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Abstract. A numerical algorithm for effective incorporation of parametric uncertainty
into mathematical models is presented. The uncertain parameters are modeled as ran-
dom variables, and the governing equations are treated as stochastic. The solutions,
or quantities of interests, are expressed as convergent series of orthogonal polynomial
expansions in terms of the input random parameters. A high-order stochastic collo-
cation method is employed to solve the solution statistics, and more importantly, to
reconstruct the polynomial expansion. While retaining the high accuracy by polyno-
mial expansion, the resulting “pseudo-spectral” type algorithm is straightforward to
implement as it requires only repetitive deterministic simulations. An estimate on er-
ror bounded is presented, along with numerical examples for problems with relatively
complicated forms of governing equations.
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Key words: Collocation methods, pseudo-spectral methods, stochastic inputs, random differen-
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1 Introduction

The focus of this paper is on efficient numerical methods for differential/algebraic equa-
tions with random/uncertain parameters. In the past years, this subject has received
increasing amount of attention in a variety of engineering disciplines, especially those
involving complex physics. In such complex fields, mathematical models can only serve
as simplified and reduced representations of true physics, and there exists a signifi-
cant amount of uncertainty associated with parameter values, boundary/initial condi-
tions, constitutive laws, etc. For example, biochemical reactions are often modeled by
(large) systems of ordinary differential equations (ODEs) or differential-algebraic equa-
tions (DAEs). Although these models have been successful in revealing quantitative con-
nections between reaction details and observables, their usage is often constrained by the
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difficulty of assigning numerical values to kinetic parameters (e.g., rate constants and
binding constants) in the governing equations. Common approach is to conduct param-
eter estimation, in order to bring numerical solutions in reasonable agreement with a set
of experimental observations. Because of the complexity of most biochemical processes
and the diversity of the type of data to be fitted, the estimated model parameters usu-
ally contain significant uncertainties, rather than having precise numerical values. Tradi-
tional approach assigns “most likely” values to the parameters from their corresponding
ranges, and such an approach could be inadequate as the complex biochemical processes
may depend sensitively to some of the parameters. Also, very often observables from
experiment measurements are not repeated enough times for reliable statistical estimates
to be made on the “likelihood” of the parameter values. (General discussions on math-
ematical biology can be found in [6, 21], etc.) Therefore, mathematical and numerical
techniques are needed to develop effective means of quantifying parameter uncertainty
and its effect in complex systems.

In this paper we discuss an efficient method for parametric uncertainty analysis in
(ordinary) differential-algebraic equations (DAEs). The uncertain parameters associated
with the models are modeled as random variables. Subsequently, the resulting DAEs
become stochastic equations. We remark that this type of stochastic systems are different
from the classical “stochastic differential equations” (SDE) where the random inputs are
some idealized processes such as Wiener processes, Poisson processes, etc., and tools
such as stochastic calculus have been developed extensively and are still under active
research. (See, for example, [9, 14, 15, 20].) In the problems considered in this paper, the
random inputs are parameters modeled as random variables.

One of the most commonly used methods is Monte Carlo sampling (MCS), or one
of its variants. Although MCS is straightforward to apply as it only requires repetitive
executions of deterministic simulations, typically a large number of such executions are
needed as the solution statistics converge relatively slowly, e.g., the mean value typi-
cally converges as 1/

√
K where K is the number of realizations [7]. The resulting sta-

tistical errors due to insufficient number of realizations can undermine the conclusions
of uncertainty analysis such as the level of confidence in model selection and parameter
estimates, etc. The need for large number of realizations for accurate results can incur
excessive computational burden, especially for systems that are already computationally
intensive in their deterministic settings.

A recently developed method, generalized polynomial chaos (gPC) [28, 30], belong
to the class of non-sampling methods. With gPC, stochastic quantities are expressed as
orthogonal polynomials of the input random parameters, and different types of orthog-
onal polynomials can be chosen to achieve better convergence. gPC expansion is es-
sentially a spectral representation in random space, and exhibits fast convergence when
the expanded function depends smoothly on the random parameters. Exponentially fast
convergence can be achieved under certain circumstances. (See [2,28] for detailed discus-
sions.)

