangian
system (5.14) is found in [1] to be only weakly hyperbolic, meaning that while all eight
eigenvalues are real, there does not exist a complete set of eight linearly independent
eigenvectors. This finding is also confirmed in [45]†. It also holds for 3-D flow [2], and
implies that Lagarangian system of gas dynamics is not equivalent to Eulerian (for the
special case of steady flow, this finding was first reported in [7]). In particular, the Cauchy
problem for weakly hyperbolic systems is well posed only in a weaker sense, compared
with hyperbolic systems. This seems surprising, in view of the fact that Eulerian system
of gas dynamics equations is long known to be hyperbolic. However, it has been con-
vincingly demonstrated [45] that Lagrangian re-formulation of any Eulerian hyperbolic
system will generically lead to a weakly hyperbolic system; the 1-D case, Eq. (2.3), being
just an exception – it happens to be hyperbolic.

6 Properties of the unified coordinates

We shall call the system of coordinates (λ,ξ,η,ζ) in (5.1) unified in the sense that it unifies

the Eulerian system when ~Q = 0 and the Lagrangian when ~Q =~q, and also in the sense
that the system of governing equations, (5.10), unites the geometrical conservation laws
with the physical ones. We shall now prescribe conditions to be satisfied by the mesh

velocity ~Q so as to give the unified coordinates useful properties.
Consider the 2-D case first. In this case there are two arbitrary functions, U and V,

and we can prescribe two requirements:

(A) Coordinate η shall be a material coordinate, meaning

D~qη

Dt
=0. (6.1)

Together with
D~Qη

Dt =0, we get

(v−V)A=(u−U)B. (6.2)

(Eq. (6.2) may be used to simplify (5.12)).

Observations:

• Contact lines, being material lines, must coincide with coordinate lines and,
therefore, can be resolved sharply.

• As the body surface is a material line, condition (6.2) guarantees that the mesh
in UC is automatically a body-fitted mesh at all time. This provides the basis
for automatic mesh generation (see Section 7.2).

†Depending on how the differential constraints are used in the governing equations, one can get different
numbers of linearly independent eigenvectors associated with the zero eigenvalue. However, in all cases
there does not exist a complete set of eight linearly independent eigenvectors and the system is only weakly
hyperbolic.



592 W. H. Hui / Commun. Comput. Phys., 2 (2007), pp. 577-610

• A material interface (including a free surface) corresponds to η=const and thus
can be resolved sharply.

• η(x,y,t) is a level set function, hence there is no need to introduce an extra
level set function when using the level set method.

(B) Mesh angles, and hence mesh orthogonality, shall be preserved during the λ-
marching computation. This means

∂

∂λ
cos−1

[ ∇ξ ·∇η

|∇ξ||∇η|

]

=
∂

∂λ
cos−1

[

AL+BM√
A2+B2

√
L2+M2

]

=0, (6.3)

which, after eliminating V from (6.2) and using the geometric conservation laws of
(5.12), yields an ODE for U

∂U

∂η
+P(η;λ,ξ)U =Q(η;λ,ξ), (6.4a)

U(η;λ,ξ)=U0(λ,ξ) at η =η0, (6.4b)

where U0(λ,ξ) is arbitrary, and

P(η;λ,ξ)=
S2

T2 J

(

A
∂B

∂ξ
−B

∂A

∂ξ

)

− L

AJ

(

A
∂B

∂η
−B

∂A

∂η

)

,

Q(η;λ,ξ)=
S2A

T2 J

(

B
∂u

∂ξ
−A

∂v

∂ξ

)

+
L

J

(

A
∂v

∂η
−B

∂u

∂η

)

+uP(η;λ,ξ),

S2 = L2+M2, T2 = A2+B2.

We note that the mesh-angle preserving condition is not unique, but can be replaced
by any reasonable condition, e.g. preserving the Jacobian J, which would be partic-
ularly suitable for incompressible flow computation.

Remark 6.1. Condition (6.1) alone retains the advantages of Lagrangian coordinates:
sharp resolution of contacts. If we further require

D~qξ

Dt
=0, (6.5)

then coordinates (ξ,η) are Lagrangian and computation may break down due to large cell
deformation. This can be prevented by the mesh-angle preserving condition (6.3), or by
the Jacobian-preserving condition. The UC system may be regarded as a generalization of
the Lagrangian system in that we retain only one condition of Lagrangianess, (6.1), while
abandon the other one, (6.5), in favor of a mesh-angle preserving condition, or Jacobian
preserving condition. The same may be said about the 3-D case (see Remark. 6.2 below)
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Remark 6.2. In the case of 3-D flow, there are three arbitrary functions U, V and W, so
we should prescribe three requirements: we want η and ς to be material coordinates,
meaning

