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Abstract. In this paper, we propose efficient algorithms for approximating particular
solutions of second and fourth order elliptic equations. The approximation of the par-
ticular solution by a truncated series of Chebyshev polynomials and the satisfaction
of the differential equation lead to upper triangular block systems, each block being
an upper triangular system. These systems can be solved efficiently by standard tech-
niques. Several numerical examples are presented for each case.
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1 Introduction

Boundary methods such as the Boundary Integral Equation Method (BIEM) [2, 5] and
the Method of Fundamental Solutions (MFS) [12,16] are numerical techniques applicable
for the numerical solution certain elliptic boundary value problems. In these methods,
the dimension of the problem is reduced by one as only the boundary of the domain of
the problem under consideration needs to be discretized. The advantages of these tech-
niques can be fully exploited if the governing differential equation is homogeneous. It
is therefore often desirable to convert an elliptic boundary value problem governed by
an inhomogeneous differential equation to one governed by a homogeneous differen-
tial equation. This can be achieved using the Method of Particular Solutions (MPS). To
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describe the MPS, consider the boundary value problem

Lu= f in Ω, u= g on ∂Ω, (1.1)

where L is a second order linear elliptic operator and Ω is an open bounded domain in R
2

with boundary ∂Ω. If up is a particular solution of the governing equation, then it satisfies
Lup = f but does not necessarily satisfy the boundary condition. If we let v=u−up, then
v satisfies the boundary value problem

Lv=0 in Ω, v= g−up on ∂Ω. (1.2)

Clearly, the governing equation is now homogeneous and thus problem (1.2) can be easily
solved using a boundary-type method. In order to transform problem (1.1) into problem
(1.2), we need to construct an approximation to the particular solution up.

In recent years, many methods have been proposed for the approximation of particu-
lar solutions. These methods may be classified as direct or indirect [10]. Direct methods
approximate a solution of Lup = f by a numerical method. For example, it is well-known
that a particular solution of the Poisson equation ∆up= f in R

2 is given by the Newtonian
potential [1]

up(P)=
1

2π

∫

Ω
log|P−Q| f (Q)dV(Q), (1.3)

where |P−Q| denotes the distance between the points P and Q. In general, the inte-
gral (1.3) cannot be evaluated analytically and so numerical integration is used. Since
Ω can have an arbitrary shape, the numerical evaluation of the integral (1.3) requires a
complicated domain discretization of Ω. To avoid the difficulties associated with such
a discretization, Atkinson’s method [1] may be used. In it, one assumes that f can be
extended smoothly to Ω̃, where Ω⊆Ω̃. Then up(P)= 1

2π

∫

Ω̃
log|P−Q| f (Q)dV(Q) is also a

particular solution of ∆up = f . The advantage of using this expression instead of (1.3)
is that the domain Ω̃ may be chosen so that the calculation of the integral is simpli-
fied [14]. The indirect approach for solving, for example, Poisson problems, is based
on the Dual Reciprocity Method (DRM) [9, 17, 25]. In the DRM, the source term f is
approximated by f̂ = ∑

n
i=1 ai f̂i, where { f̂i}

n
i=1 is an appropriate set of functions. An ap-

proximation to the particular solution up is obtained by taking ûp =∑
n
i=1 aiûi, where each

ûi satisfies ∆ûi = f̂i. An appropriate set of functions is the set of Radial Basis Functions
(RBFs) [7, 9, 15, 17, 18, 22]. The most popular RBFs are thin plate and higher order radial
splines, multiquadrics and Gaussians which are all globally supported [9,10,17–19]. The
problem is that these globally supported basis functions lead to dense systems which can
be highly ill-conditioned [9]. This difficulty can be overcome by using compactly sup-
ported RBFs (CS-RBFs) which have been extensively discussed in [9, 17]. The most pop-
ular CS-RBFs are Wendland’s CS-RBFs [9, 17]. Polynomials and trigonometric functions
have also been used as basis functions [22]. With these sets of basis functions a number
of numerical methods can be used for determining approximation f̂ [9, 10, 17, 22]. The
properties of orthogonal polynomials, such as Chebyshev and Legendre polynomials are
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well-documented [3,6,26]. It would therefore be reasonable to consider obtaining partic-
ular solutions by approximating f by truncated series of such polynomials on rectangular
domains containing the actual domain of the problem. It is well-known that Chebyshev
polynomials are valuable tools in numerical analysis and approximation theory [23]. In
particular, they are widely used in the numerical solution of boundary value problems
for partial differential equations with spectral methods [3, 6, 8, 26]. The reason for this is
the fact that a Chebyshev series expansion may be viewed as a cosine Fourier series, for
if f (x)=∑

∞
n=0 anTn(x) where Tn(x)=cos(ncos−1(x)) denotes the Chebyshev polynomial

of degree n on the interval (−1,1), then f (cosθ) = ∑
∞
n=0an cos(nθ). This leads to rapid

convergence properties and the possible use of Fast Fourier Transforms (FFTs) [6, 26]. As
far as the convergence of Chebyshev series is concerned, it can be shown [18, 26] that if
pN(x)=∑

N
n=0anTn(x) is the polynomial which interpolates a function f∈Cs[−1,1], s≥1, at

the Gauss-Lobatto points xn = cos(nπ/N), n =0,1··· ,N, then pN converges spectrally to
f . This means that the more regular the function f , the more rapid the convergence of pN

to f . In particular, if f is infinitely differentiable, then the approximation error || f−pN ||∞
is smaller than any power of 1/N and the convergence is said to be exponential.