When applied to differential equations with random inputs, the quantities to be solved
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are the expansion coefficients of the gPC expansion. A typical approach is to conduct a
Galerkin projection to minimize the error of the finite-order gPC expansion, and the re-
sulting set of equations for the expansion coefficients are deterministic and can be solved
via conventional numerical techniques. This has been done in various applications and
proved to be very effective [2, 8, 11, 16, 27–29]. However, stochastic Galerkin (SG) pro-
cedure can be challenging when the governing stochastic equations take complicated
forms. In this case, the derivation of explicit equations for the gPC coefficients can be very
difficult, if not impossible. To this end, high-order stochastic collocation (SC) approach
is investigated in [26]. SC combines the advantages of both Monte Carlo sampling and
gPC-Galerkin method. The implementation of a SC algorithm is similar to that of MCS,
i.e., only repetitive realizations of a deterministic solver is required; and by choosing a
set of nodes–“sampling points”–based on the theory of multivariate polynomial interpo-
lations, it retains the high accuracy and fast convergence of gPC expansion, similar to
SG.

It should be mentioned here that collocational approach to random equations is not
a new idea. Also termed “deterministic sampling method”, it has been used in various
engineering applications for a long time. (See, for example, [17, 24].) These earlier work
typically use tensor products of one-dimensional quadrature points as “sampling pints”
and are not proper for problems with large number of random variables because of the
exponential growth of the number of points. (Also see a discussion in Section 4.1.) While
using tensor product construction, the recent work of [1] conducts the first rigorous error
analysis for stochastic elliptic equations. On the other hand, the work of [26] is a first
systematical attempt to avoid using tensor product constructions. Instead it employs the
so-called “sparse grid” [23] to tackle problems with large number of random variables
more efficiently.

This paper extends the work of [26]. Here we apply stochastic collocation method
to DAEs with complicated forms of governing equations–problems that are difficult to
solve via the gPC-SG approach. We will also address the issue of recovering the gPC
polynomial expansions from SC solutions, which was not discussed in [26]. In this sense,
the method resembles more to the “pseudo spectral” approach of classical deterministic
spectral methods [4, 12]. An estimate of error bounded is also provided.

2 Problem setup

In this section, we present the mathematical framework of stochastic collocation methods.

2.1 Governing equations

Let us consider a system of (ordinary) differential algebraic equations (DAEs), for real
numbers T > t0, {

F(t,y,y′,··· ,y(l),p)=0, t∈ (t0,T],
g(t0,y(t0),··· ,y(l)(t0),p)=0,

(2.1)
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where function g sets appropriate initial conditions at t = t0. Here y = (y1,··· ,yJ)∈R
J ,

J ≥ 1, are the state variables, and p = (p1,··· ,pN)∈R
N , N ≥ 1, are parameters of interests.

We assume that these parameters (p1,··· ,pN) are mutually independent of each other. (In
another word, there may exist additional parameters that either are functions of p, or are
not of our interests in studying.) Let us also define a set of quantities

z=(z1,··· ,zK)∈R
K =G(y) (2.2)

as observables, or, quantities of interests. It is the dependency of these observables, z,
upon the input parameters p that we are interested in. That is, we wish to establish
(numerically) the functions z= z(p), and quantify the effects of input uncertainty of p on
output z.

2.2 Probabilistic framework

In what follows, we will adopt a probabilistic framework and model p = (p1,··· ,pN) as
a N-variate random vector with independent components in a properly defined prob-
ability space (Ω,A,P), whose event space is Ω and is equipped with σ-algebra A and
probability measure P .

Let ρi : Γi → R
+ be the probability density functions (PDF) of the random variable

pi(ω), ω∈Ω, and its image Γi ≡ pi(Ω)∈R be intervals in R for i=1,··· ,N. Then

ρ(p)=
N

∏
i=1

ρi(pi), ∀p∈Γ (2.3)

is the joint probability density of the random vector p=(p1,··· ,pN) with the support

Γ≡
N

∏
i=1

Γi⊂R
N . (2.4)

This allows us to conduct numerical formulations in the finite dimensional (N-dimension-
al) random space Γ, in replacement of the infinite dimensional space Ω. And the govern-
ing equation (2.1) should be valid for all p∈ Γ. Naturally, the solution for (2.1) and the
observables (2.2) are functions of the same set of random variables p, i.e.,

y=y(t;p), z=G(y)= z(p). (2.5)

Finally, we also assume that the random parameters have identical probability density
functions ρ1 = ···=ρN .†

†This assumption is made for notational convenience and without loss of generality, because random vari-
ables with different PDFs can always be transformed, at least conceptually, to a same PDF via their cumu-
lative density functions (CDF). In this case, one may consider the form of governing equation (2.1) already
incorporates such a transformation.
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3 Generalized polynomial chaos

For notational convenience, the presentation in this section is on scalar equation, i.e., J=1
in (2.1), and scalar observable, i.e. K = 1 in (2.2). For system of equations (J > 1) and/or
multiple observables (K >1), the procedure is simply repeated for each component.

