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Abstract. The membrane’s dynamics is very important for cells. A membrane in 2-
dimensional space can be seen as an incompressible closed curve in a plane or a cylin-
drical surface in 3-dimensional space. In this paper, we design a second-order accurate
numerical algorithm to simulate the shape transformation of the membrane. In the al-
gorithm, we use the tangent angles to present the curve and avoid the difficulties from
the constraint of curve’s incompressible condition. A lot of interesting phenomena are
obtained. Some of them are very like the life processes of cells, such as exocytosis
and endocytosis. Furthermore, we can see the relation between two dynamic models
clearly. At last, considering the influence of the inner incompressible fluids partially,
we add a constraint: the area circled by the membrane maintain invariable. The nu-
merical results show the dynamic motions of a curve remaining its local arc length and
inner area constant.
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1 Introduction

The membrane is probably the most important component in the cell. It surrounds all
living cells and their organelles to maintain the cell’s shape and regulate transport in and
out of cells or subcellular domains. It also plays major role in many vital actions of cells,
such as segmentation.

Recently, there has been a lot of experimental and analytic research on the configura-
tion and deformation of elastic bio-membranes. In nature, a membrane consists chiefly
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of lipids, proteins and carbohydrates. The structures and properties of membranes are
very complex. One common method to simplify the structural analysis is to consider the
membrane bilayers formed by certain amphiphilic molecules dissolved in water. In 1973,
Helfrich [2] recognized that this lipid bilayer has the structure of a smectic liquid crystal.
Based on the elastic theory of liquid crystals, he discovered the curvature elasticity model

EH =
∫

Γ
(a+b(H−c0)+cG)2 ds,

where a is the surface tension, b,c are the bending rigidities and c0 is the spontaneous
curvature which describes the asymmetry effect of the membrane or the environment.
A lot of work has been done in modeling the membrane using the theories for elas-
tic shells. Steigmann [5, 6] considered the fluid films with curvature elasticity without
viscous effects. Waxman [7–9] developed a kinetic model of the fluid dynamics on an
evolving surface. Cai and Lubensky [10] derived a system of hydrodynamical equations
for a fluid membrane and considered the renormalization of the compressibility and the
dissipative coefficients. Pozrikidis [11–16] developed Waxman’s model [9]. He consid-
ered the membrane as a compressible shell with bending resistance. Miao and his co-
partners [26–28] presented a general and systematic theory of non-equilibrium dynamics
of multi-component fluid membranes. Hu et al. [1] developed an elastic energy model
based on the Frank energy of the smectic liquid crystal by introducing the director field.
The energy of the lipid directors balances the tendency to point parallel with neighbors
and the normal vectors of the surface. If all the directors are constrained artificially on
the direction of normal vectors, the energy will be reduced to Helfrich’s curvature elastic
energy as shown above. When the elastic coefficient in the director model tends to infin-
ity, they obtained a reduced model. This reduced model is very like Waxman’s model [9],
but adds one term to the in-plane stresses, so that the model satisfy the second law of
thermodynamics.

During the past several decades, a lot of numerical simulations have been performed
so far. In 1976, Deuling and Helfrich [3] explained the characteristic bi-concave disk-like
shape of the resting red blood cell, and obtained a rich catalog of axis-symmetric vesicle
shapes with spontaneous curvature by the curvature elastic energy. In 1989, Svetina and
Zeks [17] combined the bending elasticity with the bilayer-coupling hypotheses which
leads to an additional constraint. They investigated part of the corresponding phase dia-
gram of the equilibrium states. In 1991, Seifert et al. [19] systematically studied axisym-
metric shapes which minimize the bending energy and determined the phase diagram
for both the spontaneous-curvature and the bilayer-coupling models. They found a new
branch of shapes, pear-shaped vesicles, and spheres connected by narrow necks. The
occurrence of these shapes is intimately related to the budding phenomenon. In 2002,
Capovilla [18] discussed the use of the stress tensor as a basis for perturbation theory and
derived the first integral of the shape equation for axisymmetric configurations by exam-
ining the forces which are balanced along the circles of constant latitude. In 2004, Gerald
and Michael [20] used continuum mechanics to model the red blood cell’s membrane
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and numerically simulated the shapes and the stomatocyte-discocyte-echinocyte shape
transformations. Du et al. [21, 22] used a variational energetic phase field model based
on Helfrich’s curvature elastic energy [2] to compute the equilibrium configurations of
a membrane. They can get many configurations, particularly discocyte and stomatocyte
types. In [24], using the similar method, they systematically analyzed the shape trans-
formations of the vesicles in the real physical 3-dimensional space and explored the non-
axisymmetric shapes and discovered new configurations. Furthermore, they considered
how to use the Euler number to detect topological change in the membrane deformation.