D~qη

Dt
=0 (6.6)

and
D~qς

Dt
=0. (6.7)

Eq. (6.6) and the second equation of (5.2) combine to give

(~q− ~Q)·~J2 =0. (6.8)

Similarly, Eq. (6.7) and the third equation of (5.2) combine to give

(~q− ~Q)·~J3 =0. (6.9)

(Eqs. (6.8) & (6.9) may be used to simplify (5.10)). As the third condition, we require that
the mesh skewness

κ =
|~A|·|~L|·|~P|

~A×~L·~P
−1=

{

0, orthogonal
∞, degenerate

(6.10)

be preserved during the λ-marching computation [2]. Here ~A=(A,B,C)T,~L=(L,M,N)T,
and ~P=(P,Q,R)T. This condition is

∂κ

∂λ
=0. (6.11)

It might seem a possible alternative (to the three conditions (6.6), (6.7) and (6.11)) to use
(6.6) and to preserve the two mesh angles during the λ-marching computation. This
would then have the desirable effect that mesh orthogonality can also be preserved for
3-D flow (as in the 2-D case) when the mesh is initially orthogonal. However, this is
impossible in general, because it would contradict a theorem of [49] that for steady flow
past a body, orthogonal body-fitted mesh is possible if and only if the flow belongs to a
special class called complex-lamellar [50], for which ~q ·∇×~q≡ 0. We also note that as in
the 2-D case, the condition of skewness-preserving can be replaced by that of Jacobian-
preserving.

Remark 6.3. For 1-D flow, condition (6.1) alone means the unified coordinate coincides
with Lagrangian coordinate.

Remark 6.4. In the special case of steady flow, Eqs. (6.6) and (6.7) become ~q·∇η =0 and
~q·∇ς=0. Hence, fluid velocity vector~q lies in the direction of the intersection line between
the surfaces η(x,y,z)=const and ς(x,y,z)=const. At the same time, the second and the

third equations of (5.2) also become ~Q·∇η=0 and ~Q·∇ς=0, and hence the mesh velocity

vector ~Q must lie along the same intersection line. Therefore

~Q=h~q, (6.12)
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h being an arbitrary function. This means the unified coordinates move in the direction
of the fluid flow but not with its speed, in contrast to the Lagrangian coordinates which
move with the fluid in both its direction and speed. This special case was studied in
details in [1, 2].

7 Computation procedure for 2-D flow

7.1 Special case: Steady supersonic flow

In this simpler case, the inviscid flow equations are

∂

∂x









ρu
ρu2+p
ρuv
ρuH









+
∂

∂y









ρv
ρuv
ρv2+p
ρvH









=0. (7.1)

Transformation (5.1) simplifies to
{

dx=hudλ+Adξ ,
dy=hvdλ+Bdξ ,

(7.2)

under which, Eq. (7.1) becomes

∂

∂λ
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H

Ku+pB
Kv−pA
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B

















+
∂

∂ξ
h

















0
0

−pv
pu
−u
−v

















=0, (7.3)

where

K =ρ(Bu−Av), e=
1

2
(u2+v2)+

1

γ−1

p

ρ
, H = e+

p

ρ
.

The free function h is chosen [51] to ensure mesh orthogonality:

Au+Bv=0. (7.4)

Similar to the 1-D case we use shock-adaptive Godunov scheme [6, 20], where the shock
is fitted, using the Riemann solution with no extra cost. We can then replace the energy
conservation equation by the entropy conservation equation, which holds in smooth flow
region. Thus [19, 51]

∂

∂λ













K
H

p/ργ

Ku+pB

Kv+ pvB
u













+
∂

∂ξ
h













0
0
0

−pv
pu













=0. (7.5)
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Eq. (7.5) is solved by space-marching in λ [52]. To summarize, with the use of the unified
coordinates, we have reduced, computationally, the problem of 2-D steady supersonic
flow to that of 1-D unsteady flow, with λ taking the place of time variable. For 2-D
steady supersonic flow the space marching method based on UC is most robust, accurate
and efficient, as shown by Examples 8.1 and 8.2.

We note that in Example 8.2, the zero normal velocity condition must be applied at
the airfoil surface. As the surface is a streamline, it corresponds to a coordinate line and,
therefore, it is very easy to satisfy the boundary condition there. This is usually done
by solving a boundary Riemann problem there, with the flow in the fictitious cell on the
other side of the surface forming a mirror reflection with respect to the body surface.