3.1 gPC expansion

In the finite dimensional random space Γ defined in (2.4), the gPC expansion seeks to
approximate a random function via orthogonal polynomials of random variables. Let
us define one-dimensional orthogonal polynomial spaces with respect to the measure
ρi(pi)dy in Γi,

W i,di ≡
{

v : Γi →R : v∈span{φm(pi)}di
m=0

}
, i=1,··· ,N, (3.1)

where {φm(pi)} are a set of orthogonal polynomials satisfying the orthogonality condi-
tions ∫

Γi

ρi(pi)φm(pi)φn(pi)dpi =h2
mδmn, (3.2)

with normalization factors h2
m =

∫
Γi

ρiφ
2
mdpi. With proper scaling, one can always nor-

malize the bases such that h2
m ≡ 1,∀m, and this shall be adopted throughout this paper.

The type of the orthogonal polynomials {φm(pi)} in (3.4) is determined by ρi(pi), the
probability density function, for i=1,··· ,N. For example, uniform distributions are asso-
ciated with Legendre polynomials, and Gaussian distributions are associated with Her-
mite polynomials. (See [27, 28] for a detailed list of correspondences.)

The corresponding N-variate orthogonal polynomial space in Γ is defined as

WP
N ≡

⊗

|d|≤P

W i,di , (3.3)

where the tensor product is over all possible combinations of the multi-index d=(d1,··· ,
dN)∈N

N
0 satisfying |d|= ∑

N
i=1di ≤ P. Thus, WP

N is the space of N-variate orthonormal
polynomials of total degree at most P, and its basis functions satisfy

∫

Γ
Φm(p)Φm(p)ρ(p)dp≡E[Φm(p)Φn(p)]=δmn, (3.4)

for all 1≤m,n≤dim(WP
N)=(N+P

N ), where δmn is the Kronecker delta function, and E is the
expectation operator. Such spaces are often employed in the (generalized) polynomial
chaos expansions [11, 27, 29].

The finite order, Pth-order, gPC approximation of the observable z in (2.5) is

P
P
Nz≡ zP

N(p)=
M

∑
m=1

ẑmΦm(p), M=

(
N+P

N

)
, (3.5)
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where P
P
N is a projection operator of Γ onto WP

N , and

ẑm =E[z(p)Φm(p)]=
∫

Γ
z(p)Φm(p)ρ(p)dp, m=1,··· ,M. (3.6)

Let

ǫG ≡‖z−P
P
Nz‖L2

ρ(Γ) =
(

E[(z(p)−zP
N (p))2]

)1/2
(3.7)

be the mean square error of the finite-term gPC approximation, its convergence depends
on the regularity of z(p) and can be very fast when z(p) is sufficiently smooth. Error
analysis in tensor product polynomial space (not (3.3)) can be found in [1, 2].

3.2 Stochastic Galerkin

A typical approach to obtain numerical solution in the form of (3.5) is to employ a stochas-
tic Galerkin approach. In this method, we seek an approximate solution

yP
N(t;p)=

M

∑
m=1

ŷm(t)Φm(p) (3.8)

satisfying (2.1) in the following weak form, for all f (p)∈WP
N ,





∫

Γ
ρ(p)F(t,yP

N ,(yP
N)′,··· ,(yP

N)(l),p) f (p)dp=0, t∈ (t0,T],
∫

Γ
ρ(p)g(t0,yP

N(t0),··· ,(yP
N)(l)(t0),p) f (p)dp=0.