In this paper, we propose efficient algorithms for approximating particular solutions
of second and fourth order elliptic equations using truncated series of Chebyshev polyno-
mials. These algorithms could be viewed as Matrix Decomposition Algorithms (MDAs)
for which an overview can be found in the survey article [4]. More recently, efficient
Chebyshev spectral-Galerkin MDAs for second and fourth order elliptic boundary value
problems were developed in [27]. Although the basis used in [27] consists of linear com-
binations of Chebyshev polynomials, the upper triangular matrix structures encountered
in our approach is also present there. The MDA approach of [27] is extended to general
ultraspherical polynomials in [11]. In this work we first consider the Poisson equation
which is encountered in fluid mechanics, elasticity, heat conduction and is used to de-
scribe many other physical phenomena. We also consider the Helmholtz equation, which
is encountered in acoustics, and the biharmonic equation, which is encountered in fluid
mechanics and elasticity. The paper is organized as follows. In Section 2, we discuss
the case of the Poisson equation. We first present the problem and the method which is
based on some theoretical results. We then describe the algorithm in detail and apply it
to several numerical examples. In Section 3, the algorithm is applied to the Helmholtz
equation. In Section 4, we discuss the case of the biharmonic equation, describe the cor-
responding efficient algorithm and present numerical experiments. Finally, in Section 5,
we provide some concluding remarks.

2 The Poisson equation

Our goal is to find an efficient way of obtaining an approximation of a particular solution
of Poisson’s equation on the rectangle (a,b)×(c,d), that is,

∆u(x,y)= f (x,y), (x,y)∈Ω=(a,b)×(c,d), (2.1)
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where the function f (x,y) is known.

Let Tm(x) and Tn(y) denote the Chebyshev polynomials of degrees m and n, defined
on the interval (−1,1) in the x and y directions, respectively. We also let Tx

m(x) and T
y
n (y)

denote the shifted Chebyshev polynomials of degrees m and n, defined on the intervals

(a,b) and (c,d), respectively. Thus, Tx
m(x)=Tm

(

2x−a−b
b−a

)

, T
y
n (y)=Tn

(

2y−c−d
d−c

)

.

Further, suppose f is approximated by

fMN(x,y)=
M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y), (2.2)

where the coefficients fmn,m=0,··· ,M,n=0,··· ,N are given by [18]

fmn =
4

MNc̄x
m c̄

y
n

M

∑
i=0

N

∑
j=0

f (xi,yj)

c̄x
i c̄

y
j

cos

(

imπ

M

)

cos

(

jnπ

N

)

, (2.3)

where c̄x
0=c̄x

M=2, c̄x
i =1, i=1,··· ,M−1, c̄

y
0=c̄

y
N=2, c̄

y
i =1, i=1,··· ,N−1, and xi=(b−a)ξi/2+

(b+a)/2, i=0,1,··· ,M, yj=(d−c)ηj/2+(d+c)/2, j=0,1,··· ,N, where ξi=cos(iπ/M) and
ηj =cos(jπ/N) are sets of Gauss-Lobatto points on the interval (−1,1). The quantities in
expression (2.3) can be evaluated using FFTs.

Let u(x,y) be approximated by uMN(x,y), where

uMN(x,y)=
M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n (y). (2.4)

We want to find the coefficients {umn}
M,N
m,n=0 so that the Poisson equation △uMN = fMN is

satisfied:

M

∑
m=0

N

∑
n=0

umnTx
m
′′(x)T

y
n (y)+

M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n
′′
(y)=

M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y) (2.5)

for (x,y)∈ (a,b)×(c,d). From [13], page 61, we have that

Tx
m
′(x)=2m

2

(b−a)

[ m+1
2 −1]

∑
k=0

cm−2k−1Tx
m−2k−1(x), (2.6)

where c0 =1/2 and ci =1, i∈N. Clearly,

Tx
m
′′(x)=2m

4

(b−a)2

[ m+1
2 −1]

∑
k=0

cm−2k−1Tx ′
m−2k−1(x). (2.7)

By substituting (2.6) into (2.7), it can be easily shown that [23]:
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Proposition 2.1. For m even,

Tx
m
′′(x)=

m
2 −1

∑
k=0

αm
2kTx

2k(x), (2.8)

where αm
2k =4m(b−a)−2c2k(m2−4k2), k=0,··· ,m/2−1. For m odd,

Tx
m
′′(x)=

m−3
2

∑
k=0

αm
2k+1Tx

2k+1(x), (2.9)

where αm
2k+1 =4m(b−a)−2c2k+1(m2−(2k+1)2), k=0,··· ,(m−3)/2.

Similarly, in the y-direction, for n even, we have

T
y
n
′′
(y)=

n
2 −1

∑
k=0

βn
2kT

y
2k(y), (2.10)

where βn
2k =4n(d−c)−2c2k(n2−4k2), k=0,··· ,n/2−1, and, for n odd,

T
y
n
′′
(y)=

n−3
2

∑
k=0

βn
2k+1T

y
2k+1(y), (2.11)

where βn
2k+1 =4n(d−c)−2c2k+1(n2−(2k+1)2) k=0,··· ,(n−3)/2. We can write

M

∑
m=0

N

∑
n=0

umnTx
m
′′(x)T

y
n (y)=

M−2

∑
m=0

N

∑
n=0

vmnTx
m(x)T

y
n (y), (2.12)

and similarly,
M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n
′′
(y)=

M

∑
m=0

N−2

∑
n=0

wmnTx
m(x)T

y
n (y), (2.13)

where the coefficients vmn and wmn can be expressed in terms of the coefficients umn from
(2.8), (2.9) and (2.10), (2.11), respectively.