All the numerical methods can be sorted into two classes. One is to employ a mesh on
the membrane, which can be seen as an evolving interface, and track its motion, such as
the boundary integral methods, boundary element methods [38, 39]. This kind of meth-
ods can show the interface’s exact position and local dynamics in detail. Another class
of methods is to write a system of equations on the entire domain by representing the
tension of the interface as a body force over a narrow region which covers the inter-
face. A fixed grid can be employed in the Eulerian framework, such as the level-set
method [40–42], the front-tracking method [43,44], the phase field method [22–24]. These
methods can avoid the mesh entanglement which is a difficulty for the first kind of meth-
ods. But they cannot describe the local dynamic characterization of the interface in detail
exactly. Our method belongs to the first class. We employ a regular grid on the membrane
and disperse the equations of the director model. By the numerical computing, we can
keep tracking the motion of the membrane. This method can describe the membrane’s
position and dynamic properties exactly, particularly the directors on the membrane.

In this paper, we describe three contributions. First, we employ numerical methods to
simulate the dynamics of a moving membrane in 2-dimensional space using the director
model. The membrane in 2-dimensional space is a closed curve with a director field on
it, which also can be seen as a cylindrical surface in 3-dimensional space. We study its
dynamical processes effected by the spontaneous-curvature or osmotic pressure. We can
see that the exocytosis and endocytosis can be explained by local spontaneous curvature.

Another contribution of this paper is on the relation between the director model and
the reduced model. In [1], Hu et al. formally attained the reduced model by the limiting
case of the director model. In this paper, we can see it clearly from the numerical results.

Finally, we study the membrane’s motion in 2-dimensional space with a constraint:
the area circled by the curve remains constant. In fact, the membrane is immersed in
some incompressible fluids. Thus, its inner area is constrained by the fluids. Considering
the influence of the incompressible fluids practically, we add the area constraint to the
curve artificially in order to study the dynamics of a curve remaining its local arc length
and inner area invariable.

The rest of the paper is organized as follows. In Section 2, we introduce the director
model and the reduced model in detail and reduce them in 2-dimensional space. In
Section 3, we outline the numerical algorithms for simulating the director model. In
Section 4, we present the diagrams for the simulation results, discuss in detail the various
solution branches and study the relation between the director model and the reduced
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model. In Section 5, we consider the area-constrained situation and lay out the numerical
results. In Section 6, we make some concluding remarks.

2 Introduction to two dynamical models

2.1 The director model

In this section, we introduce the director model. In [1], Hu et al. assume the membrane
composed of rodlike molecules is a Cosserat surface with a director field on it. We use
Γ to express the surface. On Γ, they introduced Lagrangian coordinates uα(α =1,2), and
the position of the surface in Euclidean space is R(uα,t). The Frenet coordinate system of
the surface – the tangent vectors aα and the unit normal vector n are

aα =
∂R

∂uα
, (2.1)

n·aα =0, n·n=1. (2.2)

Then the metric tensor aαβ, the covariant alternating tensor εαβ, and the curvature tensor
bαβ can also be given. The unit director field is O. To describe the motion of the surface,
they also introduce the velocity of the surface

v(uα,t)=
∂R

∂t
, (2.3)

which has a decomposition

v=vαaα+v(n)n.

Here, the superscript α of vα means the decomposition of v along the tangent vector aα:

vα =v·aα,

and the superscript (n) of v(n) means the decomposition along the unit normal vector n:

v(n) =v·n.

The same applies to other vectors. The relationships among the physical quantities are
all described in detail in [1]. We do not repeat them here.