(3.9)

The resulting equations are a set of (coupled) deterministic DAEs for {ŷ}, and standard
numerical techniques can be applied. Upon solving (3.9), the gPC approximation of the
observable can be obtained as

uP
N(p)=

M

∑
m=1

ûmΦm(p), ûm =
∫

Γ
G(yP

N)Φm(p)ρ(p)dp. (3.10)

Such a Galerkin procedure has been used extensively in the literature [2, 8, 11, 16, 27–29].
However, when (2.1) takes a complicated form, the derivation of Galerkin projection in
(3.9), and subsequently the gPC approximation of the observable in (3.10), can become
highly non-trivial, if not impossible. This is especially true when z = G(y) does not
have an explicit formulation, e.g., z is defined as the period of a limit cycle solution of
y, etc. These are cases considered in this paper, and we employ the stochastic collocation
method to circumvent the difficulty. Stochastic Galerkin methods will not be discussed.
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4 Stochastic collocation algorithm

In stochastic collocational approach, we again seek an approximate solution to the ob-
servable z in the form of gPC expansion, similar to (3.5),

I
P
Nz≡vP

N(t,p)=
M

∑
m=1

v̂m(t)Φm(p), M=

(
N+P

N

)
, (4.1)

where I is another operator of Γ onto WP
N , and

v̂m(t)=
Q

∑
j=1

z(t,pj)Φm(pj)αj, m=1,··· ,M. (4.2)

Here {pj,αj}Q
j=1 are a set of nodes and weights, where pj =(p

j
1,··· ,pj

N) and αj denote the

j-th node and its associated weights, respectively, in the N-variate space Γ such that

UQ[ f ]≡
Q

∑
j=1

f (pj)αj (4.3)

is an approximation of integral

I [ f ]≡
∫

Γ
f (p)ρ(p)dp=E[ f (p)] (4.4)

for sufficiently smooth functions f (p), i.e.,

UQ[ f ]→I [ f ], Q→∞.

With such a choice of the nodal set, (4.2) approximates (3.6) such that

|v̂m− ẑm|=
∣∣∣(UQ−I)[z(p)Φm(p)]

∣∣∣ , m=1,··· ,M, (4.5)

approaches zero as Q → ∞. Subsequently, I
P
Nu of (4.1) is an approximation of the true

gPC expansion P
P
Nu of (3.5), and its mean square error is defined as

ǫQ ≡
∥∥∥I

P
Nz−P

P
Nz

∥∥∥
L2

ρ(Γ)
=

(
E

[
(I

P
N−P

P
N)z

]2
)1/2

. (4.6)

This is what is commonly termed as “aliasing error” in classical deterministic spectral
methods [4, 12].
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4.1 Choices of nodal set

The key issue in SC method is the choice of the nodal set so that the integration rule (4.3)
is accurate and efficient, especially in multivariate space Γ with N >1. Many choices are
available in one-dimensional space, i.e., N = 1. For every directions i = 1,··· ,N, we can
construct a good one-dimensional integration rule

U qi

i [ f ]=
qi

∑
j=1

f (p
j
i)·α

j
i , (4.7)

based on nodal sets
Θ1

i =(p1
i ,··· ,pqi

i )⊂Γi. (4.8)

For sufficiently smooth integrand, one of the optimal choices is quadrature rules based
on orthogonal polynomials {φm(pi)} in (3.2).

4.1.1 Tensor products

In multivariate case N >1, the tensor product formulas are

UQ[ f ]≡
(
U q1

1 ⊗···⊗U qN

N

)
[ f ]=

q1

∑
j1=1

···
qN

∑
jN=1

f (p
j1
1 ,··· ,pjN

N )·(α
j1
1 ⊗···⊗α

jN

N ). (4.9)

Clearly, the above product formula needs Q = ∏
N
i=1qi nodal points. If we choose the

same number of points in each dimension, i.e., q1 = ··· = qN ≡ q, the total number of
points is Q = qN. This number grows quickly in high dimensions N ≫ 1 – for a modest
approximation with three points (q=3) in each dimension, Q=3N ≫1 for N≫1 (e.g., for
N=10, 310∼6×104). Because of the rapidly growing number of nodes in high dimensions,
it is proper to consider tensor product approach only for lower dimensions, e.g., N≤5.

4.1.2 Sparse grids

Sparse grids were first proposed in [23], and it was found to be particularly useful in
solving random differential equations by stochastic collocation approach in high dimen-
sional random spaces [26]. The Smolyak algorithm is a linear combination of product
formulas, and the linear combination is chosen in such a way that an integration prop-
erty for N =1 is preserved for N >1 as much as possible. Only products with a relatively
small number of points are used and the resulting nodal set has significantly less number
of nodes compared to the tensor product rule (4.9). Much research has been devoted to
the Smolyak algorithm since its introduction, see, e.g., [3, 18, 19], etc.