Thus (2.5) can be written as

M−2

∑
m=0

N

∑
n=0

vmnTx
m(x)T

y
n (y)+

M

∑
m=0

N−2

∑
n=0

wmnTx
m(x)T

y
n (y)=

M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y), (2.14)

and, from (2.14), by equating the coefficients of Tx
m(x)T

y
n (y), we obtain the system of

equations,
vmn+wmn = fmn, m=0,1,··· ,M, n=0,1,··· ,N. (2.15)

System (2.15) can be written as

(A⊗ IN + IM⊗B)u= f, (2.16)
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where

uT =[u00,u01,u02,··· ,u0N ,u10,··· ,u1N ,··· ,uM0,··· ,uMN],

fT =[ f00, f01, f02,··· , f0N , f10,··· , f1N ,··· , fM0,··· , fMN ],

and the symbol ⊗ denotes the matrix tensor product. When M is even,

A=

































0 0 α2
0 0 α4

0 0 α6
0 ··· 0 αM

0

0 0 0 α3
1 0 α5

1 0 ··· αM−1
1 0

0 0 0 0 α4
2 0 α6

2 ··· 0 αM
2

0 0 0 0 0 α5
3 0 ··· αM−1

3 0
...

...
...

...
...

...
. . .

...
. . .

...

0 0 0 0 0 0 0 ··· αM−1
M−3 0

0 0 0 0 0 0 0 ··· 0 αM
M−2

0 0 0 0 0 0 0 ··· 0 0
0 0 0 0 0 0 0 ··· 0 0

































, (2.17)

while, when M is odd,

A=





































0 0 α2
0 0 α4

0 0 α6
0 ··· 0 αM−1

0 0

0 0 0 α3
1 0 α5

1 0 ··· αM−2
1 0 αM

1

0 0 0 0 α4
2 0 α6

2 ··· 0 αM−1
2 0

0 0 0 0 0 α5
3 0 ··· αM−2

3 0 αM
3

...
...

...
...

...
...

. . .
...

. . .
...

...

0 0 0 0 0 0 0 ··· αM−2
M−4 0 αM

M−4

0 0 0 0 0 0 0 ··· 0 αM−1
M−3 0

0 0 0 0 0 0 0 ··· 0 0 αM
M−2

0 0 0 0 0 0 0 ··· 0 0 0
0 0 0 0 0 0 0 ··· 0 0 0





































. (2.18)

The form of the matrix B is the same as that of A, except that α is replaced by β and M
is replaced by N. The (M+1)(N+1)×(M+1)(N+1) system (2.16) can be decomposed
into the following four block systems:

B∗u∗
0+α2

0u∗
2 +α4

0u∗
4 + ··· + αME

0 u∗
ME

=f∗0
B∗u∗

2+α4
2u∗

4 + ··· + αME
2 u∗

ME
=f∗2

B∗u∗
4 + ··· + αME

4 u∗
ME

=f∗4
. . .

...
...

B∗u∗
ME−2+αME

ME−2u∗
ME

=f∗ME−2

B∗u∗
ME

=f∗ME

(2.19)
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where ∗=E and ∗=O represent two block systems, and

B∗u∗
1+α3

1u∗
3 +α5

1u∗
5 + ··· + αMO

1 u∗
MO

=f∗1
B∗u∗

3+α5
3u∗

5 + ··· + αMO
3 u∗

MO
=f∗3

B∗u∗
5 + ··· + αMO

5 u∗
MO

=f∗5
. . .

...
...

B∗u∗
MO−2+αMO

MO−2u∗
MO

=f∗MO−2

B∗u∗
MO

=f∗MO

(2.20)

where ∗=E and ∗=O represent the other two block systems, and where

uE
i =[ui0,ui2,··· ,uiNE

]T, uO
i =[ui1,ui3,··· ,uiNO

]T ,

fE
i =[ fi0, fi2,··· , fiNE

]T, fO
i =[ fi1, fi3,··· , fiNO

]T, i=0,1,···M,

BE =

















0 β2
0 β4

0 β6
0 ··· βNE

0

0 0 β4
2 β6

2 ··· βNE
2

...
...

...
...

. . .
...

0 0 0 ··· 0 βNE
NE−2

0 0 0 ··· 0 0

















, BO =

















0 β3
1 β5

1 ··· βNO
1

0 0 β5
3 ··· βNO

3
...

...
...

. . .
...

0 0 0 ··· βNO
NO−2

0 0 0 ··· 0

















, (2.21)

and ME=2[M/2], MO=2[(M−1)/2]+1, NE=2[N/2], NO=2[(N−1)/2]+1. Note that uE
i

and fE
i are NE/2+1-vectors, uO

i and fO
i are (NO+1)/2-vectors, the matrix BE is (NE/2+

1)×(NE/2+1) and the matrix BO is (NO +1)/2×(NO +1)/2.