7.2 General case

In the general case when the flow is unsteady (Examples 8.5 and 8.7) or is steady but
has a subsonic region (Examples 8.3 and 8.4), we compute the time-dependent equations,
(5.12), by time marching in λ. The computation procedure for uniform flow past a body
is illustrated by a Mach 0.8 flow past a NACA 0012 airfoil (Example 8.3 below) as follows:

Initialization stage – automatic generation of body-fitted mesh in a computational win-

dow

Given the grid sizes, ∆x and ∆y, and the number of cells, M×N, in the window.

1. Begin with a column of N orthogonal cells, representing the given uniform flow in
the x-direction (Fig. 2a). This gives the initial values of (A,B,L,M)= (1,0,0,1). We
also take (U,V)=(u,v) initially.

2. Compute the solution to (5.12) by marching in time λ using dimensional splitting:
splitting into two 1-D systems in λξ and λη. Each of them is solved using the
standard Godunov/MUSCL scheme with the minmod limiter. (Details are as fol-
lows. To update the solution from time n to time n+1: (a) Solve the first four equa-
tions (the physical conservation laws) of (5.12) for (ρ,p,u,v), keeping A,B,L,M,U
and V fixed at time n level. (b) Use this updated values to solve (6.4) for U with
U0(λ,ξ)=const at the surface, and then solve (6.2) for V at time n+1. (c) Use these
updated values of U and V to update (A,B,L,M) at time n+1 by integrating the
geometric conservation laws). In all outer boundaries of the computational region
at every time step, we apply the characteristic boundary conditions.
After one time step ∆λ, this column of cells moves to the right by U∆λ.

3. After several time steps when the initial column of cells has moved to the right by
a distance equal to ∆x, add one new column of cells on the left that is identical to
the initial column.

4. Repeat this process of adding cell columns on the left of the computational region
until the leading column of cells meets the body surface and also further down
(Fig. 2b) we impose the boundary condition of zero normal velocity on the body
surface, by solving a boundary Riemann problem as explained in Section 7.1.
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5. Continue this process until after the columns of cells cover the whole body surface
and further downstream, when we have M columns of cells in the window (Fig. 2c).

This completes the initialization stage, and we now have an airfoil-fitted mesh and
a flow field around it in the window of M×N cells. The flow-generated mesh (Fig. 2d)
is body-fitted and orthogonal as predicted. It is also fairly uniform in the x-direction,
because in solving (6.4) we have specified uniform data for U at the surface. The flow
field computed (Fig. 2e) so far is, however, only a very rough approximation to the correct
one, partly because it has not reached the steady state and partly because the downstream
boundary condition used in the transient times, e.g., in Fig. 2b, are obviously incorrect as
the computational regions at those times have not yet reached the full window.

To compute further, one could use the body-fitted orthogonal mesh generated so far
to perform an Eulerian computation with the associated flow field as an initial solution.
This can be easily done by putting U = V = 0 (thus without solving (6.4) & (6.2)) in the
subsequent iterations towards a steady state. In this way, the UC approach plays the role
of mesh generation for Eulerian computation.

An alternative and better way is to continue the UC computation in the

Main stage – iteration with flow-adjusted mesh

6. To iterate the computation towards a steady state, whenever we add a new column
of cells on the left we also simultaneously delete the right-most column of cells from
the computation window, thus keeping the window in the same size. To improve
the solution, we may also use the information of the flow field at every time step,
e.g., the surface pressure gradient, to adjust the initial data of U at the body surface,
η=η0, in solving (6.4) so that the mesh is refined in regions of high pressure gradient
(Fig. 2f). We note that the flow-adjusted refined mesh remains orthogonal. It also
looks similar to those obtained by mesh re-distribution in Euelrian computation.
But there are differences: mesh re-distribution typically requires generating another
mesh by solving an elliptic equation. In doing so, conservation properties must
be satisfied in the interpolations of geometry and flow variables between the two
meshes. These issues do not arise in our flow-adjusted mesh approach as we need
only one mesh; the only modification is to specify the initial data for U at η =η0 in
solving (6.4) by using the information of the pressure gradient.