Starting with the one-dimensional integration formula (4.7), the Smolyak algorithm
is given by (see [25])

UQ( f )≡A(J,N)= ∑
J−N+1≤|i|≤J

(−1)J−|i| ·
(

N−1

J−|i|

)
·(Ui1 ⊗···⊗UiN

), (4.10)
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Figure 1: Two-dimensional (N=2) nodes based on the extrema of Chebyshev polynomials (4.12). Left: Sparse
grid H(N+k,N) from Smolyak algorithm, k=5. Total number of points is 145. Right: Tensor product algorithm
(4.9) from the same one-dimensional nodes. Total number of nodes is 1,089.

where i=(i1,··· ,iN)∈N
N. To compute A(J,N), we only need to evaluate function on the

“sparse grid”

ΘN ≡H(J,N)=
⋃

J−N+1≤|i|≤J

(Θ1
i1
×···×Θ1

iN
). (4.11)

In this paper, we use extensively the Smolyak formulas based on one-dimensional poly-
nomial integration at the extrema of the Chebyshev polynomials. (Other Gauss quadra-
ture points, can be considered as well.) For any choice of qi > 1, these nodes are given
by

p
j
i =−cos

π(j−1)

qi−1
, j=1··· ,qi. (4.12)

In addition, we define p1
i =0 if qi =1 and choose q1 =1 and qi =2i−1+1 for i>1. By doing

so, the one-dimensional nodal sets Θ1
i are nested, and subsequently H(J,N)⊂H(J+1,N).

It can be shown that, if we set J = N+P, then A(N+P,N) is exact for integration of
polynomials in a space larger than WP

N ( [18]), and the total number of nodes for N ≫ 1
satisfies

Q≡dim(A(N+P,N))∼ 2P

P!
NP, P fixed, N≫1. (4.13)

The dependence on dimension N is much weaker than tensor product rule. Since dim(WP
N)

= (N+P
N )∼ NP/P! for N ≫ 1, Q∼ 2Pdim(WP

N) for N ≫ 1 and the factor is independent of
dimension N. Hereafter, we will refer k in A(N+k,N) as the “level” of the sparse grid
integration. An example of two-dimensional (N=2) nodes by the sparse grid H(N+k,N)
with k =5 is shown in Fig. 1, along with the tensor product grid based on the same one-
dimensional nodes. We observe that the sparse grid has significantly less number of
nodes.



302 D. Xiu / Commun. Comput. Phys., 2 (2007), pp. 293-309

For details on construction and properties of sparse grid, see [3, 18, 19] and the refer-
ence therein.

4.1.3 Other choices

Other choices of nodal set can be sought for (4.3). For example, one can employ Monte
Carlo method, where the nodes are randomly generated and αj ≡1/Q, j=1,··· ,Q. How-
ever, the (relatively) larger statistical errors due to the (relatively) slower convergence
of Monte Carlo method may incur large aliasing errors (4.6) which can negate the fast
convergence property offered by gPC expansion. Therefore, we will not consider Monte
Carlo integration in this paper. We remark that multivariate integration remains an ac-
tive research field and there are many other choices of nodal sets. (See [5, 13] for an re-
view.) Here we only focus on the sparse grid construction because, by using an accurate
one-dimensional quadrature rule, it offers systematical accuracy refinement to arbitrary
polynomial orders in multivariate spaces.

4.2 Algorithm summary

The stochastic collocation algorithm for the DAE system (2.1) and (2.2) consists of the
following steps:

1. Choose a collocation nodal set {pj,αj}Q
j=1 in space Γ;

2. for each j=1,··· ,Q, solve problem (2.1) with a fixed parameter set pj =(p
j
1,··· ,pj

N),
via an accurate numerical scheme, to obtain its solution ỹ(pj), and evaluate the
observables z̃(pj)=G(ỹ(pj)); (Note this is a deterministic problem.)