Each of the systems (2.19)-(2.20) can be solved independently for uE
i , i = 0,2,··· ,ME,

uO
i , i = 0,2,··· ,ME, uE

i , i = 1,3,··· ,MO, and uO
i , i = 1,3,··· ,MO, respectively. For instance,

system (2.19) with ∗=E, can be solved by solving a sequence of ME/2+1 upper triangular
(NE/2+1)×(NE/2+1) subsystems. Each of these subsystems is underdetermined and
we have addressed this issue by choosing ui0 = 0, i = 0,2,··· ,ME. Similarly, we choose
ui0 = 0, i = 1,3,··· ,MO, ui1 = 0, i = 0,2,··· ,ME and ui1 = 0, i = 1,3,··· ,MO. When choosing
ui0 = ui1 = 0, i = 0,1,··· ,M, the method is applicable for any values M and N. However,
choosing the parameters ui0, ui1, i=0,1,··· ,M, to be nonzero can, in certain cases, lead to
inconsistencies. For instance, in the case M = N is even, in subsystem (2.19) with ∗=O,
we must take uM1 to be equal to zero in order to have consistency. The reason for this
is the following. If we choose uM1 to be nonzero and solve the subsystem backwards,
when we reach the first block line of (2.19), the last equation is not necessarily satisfied.
On the other hand, in the case when M = N is odd, there is no problem. It is therefore
recommended to always choose ui0=ui1=0, i=0,1,··· ,M. The cost of solving each upper
triangular subsystem is clearly O(N2) and thus the cost of solving each of systems (2.19)
is O(MN2). Each of the systems (2.19)-(2.20) is solved in a similar way and thus solving
(2.16) has multiplicative complexity O(MN2).
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If we reorder the equations and unknowns, we can write (2.15) as

(IN⊗A+B⊗ IM)ũ= f̃, (2.22)

where

ũT =[u00,u10,u20,··· ,uM0,u01,··· ,uM1,··· ,u0N,··· ,uMN],

f̃T =[ f00, f10, f20,··· , fM0, f01,··· , fM1,··· , f0N ,··· , fMN ].

The (M+1)(N+1)×(M+1)(N+1) system (2.22) can be decomposed into the following
four block systems:

A∗ũ∗
0+ β2

0ũ∗
2 + β4

0ũ∗
4 + ··· + βNE

0 ũ∗
NE

=f̃∗0
A∗ũ∗

2+ β4
2ũ∗

4 + ··· + βNE
2 ũ∗

NE
=f̃∗2

A∗ũ∗
4 + ··· + βNE

4 ũ∗
NE

=f̃∗4
. . .

...
...

A∗ũ∗
NE−2+βNE

NE−2ũ∗
NE

=f̃∗NE−2

A∗ũ∗
NE

=f̃∗NE

(2.23)

where ∗=E and ∗=O represent two block systems, and

A∗ũ∗
1+ β3

1ũ∗
3 + β5

1ũ∗
5 + ··· + βNO

1 ũ∗
NO

=f̃∗1
A∗ũ∗

3+ β5
3ũ∗

5 + ··· + βNO
3 ũ∗

NO
=f̃∗3

A∗ũ∗
5 + ··· + βNO

5 ũ∗
NO

=f̃∗5
. . .

...
...

A∗ũ∗
NO−2+βNO

NO−2ũ∗
NO

=f̃∗NO−2

A∗ũ∗
NO

=f̃∗NO

(2.24)

where ∗=E and ∗=O represent the other two block systems, and where

ũE
j =[u0j,u2j,··· ,uME j]

T, ũO
j =[u1j,u3j,··· ,uMO j]

T ,

f̃E
j =[ f0j, f2j,··· , fME j]

T, f̃O
j =[ f1j, f3j,··· , fMO j]

T, j=0,1,···N,

AE =

















0 α2
0 α4

0 α6
0 ··· αME

0

0 0 α4
2 α6

2 ··· αME
2

...
...

...
...

. . .
...

0 0 0 ··· 0 αME
ME−2

0 0 0 ··· 0 0

















, AO =

















0 α3
1 α5

1 ··· αMO
1

0 0 α5
3 ··· αMO

3
...

...
...

. . .
...

0 0 0 ··· αMO
MO−2

0 0 0 ··· 0

















. (2.25)

As in the previous ordering, each of the systems (2.23)-(2.24) can be solved independently
for ũE

i , i=0,2,··· ,ME, ũO
i , i=0,2,··· ,ME, ũE

i , i=1,3,··· ,MO, and ũO
i , i=1,3,··· ,MO, respec-

tively. Each of these systems is solved in a similar way to the way systems (2.19)-(2.20)
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were solved and thus solving system (2.22) has multiplicative complexity O(NM2), hav-
ing taken ũ0j = ũ1j =0, j=0,1,··· ,N. As mentioned in the previous case, choosing the ũ0j,
ũ1j, j = 0,1,··· ,N to be different than zero can lead to inconsistencies and it is therefore
recommended to always take these parameters to be equal to zero.

Both sets of coefficients u and ũ provide particular solutions of equation (2.1) via ex-
pression (2.4). Clearly, the vector v = (u+ũ)/2 also gives a particular solution of (2.1).
For symmetry, we choose our particular solution to be v. It is noteworthy that the deter-
mination of the coefficients umn from collocating equation (2.5) at (M+1)(N+1) points
has multiplicative complexity O(M3N3). A survey of Chebyshev collocation methods
for Poisson problems may be found in [23].

We apply the proposed algorithm to a variety of functions f (x,y) on [a,b]×[c,d]. In
order to demonstrate the accuracy of the method, we calculate the error

E= max
0≤i,j≤L

∣

∣

∣

∣

∣

M

∑
m=0

N

∑
n=0

vmnTx
m
′′(xi)T

y
n (yj)+

M

∑
m=0

N

∑
n=0

vmnTx
m(xi)T

y
n
′′
(yj)− f (xi,yj)

∣

∣

∣

∣

∣

on a uniform grid on [a,b]×[c,d] defined by xi = a+(b−a)(i/L), i = 0,1,··· ,L, yj = c+
(d−c)(j/L), j = 0,1,··· ,L where L was chosen to be equal to 100. For the evaluation of
the Chebyshev polynomials and their derivatives at given points, we use the formulæ
resulting from the definition of Chebyshev polynomials in terms of the cosine (see [6],
Appendix A.2). In all examples we chose M= N.