Basing on the Frank energy for liquid crystals, D.Hu etc. discovered the elastic energy
of the director field,

Eel =
k2

2
OαOα+

k1+ε1

2
aαβ(O,α+bα)·(O,β+bβ)

+
k1−ε1

2
εαβ((O,α+bα)×(O,β+bβ))·O, (2.4)

where k1,k2 and ε1 are positive elastic coefficient and k1 ≥ ε1; bα is the spontaneous
curvature. The spontaneous curvature is important for the shape of a membrane. In
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the 2-dimensional space, it must be vertical to the director O and independent of time.
The comma followed by a lowercase Greek subscript, such as O,α, denotes the covariant
derivative based on the metric tensor aαβ. By applying the principle of virtual work, the
torque and stress induced by the director field were determined. The dynamical equa-
tions of the director model are obtained by applying the conservation laws for the linear
and angular momentum. The following is the model equations in 3-dimensional space:

γ
∂v

∂t
= f+

(
Tαβaβ

)
,α
+k2

(
O(n)Oαn

)
,α

, (2.5)

γφO×
∂2O

∂t2
=(k1+ε1)aαβO×(O,α+bα),β+(k1−ε1)εαβO×

(
O×bα,β

)

−k2OαO×aα, (2.6)

vα
,α−2Hv(n) =0, (2.7)

where γ is the density of the molecules, φ is the length of the molecule, f is the extra
forces (which will be taken as the osmotic force fosmn in Section 3 or the force to keep
the area constant in Section 5.1), and H is the mean curvature. The last equation is the
incompressible condition of the surface which means any local area of the surface keeps
constant. For isotropic fluids, the surface stress tensor Tαβ is

Tαβ =−Πaαβ+ Jαβ+(k1+ε1)aαγaβδO,γ ·O,δ, (2.8)

Jαβ =CαβγδSγδ, (2.9)

Cαβγδ =(k0−ε0)aαβaγδ+ε0

(
aαγaβδ+aαδaβγ

)
. (2.10)

Without the extra force f, we have an energy estimation

∂

∂t

∫

Γ

(
γ

2
|v|2+

γφ

2

∣∣∣∣O×
∂O

∂t

∣∣∣∣
2

+Eel

)
dS=−2ε0

∫

Γ
SαβSαβ dS, (2.11)

where

Sαβ =
1

2
(vα,β+vβ,α)−v(n)bαβ

is the rate of strain.

2.2 The reduced model

The reduced model is obtained by k2 →+∞. While k2 gets larger and larger, in the elas-
tic energy Eel, the term 1

2 k2OαOα will be larger as well if the amplitudes of directors’
vibrations remain constant. To get the lowest energy, O1 must be smaller. It means the
directors can not wag too much away from the normal direction. The directors oscillate
with such a large frequency that the effect of the directors will be average determined
by their equilibrium positions. Thus there is no equation for directors any longer. The
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in-plane stress Tαβ and the transverse shear stress k2OαOα are all changed. Based on this
idea, they obtained the ultimate equations as k2 →+∞:

γ
∂v

∂t
= f+

(
Tαβaβ

)
,α

+(qαn),α , (2.12)

vα
,α−2Hv(n) =0, (2.13)

where qα is the ultimate transverse share stress,

qα = M
αβ
,β , (2.14)

Mαβ =Cαβγδ
(

Bγδ−bγδ

)
. (2.15)

Here, the tensor Bγδ is another expression of the spontaneous curvature

bγ = Bγδaδµaµ. (2.16)

The ultimate in-plane stress Tαβ is

Tαβ =−Πaαβ+ Jαβ+Mαµb
β
µ. (2.17)

In this model, there are only two variables left: R and Π. For this model, the energy
estimation is

∂

∂t

∫

Γ

(γ

2
|v|2+Eel

)
ds=−2ε0

∫

Γ
SαβSαβ ds, (2.18)

where Eel is the elastic energy

Eel =Cαβγδ
(

Bαβ−bαβ

)(
Bγδ−bγδ

)
. (2.19)

The director model and the reduced model all contain four parts: the elastic part, the
viscous part, the visco-elastic response and the effect of the local spontaneous curvature.
Many models before them always lacked something. For example, Waxman’s model
[9] missed an elastic in-plane stress term; Capovilla and Guven’s model [18] neglects
the viscous contributions; Lomholt and Miao’s model [28] considered the mechanics of
the membrane with bending energy, but not the dynamics. The director model and the
reduced model can describe a lot of dynamic properties of the membrane, which is our
motivation to simulate these two models numerically.