3. evaluate the approximate gPC expansion coefficients

ŵm =UQ [z̃(p)Φm(p)]=
Q

∑
j=1

z̃(pj)φm(pj)αj, m=1,··· ,M; (4.14)

4. and finally, construct the N-variate, P-th order gPC approximation

wP
N =

M

∑
m=1

ŵmΦm(p), M=

(
N+P

N

)
. (4.15)

We remark that the major computational efforts will likely be on the repetitive and de-
terministic solutions of (2.1)–(2.2) for each fixed parameters pj, j = 1,··· ,Q. The choice of
nodal set is a pre-processing step, and the evaluation of gPC coefficients (4.14) and re-
construction of the approximate gPC expression (4.15) are post-processing steps. It also
should be noted that an accurate estimation of the gPC coefficients via an integration rule
(4.14) is critical in obtained an accurate gPC representation. Therefore, sufficiently large
number of points (Q) should be used for a given integration rule to ensure the accuracy
of (4.14).
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4.3 Error separation

Let us assume that an accurate and stable numerical scheme is employed for the deter-
ministic problem (2.1)–(2.2) with fixed parameter pj and the error of its numerical solu-
tion z̃(pj) is

ǫ∆ ≡max
j

ǫ
j
∆
=max

j

∣∣∣z(pj)− z̃(pj)
∣∣∣, j=1,··· ,Q, (4.16)

where ∆ denotes the set of discretizational parameters, e.g., time steps, etc.
Let us also define

γQ
m =UQ[Φm(p)]=

{
1 m=1,
UQ[Φm(p)] m 6=1.

(4.17)

The last term follows the fact that Φ1(p)≡1 and all integration rule should satisfy U [1]=

I [1]=1. Also, γQ
m ≈I [Φm(p)]=0 for all m 6=1. And if an integration rule is chosen to be

exact for all polynomials in WP
N , γQ

m =0 for all m 6=1.

Proposition 4.1 (Error superposition). Let ǫ∆, defined in (4.16), be the error induced by
solving the deterministic problem (2.1)–(2.2); ǫQ be the aliasing error of approximating

the gPC expansions via a given integration rule, as defined in (4.6); and γQ
m be defined

in (4.17), then the mean-square error of N-variate, P-th order gPC stochastic collocation
solution wP

N, defined in (4.15), satisfies

ǫ=

(∫

Γ

[
z(p)−wP

N(p)
]2

ρ(p)dp

)1/2

≤
[
ǫ2

G+ǫ2
Q+Mǫ2

∆C2
Q

]1/2
, (4.18)

where CQ=maxm |γQ
m |, and ǫG is the mean square error of finite-term gPC projection (3.7).

Proof. Observe that

ǫ2≡
∫

Γ

[
z(p)−wP

N(p)
]2

ρ(p)dp

≤
∫

Γ

[
z−P

P
Nz

]2
ρ(p)dp+

∫

Γ

[
P

P
Nz−I

P
Nz

]2
ρ(p)dp+

∫

Γ

[
I

P
Nz−wP

N

]2
ρ(p)dp

=ǫ2
G +ǫ2

Q+
∫

Γ

[
vP

N(p)−wP
N(p)

]2
ρ(p)dp.

The last term is

∫

Γ

[
vP

N(p)−wP
N(p)

]2
ρ(p)dp=

∫

Γ

[
M

∑
m=1

(v̂m−ŵm)Φm(p)

]2

ρ(p)dp

=
M

∑
m=1

(v̂m−ŵm)2 =
M

∑
m=1

[
Q

∑
j=1

(z(pj)− z̃(pj))Φm(pj)αj

]2

≤ǫ2
∆ M ·max

m

[
Q

∑
j=1

Φm(pj)αj

]2

=ǫ2
∆ MC2

Q,
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where the orthogonality of the basis functions (3.4) have been used. This completes the
proof.

We remark that with a proper integration rule γQ
m ≈I [Φm(p)]=δm1,∀m, if not exactly,

and CQ = 1. The result demonstrates that the overall error of the SC algorithm can be
roughly characterized into three contributions: ǫG, the projection error due to the finite-
term gPC expansion (3.7); ǫQ, the aliasing error (4.6) by the Q-point integration rule (4.3);
and ǫ∆, the error introduced by solving (2.1)–(2.2) with fixed parameters by a numerical
scheme with discretizational parameters ∆. All of these errors can be controlled in prac-
tice, and can be refined by increasing the order of gPC expansion, integration rule, and
numerical scheme, respectively, provided that the observable z(p) is sufficiently smooth.

5 Numerical examples

In this section we present several numerical examples to demonstrate the efficiency and
accuracy of the SC algorithm. In all results, numerical errors of the deterministic solvers
for (2.1)-(2.2) are negligible. The focus is on the flexibility of the algorithm to problems
with complex form.