We considered the following examples for which we present a graph of logE versus
N (see Fig. 1):

Example 2.1 f (x,y)= f2(x,y)=
1

(4−x)(4−y)
on [−1,1]×[−1,1].

Example 2.2 f (x,y)= f4(x,y)= exy on [−1,1]×[−1,1].

Example 2.3 f (x,y)= f6(x,y)=sin(3πx)sin(3πy) on [−0.2,0.5]×[0.5,1].

We also investigate the conditioning of the matrices arising in systems (2.19)-(2.20)
and (2.23)-(2.24). In particular, we calculate the condition numbers κ∞ of the matrices
AE, AO, BE, BO. These condition numbers were calculated using the NAG [24] routine
F07TGF. In Fig. 2, we present the condition numbers κ∞ of the matrices AE, AO defined
on the interval (−1,1).

From the numerical results, we observe that, for all the examples considered, the
Chebyshev approximation converges exponentially to the exact f as N grows. It should
be noted that, for large values of M and N, there is loss of accuracy due to ill-conditioning
of the coefficient matrices of the systems involved (see Fig. 2). Further examples confirm-
ing these observations may be found in [20, 21].
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Figure 1: Maximum error versus N for Examples 2.1-2.3.
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Figure 2: Condition number κ∞ versus N for matrices AE and AO on (−1,1).

3 The Helmholtz equation

In this case, our goal is to find an efficient way of approximating a particular solution of
the Helmholtz equation on the rectangle (a,b)×(c,d), that is,

∆u(x,y)+ku(x,y)= f (x,y), (x,y)∈Ω=(a,b)×(c,d), (3.1)
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where k 6= 0 is a constant and the function f (x,y) is known. In the case k > 0 equation
(3.1) is known as the Helmholtz equation whereas if k < 0, it is known as the modified
Helmholtz equation. Adopting the notation used in Section 2 and following the same

steps as in the case of the Poisson equation, we want the coefficients {umn}
M,N
m,n=0 in (2.4)

to satisfy

M

∑
m=0

N

∑
n=0

umnTx
m
′′(x)T

y
n (y)+

M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n
′′
(y)+k

M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n (y)

=
M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y) (3.2)

for (x,y)∈ (a,b)×(c,d). Using (2.12) and (2.13), (3.2) becomes

M−2

∑
m=0

N

∑
n=0

vmnTx
m(x)T

y
n (y)+

M

∑
m=0

N−2

∑
n=0

wmnTx
m(x)T

y
n (y)+k

M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n (y)

=
M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y), (3.3)

and by equating the coefficients of the products of Chebyshev polynomials Tx
m(x)T

y
n (y),

m = 0,1,··· ,M, n = 0,1,··· ,N, we obtain the system of equations vmn+wmn+kumn = fmn,
m=0,1,··· ,M, n=0,1,··· ,N. This system can be written as

(A⊗ IN + IM⊗B+kIM⊗ IN)u= f, (3.4)

where A,B,u and f are defined as in Section 2. It can be decomposed into the four block
systems (2.19)-(2.20) where now the matrices BE and BO are replaced by B̂E and B̂O, re-
spectively, which are of the same forms as those of BE and BO as defined in (2.21) ex-
cept that the diagonal values 0 are replaced by k. As in the Poisson case, each of the
four systems can be solved independently for uE

i , i = 0,2,··· ,ME, uO
i , i = 0,2,··· ,ME, uE

i ,
i=1,3,··· ,MO and uO

i , i=1,3,··· ,MO, respectively. However, each of these subsystems is
no longer underdetermined and therefore we do not need to preassign any coefficients.
As before, the cost of solving each upper triangular subsystem is clearly O(N2) and thus
the cost of solving the four block systems is O(MN2).

If we reorder the equations and unknowns we can write the system as

(IN⊗A+B⊗ IM+kIN⊗ IM)ũ= f̃, (3.5)

where ũ and f̃ are defined as in the Poisson case. This system can be decomposed into
the four block systems (2.23)-(2.24) where now the matrices AE and AO are replaced by
ÂE and ÂO, respectively, which are of the same forms as those of AE and AO as defined
in (2.25) except that the diagonal values 0 are replaced by k. Each system can be solved
independently for ũE

i , i = 0,2,··· ,ME, ũO
i , i = 0,2,··· ,ME, ũE

i , i = 1,3,··· ,MO and ũO
i , i =
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1,3,··· ,MO, respectively. Each of these subsystems is nonsingular and therefore we do
not need to preassign any coefficients.

Both sets of coefficients u and ũ provide particular solutions of (3.1) via expression
(2.4). As in the Poisson case, for reasons of symmetry, we choose our particular solution
to be v=(u+ũ)/2.

With the same notation as in the Poisson case, but with the error now defined as

E= max
0≤i,j≤L

∣

∣

∣

∣

∣

M

∑
m=0

N

∑
n=0

vmnTx
m
′′(xi)T

y
n (yj)+

M

∑
m=0

N

∑
n=0

vmnTx
m(xi)T

y
n
′′
(yj)

+k
M

∑
m=0

N

∑
n=0

vmnTx
m(xi)T

y
n (yj)− f (xi,yj)

∣

∣

∣

∣

∣

,

we consider the following examples (with k=1 and M=N) for which we present a graph
of logE versus N (see Fig. 3):

Example 3.1 f (x,y)= f7(x,y)= ex+y on [−1,1]×[−1,1].