2.3 The equations in 2-dimensional space

A membrane in 2-dimensional space can be seen as an incompressible closed curve in
a plane or a cylindrical surface in 3-dimensional space. In nature, there is no real 1-
dimensional incompressible fluid. Thus, in fact, the 2-dimensional membrane is an in-
compressible elastic string with no viscosity. Derived from this description, the equations
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of the director model in the 2-dimensional space are

γ
∂v

∂t
=

∂(Ta)

∂s
+k2

∂(O(n)O1n)

∂s
+ fosmn, (2.20)

γφO×
∂2O

∂t2
=(k1+ε1)O×

∂

∂s

(
∂O

∂s
+b

)
−k2O1O×a, (2.21)

∂v1

∂s
−κv(n) =0, (2.22)

where s is the arc length parameter of the closed curve, κ =2H is the curvature, and the
in-plan stress is reduced to a scalar T. Since in the 2-dimensional space the covariant
alternating tensor εαβ vanishes, the right part of Eq. (2.21) and the elastic energy Eel all
have only two terms left. Here, we only consider the extra force f to be the osmotic force
fosmn which is along the normal vector.

The energy estimation is reduced to

∂

∂t

∫

Γ

(
γ

2
|v|2+

γφ

2

∣∣∣∣O×
∂O

∂t

∣∣∣∣
2

+Eel

)
dS=0,

where

Eel =
k2

2
O1O1+

k1+ε1

2
(

∂O

∂s
+b)·(

∂O

∂s
+b).

The initial conditions of the system of Eqs. (2.20)-(2.22) are

R(s,t)|t=0 =R0(s), O(s,t)|t=0 =O0(s),

v(s,t)|t=0 =v0(s),
∂O(s,t)

∂t

∣∣∣∣
t=0

=O0
t (s),

where the initial velocity v0(s) must satisfy the incompressibility condition (2.22). The
boundary condition is the periodic condition for the closed curve. This model is just like
a closed evolving elastic string in a plane.

Similarly, the equations of the reduced model in 2-dimensional space are

γ
∂v

∂t
=

∂(Ta)

∂s
+

∂(qn)

∂s
+ fosmn, (2.23)

∂v1

∂s
−κv(n) =0. (2.24)

The stresses T and q=ε(B−κ)s are all scalars. The reduced model is the same as Waxman’s
model in the elastic case [9]. The energy estimation is

∂

∂t

∫

Γ

(γ

2
|v|2+Eel

)
ds=0,

where Eel is the elastic energy
Eel = ε(κ−B)2.

It is the same as Helfrich’s curvature elasticity energy.
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2.4 The equations of tangent angles

Our primary goal is to solve the director model Eqs. (2.20)-(2.22) with initial and periodic
boundary conditions. Then the reduced model (2.23) and (2.24) can be solved using the
similar numerical methods. The director model is similar to a complicated motion-by-
curvature problem. A method of using the arc length frame of reference to remove the
stiffness from interfacial flows was introduced in [45–47]. In our problem, similarly, we
need to deal with the difficulties caused by the nonlinear terms of curvature and the
incompressible condition of the membrane. Thus we use the arc length frame of reference
as well. Since the incompressible condition of the membrane in 2-dimensional space
means the local arc length remains constant, the arc length coordinate will be always the
Lagrangian coordinate. The position of the curve can be expressed by the tangent angles,
the length of the curve and the position of curve’s center of gravity. Additionally, the
incompressible condition of the curve will be satisfied automatically by the unit tangent
vectors.

There is another advantage using the tangent angle. In the system of Eqs. (2.20)-(2.22)
curvature κ is a very important quantity. It is hard to approximate numerically with
higher order accuracy from R. But it is much easier to compute it with second-order
accuracy from the tangent angle.

Let s∈ [0,L] be the arc length coordinate, |a|=1. We can assume

a=(cosα(s,t),sinα(s,t))

and the outside normal vector is

n=(sinα(s,t),−cosα(s,t)),

where α is the angle between the curve’s tangent vector and the positive direction of
the x-axis. Similarly, we let the unit director O be expressed by another angle θ: O =
(cosθ(s,t),sinθ(s,t)). Its tangential and normal components are

O1 =cos(α−θ), O(n) =sin(α−θ).