5.1 A model problem

Here we set the observables with the following explicit definition

z1 = p1 ·ep2 /(1+p2
3),

z2 =cos(p1)ln

(
1

2
+p2

2+p2
3

)
,

(5.1)

where p =(p1,p2,p3) are three independent Gaussian random variables with zero mean
and standard deviation σ = 0.1. This can be considered as an exact solution to certain
differential equations whose dependence in physical space/time has been suppressed.
Therefore, the deterministic numerical error ǫ∆ (4.16) is eliminated. Corresponding the
Gaussian distribution, the gPC basis functions are Hermite polynomials. The random
space is three-dimensional (N = 3), and we adopt tensor product of one-dimensional
Hermite quadrature as integration rule. Each dimension has the same number of node,
q=q1 =q2 =q3, and the total number of nodes is Q=q3.

The mean square errors of z1 and z2 are shown in Fig. 2. The numbers of integra-
tion node are q = 2, q = 4, and q = 6. It can be seen that as the order of gPC expansion
(P) is increased, the errors converge only when sufficient number integration nodes are
employed–near exponential convergence offered by gPC is achieved only when aliasing
error is sufficiently small (with q = 6). Larger aliasing error cause the error to saturate
(q = 4), and it is particularly significant at higher gPC orders when a poor integration
resolution (q=2) is used.
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Figure 2: Mean-square error of model problem (5.1), with increasing order of gPC expansion and different
number of integration nodes in each dimension. Left: errors in z1; Right: errors in z2.

More numerical demonstration of the gPC convergence can be found in the gPC-
Galerkin literature [27–29].

5.2 Genetic toggle switch

Here we consider a model for a genetic toggle switch in Escherichia coli, which was con-
structed in [10]. It is composed of two repressors and two constitutive promoters, where
each promoter is inhibited by the repressor that is transcribed by the opposing promoter.
Details of experimental measurement can be found in [10], where the following dimen-
sionless model, derived from a biochemical rate equation formulation of gene expres-
sion [6, 21], was also proposed,

du

dt
=

α1

1+vβ
−u, (5.2)

dv

dt
=

α2

1+wγ
−v, (5.3)

w=
u

(1+[IPTG]/K)η . (5.4)

This is an ordinary differential-algebraic (DAE) system, with six parameters p=(α1,α2, β,
γ, η,K) and input function [IPTG]. The values of these parameters are highly uncertain,
and they are estimated as deterministic in [10]. Here we set the parameters as p=〈p〉(1+
σy) where the mean 〈p〉=(156.25,15.6,2.5,1,2.0015,2.9618×10−5), σ=0.1, and y is random
vector uniformly distributed in (−1,1)6 with independent components. Corresponding
the uniform distribution, the gPC basis are Legendre polynomials. The random space is
six-dimensional (N=6), and the sparse grids are employed as integration rule. Resolution
check is conducted, and it is found that second-order gPC (P = 2) expansion with third-
level sparse grids are sufficient. The solution curve of normalized v is shown in error
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Figure 3: Steady-state gene expression of toggle swith. Light (and red) error bars centered around circles are
numerical results; Dark (and blue) error bars around dots are experimental measurements. The re-production
of the experimental results from [10] is courtesy of Dr.Gardner.

bars with respect to varying IPTG input. We observe good agreement between numerical
error bars (light-colored bars around circles) and experimental error bars (dark-colored
bars around dots). The switch property is indicated by the sudden jump in the response
curve. At this location, the solution has a bi-modal distribution, indicated by the larger
numerical error bar. (The experimental result at this location is plotted as two smaller
bars corresponding to each modal.) We remark that the form of the governing equations
prevents direct application of gPC-Galerkin approach.

5.3 Cell signaling cascade

Here we consider a mathematical model for autocrine cell-signaling loop developed in
[22]. Let e1p, e2p, and e3p denote the dimensionless concentrations of the active form of
the enzymes. The model for dynamics of e1p, e2p, and e3p has the following form

de1p

dt
=

I(t)

1+G4e3p

Vmax,1(1−e1p)

Km,1+(1−e1p)
− Vmax,2e1p

Km,2+e1p
, (5.5)

de2p

dt
=

Vmax,3e1p(1−e2p)

Km,3+(1−e2p)
− Vmax,4e2p

Km,4+e2p
, (5.6)

de3p

dt
=

Vmax,5e2p(1−e3p)