Example 3.2 f (x,y)= f2(x,y)=
1

(4−x)(4−y)
on [−1,1]×[−1,1].

From the numerical results, we observe that the Chebyshev approximation converges
exponentially to the exact f as N grows. It should be noted, however, that for moderate
values of M and N, there is significant loss of accuracy due to ill-conditioning of the
coefficient matrices of the systems involved. The ill-conditioning in the Helmholtz case
is considerably more serious than in the Poisson case as can be observed from Fig. 4,
where we present the condition number κ∞ of the matrices AE and AO defined on the
interval (−1,1), corresponding to the Helmholtz case. Further examples may be found
in [21].

4 The biharmonic equation

Our goal is to find a particular solution of the biharmonic equation on the rectangle
(a,b)×(c,d), that is

∆2u(x,y)= f (x,y), (x,y)∈Ω=(a,b)×(c,d), (4.1)

where the function f (x,y) is known. Using the notation of Section 2, we approximate
u(x,y) by

uMN(x,y)=
M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n (y), (4.2)
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Figure 3: Maximum error versus N for Examples 3.1 and 3.2 in Helmholtz case.
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Figure 4: Condition number κ∞ versus N for matrices AE and AO on (-1,1) in Helmholtz case.

where the coefficients {umn}
M,N
m,n=0 are determined so that the following equation is satis-

fied:
M

∑
m=0

N

∑
n=0

umnTx
m
′′′′(x)T

y
n (y)+2

M

∑
m=0

N

∑
n=0

umnTx
m
′′(x)T

y
n
′′
(y)+

M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n
′′′′

(y)

=
M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y), (x,y)∈ (a,b)×(c,d). (4.3)
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Using (2.8), in the case m is even with, say, m=2t,

Tx
m
′′′′(x)=

m
2 −1

∑
k=0

αm
2kTx

2k
′′(x)=

m
2 −1

∑
k=1

αm
2k

(

k−1

∑
ℓ=0

α2k
2ℓ

Tx
2ℓ

(x)

)

=

m
2 −2

∑
k=0

γm
2kTx

2k(x), (4.4)

and rearranging the series, we obtain

γm
2k =

m
2 −1

∑
ℓ=k+1

αm
2ℓ

α2ℓ
2k =32c2k m

m
2 −1

∑
ℓ=k+1

ℓ

(

m2

4
−ℓ

2

)

(

ℓ
2−k2

)

=64c2k t
t−1

∑
ℓ=k+1

ℓ
(

t2−ℓ
2
)(

ℓ
2−k2

)

, k=0,1,.. . ,t−2. (4.5)

Similarly, in the case m is odd with, say, m=2t+1, using (2.9) we have,

Tx
m
′′′′(x)=

m−3
2

∑
k=0

αm
2k+1Tx

2k+1
′′(x)

=

m−3
2

∑
k=1

αm
2k+1

(

k−1

∑
ℓ=0

α2k+1
2ℓ+1Tx

2ℓ+1(x)

)

=

m−3
2

∑
k=0

γm
2k+1Tx

2k+1(x). (4.6)

Rearrangement of the series yields

γm
2k+1 =

m−3
2

∑
ℓ=k+1

αm
2ℓ+1 α2ℓ+1

2k+1 =m

m−3
2

∑
ℓ=k+1

(2ℓ+1)
(

m2−(2ℓ+1)2
)(

(2ℓ+1)2−(2k+1)2
)

=(2t+1)
t−1

∑
ℓ=k+1

(2ℓ+1)
(

(2t+1)2−(2ℓ+1)2
)(

(2ℓ+1)2−(2k+1)2
)

, (4.7)

where k=0,1,.. . ,t−2.
From (4.4)-(4.5) and (4.6)-(4.7), we have the following result:

Proposition 4.1. For even m=2t,

Tx
m
′′′′(x)=

m
2 −2

∑
k=0

γm
2kTx

2k(x), (4.8)

where γm
2k = 256(b−a)−4c2kt

(

(t−k)2−1
)(

t2−k2
)(

(t+k)2−1
)

/3 for 0 ≤ k ≤ t−2. For odd
m=2t+1, we have

Tx
m
′′′′(x)=

m−5
2

∑
k=0

γm
2k+1Tx

2k+1(x), (4.9)

where γm
2k+1=128(b−a)−4(2t+1)

(

(t−k)2−1
)(

t2−k2
)

(t+k+1)(t+k+2)/3 for 0≤k≤t−2.
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Similarly, it can also be shown that for even n=2t,

T
y
n
′′′′

(y)=

n
2 −2

∑
k=0

δn
2kT

y
2k(y), (4.10)

where δn
2k =256(d−c)−4c2kt

(

(t−k)2−1
)(

t2−k2
)(

(t+k)2−1
)

/3 for 0≤k≤ t−2, while for
odd n=2t+1 we have

T
y
n
′′′′

(y)=

n−5
2

∑
k=0

δn
2k+1T

y
2k+1(y), (4.11)

where δn
2k+1=128(d−c)−4(2t+1)

(

(t−k)2−1
)(

t2−k2
)

(t+k+1)(t+k+2)/3 for 0≤k≤t−2.
We can write

M

∑
m=0

N

∑
n=0

umnTx
m
′′(x)T

y
n
′′
(y)=

M−2

∑
m=0

N−2

∑
n=0

zmnTx
m(x)T

y
n (y), (4.12)

where the coefficients zmn can be expressed in terms of the coefficients umn from (2.8),
(2.9), (2.10) and (2.11). Similarly, we can write