The curvature κ =−∂α/∂s and the incompressible condition is satisfied naturally. By the
equalities

∂2v

∂t∂s
·n=

∂2a

∂t2
·n=−

∂2α

∂t2
,

∂2v

∂t∂s
·a=

∂2a

∂t2
·a=−

(
∂α

∂t

)2

,

Eq. (2.20) is reduced to two equations of α,

γαtt =2Tsαs+Tαss+
1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]
, (2.25)

−γ(αt)
2 =Tss−T(αs)

2+
1

2
k2 [2βsαs cosβ+αss sinβ]+ fosmαs, (2.26)
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where β = 2(α−θ) and the subscript t,s means the derivative of time and arc length pa-
rameter. Since the spontaneous curvature b is vertical to the director O, it can be replaced
by

b= l(s)(−sinθ,cosθ),

where l(s,t) is a scalar representing the length of b. Eq. (2.21) is rewritten as an equation
of θ as well

γφθtt =−k2cos(α−θ)sin(α−θ)+k(θss +ls), (2.27)

where k = k1+ε1. The variables in these three equations are α,θ,T. Eq. (2.26) can be
viewed as a constraint of α and T. If we know the angles α,θ and their velocities αt,θt, the
positions and velocities of curve and directors can be resolved by

∂R(s,t)

∂s
=a(s,t), O(s,t)=(cosθ(s,t),sinθ(s,t)), (2.28)

∂v(s,t)

∂s
=−αtn, O×

∂O

∂t
= θt, (2.29)

with the periodic boundary condition and the integral conditions

∫

Γ
v ds=

∫

Γ
v0 ds,

∂

∂t

∫

Γ
R ds=

∫

Γ
v ds=

∫

Γ
v0 ds.

These two integral equations tell us that the curve’s gravity center moves in a constant
velocity

∫
Γ

v0 ds. In the numerical simulations, we always let the initial velocity v0 satisfy∫
Γ

v0 ds=0 to fix the gravity center. The initial conditions are changed into

α(s,0)=α0(s), θ(s,0)= θ0(s),

αt(s,0)=α0
t (s), θt(s,0)= θ0

t (s).

The initial data of angles can be obtained by

(cosα0,sinα0)=
∂R0

∂s
, (cosθ0,sinθ0)=O0,

α0
t =−

∂v0

∂s
·n, θ0

t =O×O0
t .

If v≡0 and ∂O
∂t =0 in the director model without extra forces and spontaneous curvatures,

we get the equations

2Tsαs+Tαss+
1

2
k2

[
βsscosβ−(β2

s +α2
s )sinβ

]
=0, (2.30)

Tss−T(αs)
2+

1

2
k2 [2βsαs cosβ+αss sinβ]=0, (2.31)

−k2cos(α−θ)sin(α−θ)+kθss =0. (2.32)
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It is easy to solve α =2πs/L, and θ = α or θ = α+ π
2 . The solution θ = α is unstable. Thus

the steady state is a circle with director O parallel to the normal n.
The equations of the reduced model (2.23) and (2.24) can also be converted to angle

form,

γαtt =2Tsαs+Tαss−ε
[
(Bs+αss)ss−(Bs+αss)α2

s

]
,

−γ(αt)
2 =Tss−T(αs)

2+ε[(Bs+αss)αss+2(Bs+αss)sαs],

which are similar to the director model without the angle of directors θ.

3 Numerical method

We assume the length of the curve L to be 1 and take the division of the curve and time

0= s0 < s1 < ···< sN−1 < sN =1,

si = i∆s=
i

N
, i=0,1,··· ,N; tj = j∆t,

where ∆t is the time step size. Let α
j
i = α(si,tj), which is the same as other variables.

To assure higher accuracy of the discrete initial conditions, we introduce the time step
t−1 =−∆t and the corresponding physical quantities, such as

α−1
i =α(si,t−1).

Then we have the discrete initial conditions with the second-order accuracy

α0
i =α0(si),

α1
i −α−1

i

2∆t
=α0

t (si), (3.1)

θ0
i = θ0(si),

θ1
i −θ−1

i

2∆t
= θ0

t (si). (3.2)

Eqs. (2.25) and (2.27) look like wave equations for α, thus we use the central difference
formulas on time and space. Here we show only the discrete formula of time. The dis-
cretizations on space all use the central difference formula.