Km,5+(1−e3p)
− Vmax,6e3p

Km,6+e3p
. (5.7)

For detailed biological background of the model, see [22]. In [22], the parameters are
chosen as Km,1−6 = 0.2,Vmax,1 = 0.5,Vmax,2 = 0.15,Vmax,3 = 0.15,Vmax,4 = 0.15,Vmax,5 = 0.25,
and Vmax,6 = 0.05, and the response curve of e3p with respect to the input signal I(t) is
examined at steady state.
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Figure 4: Steady input-out behavior computed for several values for gain of the negative feedback Left: deter-
ministic simulation. The four curves from top to bottom correspond to G4 =0,1,2, and 4, respectively. Right:
stochastic computation with 10% uncertainty in parameters Vmax,1− 6 Results of G4 =0 and G4 =4 are shown
in error bars, with the corresponding deterministic results in dotted lines.

Here we introduce 10% uncertainty in the parameters Vmax,1−6 to account for the data
variability, and model these parameter as, for i =1,··· ,6, Vmax,i = 〈Vmax,i〉(1+σpi), where
σ = 0.1, pi is a uniformly distributed random variable in (−1,1), and the mean values
〈Vmax,i〉 are specified as the same values above. Again, the gPC basis functions are Leg-
endre polynomials for uniform random variables. The random space is six-dimensional
(N =6), and the sparse grids are used.

The left of Fig. 4 is the result of deterministic simulations, with the four curves cor-
responds to G4 =0,1,2, and 4, from top to bottom, respectively. This is a reproduction of
Figure 4 in [22]. The steady input-output behavior with random parameters for G4 = 0
and G4 = 4 is plotted on the right of Fig. 4, in error bars to illustrate the uncertainty in
output induced by the uncertainty in parameters. (The corresponding base case deter-
ministic results are plotted in dashed lines.) It can be seen that although the difference
between the mean of the random output and the deterministic output is quite small, rel-
atively large output uncertainty (indicated by error bars) is obtained when the response
curve has larger slope.

For smaller values of G4, the stimulus-response curve takes the form of the Hill equa-
tion y = xnh /(x̄nh +xnh), where nh is the Hill coefficient and x̄ represent the value of x
where y=1/2. The Hill coefficient is often approximated by

nh =
log(81)

log(I90/I10)
, (5.8)

where I90 and I10 represent the input value that result in 90% and 10% of output activity,
respectively. Here we take nh as another observable and examine it for the response curve
of G4 = 0. It is shown that the mean of nh is 6.4682 and its standard deviation is 0.775.
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Furthermore, the approximate gPC expansion (4.15) of nh is constructed

nh = 〈nh〉+
6

∑
k=1

ŵk pk+high order terms, (5.9)

with
ŵ1 =−0.0352, ŵ2 =0.0362, ŵ3 =0.8976,
ŵ4 =−0.8981, ŵ5 =0.2918, ŵ6 =−0.2901.

Note that ŵk is the leading term in ∂nh/∂pk , for k = 1,··· ,6. Therefore, it is a measure of
output sensitivity with respect to the input parameters pk. The above result indicates that
the Hill coefficient is not sensitive to data uncertainty in parameters Vmax,1 and Vmax,2,
and is highly sensitive to Vmax,3 and Vmax,4. Note that the Hill coefficient (5.8) does not
have an explicit definition with respect to input parameters and it is difficult to obtain an
approximate gPC expansion of (5.9) via a Galerkin approach.

6 Summary

In this paper the high-order stochastic collocation (SC) method, first examined systemat-
ically in [1,26], is combined with the generalized polynomial chaos (gPC) expansion [28].
The resulting algorithm is a pseudo-spectral type approach, where the issue of recon-
structing the gPC expansion is addressed. The overall algorithm is straightforward to
implement, as it requires only repetitive deterministic solvers like Monte Carlo approach,
and with proper integration rule for polynomial reconstruction, it retains fast conver-
gence of gPC expansion. Several numerical examples are presented for differential-alge-
braic equations with complex form, where a gPC-Galerkin approach is difficult to apply.

It is shown that the error of SC-gPC approach can be decomposed into three parts: the
projection error of gPC expansion, the aliasing error of integration rule, and the numerical
error of deterministic solver. Several choices of integration points are discussed, and the
sparse grid construction appears to be a reasonable choice for problems with moderately
large number of random variables.
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