M

∑
m=0

N

∑
n=0

umnTx
m
′′′′(x)T

y
n (y)=

M−4

∑
m=0

N

∑
n=0

vmnTx
m(x)T

y
n (y), (4.13)

and
M

∑
m=0

N

∑
n=0

umnTx
m(x)T

y
n
′′′′

(y)=
M

∑
m=0

N−4

∑
n=0

wmnTx
m(x)T

y
n (y), (4.14)

where the coefficients vmn and wmn can be expressed in terms of the umn from (4.8), (4.9)
and (4.10), (4.11), respectively. Thus (4.3) can be written as

M−4

∑
m=0

N

∑
n=0

vmnTx
m(x)T

y
n (y)+2

M−2

∑
m=0

N−2

∑
n=0

zmnTx
m(x)T

y
n (y)+

M

∑
m=0

N−4

∑
n=0

wmnTx
m(x)T

y
n (y)

=
M

∑
m=0

N

∑
n=0

fmnTx
m(x)T

y
n (y), (4.15)

and by equating the coefficients of Tx
m(x)T

y
n (y), we obtain the system of equations

vmn+2zmn+wmn = fmn, m=0,1,··· ,M, n=0,1,··· ,N. (4.16)

System (4.16) can be written as

(C⊗ IN +2 A⊗B+ IM⊗D)u= f, (4.17)

where

uT =[u00,u01,u02,··· ,u0N ,u10,··· ,u1N,··· ,uM0,··· ,uMN],

fT =[ f00, f01, f02,··· , f0N , f10,··· , f1N ,··· , fM0,··· , fMN ],
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and the matrices A and B are given by (2.17)-(2.18). When M is even,

C=









































0 0 0 0 γ4
0 0 γ6

0 0 ··· 0 γM
0

0 0 0 0 0 γ5
1 0 γ7

1 ··· γM−1
1 0

0 0 0 0 0 0 γ6
2 0 ··· 0 γM

2

0 0 0 0 0 0 0 γ7
3 ··· γM−1

3 0
...

...
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 0 0 ··· γM−1
M−5 0

0 0 0 0 0 0 0 0 ··· 0 γM
M−4

0 0 0 0 0 0 0 0 ··· 0 0
0 0 0 0 0 0 0 0 ··· 0 0
0 0 0 0 0 0 0 0 ··· 0 0
0 0 0 0 0 0 0 0 ··· 0 0









































, (4.18)

while when M is odd,

C=













































0 0 0 0 γ4
0 0 γ6

0 0 ··· 0 γM−1
0 0

0 0 0 0 0 γ5
1 0 γ7

1 ··· γM−2
1 0 γM

1

0 0 0 0 0 0 γ6
2 0 ··· 0 γM−1

2 0

0 0 0 0 0 0 0 γ7
3 ··· γM−2

3 0 γM
3

...
...

...
...

...
...

...
...

. . .
...

. . .
...

0 0 0 0 0 0 0 0 ··· γM−2
M−4 0 γM

M−4

0 0 0 0 0 0 0 0 ··· 0 γM−1
M−3 0

0 0 0 0 0 0 0 0 ··· 0 0 γM
M−2

0 0 0 0 0 0 0 0 ··· 0 0 0
0 0 0 0 0 0 0 0 ··· 0 0 0
0 0 0 0 0 0 0 0 ··· 0 0 0
0 0 0 0 0 0 0 0 ··· 0 0 0













































. (4.19)

The form of the matrix D is the same as that of C, except that γ is replaced by δ and M is
replaced by N.

The (M+1)(N+1)×(M+1)(N+1) system (4.17) can be decomposed into the follow-
ing four systems:

D∗u∗
0 +2α2

0B∗u∗
2 +(γ4

0 I+2α4
0B∗)u∗

4 +···+(γME
0 I+2αME

0 B∗)u∗
ME

= f∗0
D∗u∗

2 +2α4
2B∗u∗

4 +···+(γME
2 I+2αME

2 B∗)u∗
ME

= f∗2
D∗u∗

4 +···+(γME
4 I+2αME

4 B∗)u∗
ME

= f∗4
...

D∗u∗
ME−2+2αME

ME−2B∗u∗
ME

= f∗ME−2

D∗u∗
ME

= f∗ME

(4.20)
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where ∗=E and ∗=O represent two block systems, and

D∗u∗
1 +2α3

1B∗u∗
3 +(γ5

1 I+2α5
1B∗)u∗

5 +···+(γMO
1 I+2αMO

1 B∗)u∗
MO

= f∗1
D∗u∗

3 +2α5
3B∗u∗

5 +···+(γMO
3 I+2αMO

3 B∗)u∗
MO

= f∗3
D∗u∗

5 +···+(γMO
5 I+2αMO

5 B∗)u∗
MO

= f∗5
...

D∗u∗
MO−2+2αMO

MO−2B∗u∗
MO

= f∗MO−2

D∗u∗
MO

= f∗MO

(4.21)

where ∗=E and ∗=O represent the other two block systems, and where

uE
i =[ui0,ui2,··· ,uiNE

]T, uO
i =[ui1,ui3,··· ,uiNO

]T ,

fE
i =[ fi0, fi2,··· , fiNE

]T, fO
i =[ fi1, fi3,··· , fiNO

]T, i=0,1,···M,

the matrices BE and BO are given by (2.21), and

DE =





















0 0 δ4
0 δ6

0 ··· δNE
0

0 0 0 δ6
2 ··· δNE

2
...

...
...

...
. . .

...

0 0 0 ··· 0 δNE
NE−4

0 0 0 ··· 0 0
0 0 0 ··· 0 0





















, DO =





















0 0 δ5
1 δ7

1 ··· δNO
1

0 0 0 δ7
3 ··· δNO

3
...