We note that in this example the flow is symmetric and, consequently, the mesh on the
upper surface and that on the lower surface will arrive at the trailing edge simultaneously
to re-connect for further computation downstream. If the flow is not symmetric, as in
Examples 8.4 and 8.5 below, we choose the initial conditions, (6.4b), on the upper and
lower surfaces such that the two meshes arrive at the trailing edge simultaneously to
connect together for further computation downstream. This is easy to do: since U0(λ,ξ)
is the x-component of the mesh velocity at the surface we only need to require that it
takes the same value at the same position x along the surfaces, until the meshes on the
upper and lower surfaces reach the trailing edge.
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Figure 2: Mach 0.8 flow past a NACA 0012 airfoil at zero angle of attack. (a)-(c) flow-generated meshes, (d)
close view of preliminary mesh, (e) preliminary surface pressure, (f) close view of final mesh, (g) final surface
pressure.
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Figure 3: Numerical solutions to a 2-D steady Riemann problem. (a) sketch, (b) density, Eulerian computation,
(c) density, UC computation with shock-adaptive Godunov scheme.

8 Typical results of 2-D computation

In all examples below γ=1.4 is used, unless otherwise stated.

Steady supersonic flow

Example 8.1. This is a 2-D steady Riemann problem (see Fig. 3a for a sketch of the flow),
and the flow is computed as explained in Section 7.1. Eulerian computation (Fig. 3b)
gives very poor resolution of the contact discontinuity, which also affects the accuracy
of the smooth flow, ie, the Prandtl-Meyer expansion fan. We note that gas kinetic BGK
scheme produces similar results [53, Fig. 3.6]. The UC computation [19, 51] gives sharp
resolution of both shock and contact discontinuities (Fig. 3c).
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Example 8.2. This is a supersonic flow of M∞=1.745 past a diamond-shape airfoil with
semi-apex angle of 7.5◦ placed at an angle of attack of 10◦ (Fig. 4a). The space-marching
computation method was explained in Section 7.1. The flow-generated meshes [52] at
different λ are plotted in Figs. 4b-e, and the computed surface Mach numbers are plotted
in Fig. 4f. Since the supersonic flows on the upper and lower surface are independent
of each other, they are computed separately in this example. The computation took very
little time (1.8s on a P4, 2.8GHz PC machine), yet the computed results are identical to
the exact solution.

In Eulerian computation, a body-fitted mesh has to be generated prior to computing
the flow. We also note that in this example, a space marching method in Eulerian coordi-
nate system fails as the x-component (in the free stream direction) of the flow behind the
shock is subsonic. A time marching method has to be employed whose computing time
is more than three orders of magnitude longer (2,393s, same machine). Yet the computed
shock and the Prandtl-Meyer expansions are smeared (Fig. 4g).

Steady flow with a subsonic region

Example 8.3. Fig. 2 shows a sample computation [54] for a Mach 0.8 steady flow past a
NACA 0012 airfoil at zero angle of attack. Note the orthogonality of the flow-generated
meshes (Figs. 2d, 2f). Note also that despite the coarse mesh used, our result (Fig. 2g) is
in good agreement with [55], which uses the potential flow approximation.

Example 8.4. Fig. 5 shows a sample computation [54] for a Mach 2.2 steady flow of air-
SF6 past a NACA 0012 airfoil at an angle of attack of 8◦. It is seen that without any special
treatment, the contact line between the two fluids is sharply resolved.

Unsteady flow

Example 8.5. This is an unsteady supersonic flow, M∞=3.0, past a diamond-shape airfoil
with 10◦ vertex angle which is oscillating about its vertex according to θ = 2◦sin30πt,
where θ is the instantaneous pitching angle. The computed flow-generated meshes [48]
at different times are plotted in Fig. 6. It is seen that at all times of the oscillation, the
flow-generated meshes are body-fitted and are almost orthogonal, although the mesh on
the expansion side of the airfoil is coarsened.

Viscous flow

For viscous flow computation, the viscous terms in the Navier-Stokes equations are dis-
cretized centrally to model the physics of diffusion, but otherwise the computation pro-
cedure is similar to that of inviscid flow.
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(a)

(b) (c)

(d) (e)

(f) (g)

Figure 4: Steady supersonic flow past a diamond-shape airfoil by space-marching method. (a) sketch, (b) - (e)
flow-generated meshes at different λ, (f) computed surface Mach number, 120 cells, computing time: 1.8s (P4,
2.8 GHz) (g) Eulerian computation (5th-order WENO scheme), 100×200 cells, computing time: 2,395s.
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Figure 5: Mach 2.2 flow of air-SF6 over a NACA 0012 airfoil at 8◦ angle of attack. Flow-generated meshes and
density (and pressure) contours at different times.

Example 8.6. This is a problem of shock/shock interaction in viscous flow [10]. Two
oblique shocks are generated by two wedges in a channel, causing deflections of the flow
by an angle of 5◦ (lower wedge) and 15◦ (upper wedge). The upstream Mach number is
M∞=4.