γ
α

j+1
i −2α

j
i +α

j−1
i

∆t2
=

[
2Tsαs+Tαss+

1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]]j

i

, (3.3)

γφ
θ

j+1
i −2θ

j
i +θ

j−1
i

∆t2
=[−k2 cos(α−θ)sin(α−θ)+k(θss +ls)]

j
i . (3.4)

Eq. (2.26) is a constraint for α and T, which means α and T must satisfy this equation on
each time step. Similarly, we can also use central difference formula.

−γ

(
α

j+1
i −α

j−1
i

2∆t

)2

=

[
Tss−T(αs)

2+
1

2
k2 [2βsαs cosβ+αss sinβ]+ fosmαs

]j

i

. (3.5)
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By letting j=0, Eqs. (3.3), (3.5) and (3.4) become

γ
α1

i −2α0
i +α−1

i

∆t2
=

[
2Tsαs+Tαss+

1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]]0

i

, (3.6)

−γ

(
α1

i −α−1
i

2∆t

)2

=

[
Tss−T(αs)

2+
1

2
k2 [2βsαs cosβ+αss sinβ]+ fosmαs

]0

i

, (3.7)

γφ
θ1

i −2θ0
i +θ−1

i

∆t2
=[−k2cos(α−θ)sin(α−θ)+k(θss +ls)]

0
i . (3.8)

Putting Eq. (3.1) into (3.7) gives a system of linear algebraic equation for T0
i . Then the

pressure T0
i can be solved. By the discrete initial conditions (3.1) and (3.2), the quantities

at time t−1 can be expressed by the quantities at time t0,t1

α−1
i =α1

i −2∆tα0
t (si), (3.9)

θ−1
i = θ1

i −2∆tθ0
t (si). (3.10)

From Eqs. (3.6) and (3.8), we can get two equations; one is for α1
i only, another is for θ1

i .
Thus we obtain T0

i ,α1
i ,α0

i ,θ1
i ,θ0

i .

Assuming we have the values of T
j−1
i ,α

j
i,α

j−1
i ,θ

j
i ,θ

j−1
i , then θ

j+1
i can be easily solved

by Eq. (3.5). Eqs. (3.3) and (3.5) depend upon α
j+1
i and T

j
i , but the second one is a non-

linear equation for α
j+1
i . We tried the nonlinear iteration method to solve this system of

equations, but it is found not convergent. Trying to linearize Eq. (3.5), we introduce the
”velocity” of the angle at the middle time tj+ 1

2
=(j+ 1

2)∆t as

(αt)
j+ 1

2
i =

α
j+1
i −α

j
i

∆t
.

Then Eqs. (3.3) and (3.5) can be expressed as

γ
(αt)

j+ 1
2

i −(αt)
j− 1

2
i

∆t
=

[
2Tsαs+Tαss+

1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]]j

i

, (3.11)

−γ


 (αt)

j+ 1
2

i +(αt)
j− 1

2
i

2




2

=[−k2 cos(α−θ)sin(α−θ)+k(θss +ls)]
j
i . (3.12)

Considering the nonlinear part of (αt)
j+ 1

2
i


 (αt)

j+ 1
2

i +(αt)
j− 1

2
i

2




2
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which is a second-order approximation of α2
t , we use a linear approximation instead of

(αt)
j+ 1

2
i (αt)

j− 1
2

i .

It has the same order of accuracy. Eq. (3.12) is changed into

−γ(αt)
j+ 1

2
i (αt)

j− 1
2

i =[−k2cos(α−θ)sin(α−θ)+k(θss +ls)]
j
i . (3.13)

Now, the system of Eqs. (3.11) and (3.13) is a closed linear system of variables (αt)
j+ 1

2
i and

T
j
i , which can be solved easily. Then by Eqs. (2.28) and (2.29), we can obtain R

j+1
i and

v
j+ 1

2
i using the Discrete Fourier Transform Method. There are three computing steps.

Step 1. Assuming the initial data: α0
i ,θ0

i ,(αt)0
i ,(θt)0

i are known, we can solve

α1
i ,θ1

i ,(αt)
1
2
i by Eqs. (3.6)-(3.10).