...
...

. . .
...

0 0 0 0 ··· δNO
NO−4

0 0 0 0 ··· 0
0 0 0 0 ··· 0





















, (4.22)

and the dimensions ME, MO, NE and NO are given in Section 2. Note that uE
i and fE

i are
NE/2+1-vectors, uO

i and fO
i are (NO+1)/2-vectors, the matrix BE is (NE/2+1)×(NE/2+

1) and the matrix BO is (NO+1)/2×(NO +1)/2.

Each of the systems (4.20)-(4.21) can be solved independently for uE
i , i = 0,2,··· ,ME,

uO
i , i = 0,2,··· ,ME, uE

i , i = 1,3,··· ,MO and uO
i , i = 1,3,··· ,MO, respectively. For instance,

(4.20) with ∗ = E, can be solved by solving a sequence of ME/2+1 upper triangular
(NE/2+1)×(NE/2+1) subsystems. Each of these subsystems is underdetermined and
we therefore choose ui0 = ui2 = 0, i = 0,2,··· ,ME. Similarly, we choose ui1 = ui3 = 0,
i = 0,2,··· ,ME, ui0 = ui2 = 0, i = 1,3,··· ,MO and ui1 = ui3 = 0, i = 1,3,··· ,MO. Choosing
these parameters to be nonzero can lead to inconsistencies as in the Poisson case, and it
is therefore recommended to always choose ui0 =ui1=ui2 =ui3 =0, i=0,1,··· ,M. The cost
of solving each upper triangular subsystem is clearly O(N2) and thus the cost of solving
each of systems (4.20) is O(MN2). Each of the systems (4.20)-(4.21) is solved in a similar
way and thus solving (4.17) has a cost of O(MN2).

If we reorder the equations and unknowns, we can write (4.16) as

(IN⊗C+2B⊗A+D⊗ IM)ũ= f̃, (4.23)
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where

ũT =[u00,u10,u20,··· ,uM0,u01,··· ,uM1,··· ,u0N,··· ,uMN],

f̃T =[ f00, f10, f20,··· , fM0, f01,··· , fM1,··· , f0N ,··· , fMN ].

The (M+1)(N+1)×(M+1)(N+1) system (4.23) can be decomposed into four indepen-
dent subsystems as in the previous ordering. Each of these systems is solved indepen-
dently as described earlier for systems (4.20)-(4.21) and thus solving system (4.23) has a
cost of O(NM2). The full details of this decomposition may be found in [20].

Both sets of coefficients u and ũ provide particular solutions of equation (4.1) via ex-
pression (4.2). Clearly, the vector v=(u+ũ)/2 also gives a particular solution of (4.1). For
symmetry, we choose our particular solution to be v. We applied the proposed algorithm
to a variety of functions f (x,y) on [a,b]×[c,d].

In order to demonstrate the accuracy of the method, we calculate the error

E= max
0≤i,j≤L

∣

∣

∣

∣

∣

M

∑
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N

∑
n=0

vmn

(

Tx
m
′′′′(xi)T

y
n (yj)+2Tx

m
′′(xi)T

y
n
′′
(yj)+Tx

m(xi)T
y
n
′′′′

(yj)
)

− f (xi,yj)

∣

∣

∣

∣

∣

on a uniform grid on [a,b]×[c,d] defined in Section 2.

We consider the following examples (with M = N) for which we present a graph of
logE versus N (see Fig. 5):

Example 4.1 f (x,y)= f8(x,y)=sin(x)sin(y) on [−1,1]×[−1,1].

Example 4.2 f (x,y)= f4(x,y)= exy on [−1,1]×[−1,1].

Example 4.3 f (x,y)= f9(x,y)=sinh(x+y) on [−0.5,1.5]×[0.5,2].

As in the case of second order problems, we observe that for all the examples con-
sidered, the Chebyshev approximation converges exponentially to the exact f as N in-
creases. As is those, however, we observed that, for large values of M and N, there is loss
of accuracy due to ill-conditioning of the coefficient matrices of the systems involved (see
Fig. 6). Additional numerical examples may be found in [20].

5 Concluding remarks

In this work, we use Chebyshev polynomial expansions to estimate approximations to
particular solutions of second and fourth order elliptic partial differential equations in
two dimensions. By using elementary properties of Chebyshev polynomials, it is shown
that the methods used, lead, in both cases, to the solution of four block systems. Each
of these systems can be solved independently, by solving a sequence of upper triangu-
lar subsystems. The cost of solving each of the four block systems has multiplicative
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Figure 5: Maximum error versus N for Examples 4.1-4.3 in biharmonic case.
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Figure 6: Condition number κ∞ versus N for matrices CE and CO on (-1,1) in biharmonic case.

complexity O(N 3) and thus the cost of the algorithm for calculating the Chebyshev ap-
proximation is also O(N 3) where N is the highest degree of the Chebyshev polynomials
used in each direction. The methods are applied to several numerical examples and it
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is shown that the errors for both types of equations converge exponentially to zero with
N . In the case of the Poisson equation, however, it was observed that for large values
of N the accuracy of the method suffered due to the ill-conditioning of the matrices in-
volved. In the case of the biharmonic equation, this problem was slightly exacerbated
and the conditioning of the matrices became poorer for smaller values of N . This is an
interesting phenomenon and requires further investigation. The algorithms developed
in this work maybe used in the MPS for the solution of inhomogeneous boundary value
problems with boundary methods, such as the MFS. The application of this technique to
three-dimensional problems is currently under investigation.
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