Both inviscid and viscous computations are presented. For the viscous flow case, the
Reynolds number is Re=10 and Prandtl number Pr=0.72. Fig. 7 presents the inviscid com-
putation, where it is seen that Eulerian computation smears the contact lines completely,
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Figure 6: Flow-generated meshes for oscillating diamond-shape airfoil. Apex angle=10◦, pitching motion about
the apex: θ(t)=2◦sin2πt/T, the period of oscillation T =2π/30, free stream Mach number M=3.0.
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Figure 7: Computed Mach contours in shock-shock interaction: Inviscid flow.

whilst UC computation resolves it sharply. Fig. 8a shows the viscous flow computation
and compares with Eulerian computation (Fig. 8b). Both use a mesh of 120×120 and the
two results are similar. But Eulerian computation produces two straight leading shocks,
similar to the inviscid case, whereas UC computation produces curved leading shocks,
due to the displacement effect of viscosity. It is interesting to notice that with a finer mesh
of 240×240, Eulerian computation also produces curved leading shocks (see Fig. 8c), sim-
ilar to the UC results.

Example 8.7. This is the problem of unsteady incompressible aerodynamics of a freely
falling plate. There is rich dynamic behavior, such as fluttering and tumbling (Fig. 10a).
Numerical and experimental studies have been presented [56] and, more recently, Jin and
Xu [57] have elegantly used the unified coordinates formulation, together with a gas-
kinetic BGK solver [58], to obtain very accurate results. In [57] the computational mesh
is fixed rigidly with the plate (Fig. 9), hence the mesh velocity is determined according to
the translational and rotational velocity of the plate which, in turn, is determined by the
unsteady aerodynamic forces and the gravitational force according to Newton’s laws of
motion. In UC formulation, (5.12), the effects of the mesh movement are fully accounted
for, while the effects of viscosity are fully included in the gas-kinetic BGK solver. Com-
puted trajectories of the falling rectangular plate are plotted in Fig. 10 and are seen to
agree well with the experimental measurements in [56]. Some computed vorticity fields
of the same motion are also given in Fig. 11.
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(a)
Unified coordinates, 120x120 

(b)
Eulerian coordinates, 120x120

(c)

Eulerian coordinates, 240x240

Figure 8: Computed Mach contours in shock-shock interaction: M =4, Re=104, Pr =0.72.

We remark that the well-established method of mesh adaptation [59, 60] can also be
easily applied in the UC computations in the above examples to further improve their
accuracies, and this has been clearly demonstrated in [53].

Other possible applications

As the unified coordinate system resolves material interfaces and free surfaces sharply, it
can be applied with advantage to problems involving free surfaces (such as water waves)
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Figure 9: Fixed computational mesh around a rectangular plate.

(a)

(b)

Figure 10: Trajectories of the falling rectangular plate. (a) Complete trajectory, (b) The tumbling phase:
experiment (black) and computational (red).
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Figure 11: Computed vorticity fields of a falling rectangular plate at four instants during a full rotation.

and those of fluid/solid interactions, for which Eulerian methods would encounter some
difficulties of unknown boundary and of small cut-cells [61, 62]. Successes of application
of the UC system to problems of this type have just been reported in [63], which also
stresses the importance of the combined physical and geometrical conservation laws in
the accurate computation of viscous flows using gas kinetic schemes. Other applications
may include debris flows and blood flows in arteries.

9 Conclusions

A unified coordinate system, (λ,ξ,η,ζ), moving at velocity ~Q = (U,V,W) has been con-
structed in such a way that η and ζ are material coordinates, while λ is a time variable.
The system has been shown to possess the following properties: (a) It unifies Eulerian
and Lagrangian system. It also unites the physical and geometrical conservation laws to
form a closed system; consequently, the effects of arbitrarily moving mesh on the flow
are fully accounted for. (b) This system of governing equations is written in conservation
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PDE form, making it as easy to compute as in Eulerian coordinates; in particular, it pro-
vides a foundation for designing Lagrangian shock-capturing schemes that are moving
mesh schemes in Eulerian space. (c) The Lagrangian system of gas dynamics equations
in two- and three-dimension are shown to be only weakly hyperbolic, in direct contrast
to the Eulerian system which is hyperbolic; they are thus not equivalent to each other.
(d) It resolves contact discontinuities (including material interfaces and free surfaces) as
sharply as in Lagrangian system. (e) It provides a basis for automatic mesh generation; a
body-fitted mesh is generated, automatically and simultaneously, by the flow being com-
puted. (f) The unified mesh is orthogonal for 2-D flow and is schewness-preserving for
3-D flow. Several examples of 2-D flows are given to confirm these properties.
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