Step 2. Assuming α
j
i ,α

j−1
i ,(αt)

j− 1
2

i ,θ
j
i ,θ

j−1
i are known, we can solve θ

j+1
i by Eq. (3.4)

and (αt)
j+ 1

2
i by Eqs. (3.11) and (3.13). Then α

j+1
i can be resolved. Repeat this

step until the time T.

Step 3. By Eqs. (2.28) and (2.29), we obtain the curve R and the director field O.

For the reduced model, the equations of α are similar, and there is no equation for
the director field. Thus, we can use similar numerical discrete equations and algorithms,
without needing to solve the equation for θ.

4 Numerical results

We now present some numerical results, which illustrate the various vesicle structures in
the 2-dimensional space and the energy landscape. The results also demonstrate clearly
that the computing method can achieve the second order accuracy in both time and space.
If there is no special explanation, the following values for the parameters will be taken:
φ=0.001, µ=0.01, ε1=0.0001, k1=0.001, k2=0.002. All the numerical computing programs
run on a PC with Pentium(R) IV 3GHz CPU.

4.1 The free membrane

Firstly, we simulate the director model without the osmotic pressure and the spontaneous
curvature. As said above, the steady state in this case is just a circle with all directors par-
allel to the normal vectors. Since there is no energy dissipation in the 2-dimensional
space, the curve can not stop moving by itself. Fig. 1 shows the numerical results follow-
ing the initial state: a rest ellipse, for time T=0.00, T=0.45, T=0.90, T=1.80 respectively.
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T =0.00 T =0.45 T =0.90 T =1.80

Figure 1: A rest ellipse. The four graphs display the numerical results at the time T = 0.00, 0.45, 0.90, 1.80
respectively. Dotted curve shows the initial state; solid curve shows the current state; the dashes on the curve
are the directors.

In each subgraph, the initial state is displayed as a dotted curve and the current state of
the membrane is displayed as the solid curve, on which the dashes are the directors. The
graphs in Fig. 2 show the images for the total energy, kinetic energy and elastic energy
respectively. In the first image, we subtract 0.01104 from the total energy to study the os-
cillation. The total energy should be a conservation quantity, and in Fig. 2, the amplitude
of its range is about 10−6 order of magnitude which can be seen as numerical errors. The
graphs show the three kinds of energy all oscillating strongly. Because the length of the
director is very short, the directors wiggle fast, causing the numerical oscillation.
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Figure 2: Three energies oscillate strongly, because the directors are so short that they wiggle in a large frequency
fast. The total energy should be a conservation quantity. The first graph shows that the amplitude of the total
energy’s range is about 10−6, which are numerical errors.

Here, we use this numerical experiment to verify the algorithm’s second order accu-
racy in both time and space. We compute the equations with time steps ∆t=10−3, 1

2 10−3,
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Table 1: The algorithm’s second order accuracy.

∆t 0.001 0.0005 0.00025

J(∆t) 4.004 4.001 4.000

N 32 64 128

K(N) 3.579 3.863 3.972

1
210−3, 1

410−3, 1
810−3 and the number of discrete points N =26, 27, 28, 29, 210 from T =0 to

T =1. Denoting the quantity

J(∆t)=

∣∣∣∣R(N,∆t)−R(N, 1
2 ∆t)

∣∣∣∣
∣∣∣∣R(N, 1

2 ∆t)−R(N, 1
4 ∆t)

∣∣∣∣

with N =128, and

K(N)=
||R(N,∆t)−R(2N,∆t)||

||R(2N,∆t)−R(4N,∆t)||

with ∆t = 10−3, we obtain the following results (see Table 1). J(∆t) and K(N) approxi-
mately equal to 4.00. It means the numerical algorithm has second-order accuracy.

T =0.00 T =0.40 T =0.80 T =1.60

Figure 3: Rest circle with tilted directors. The four graphs show the numerical results at the time T=0.00, 0.40,
0.80, 1.60 respectively. At the beginning, there is a tilt angle π

4 between the director and the normal vector.
The directors pull the curve to rotate to make themselves return to the normal directions quickly (from T=0.0
to T =0.80). Then they wiggle to another side of the normal directions (T =1.60) and then move back.

We design a numerical experiment to study the effects of the director field. The initial
data is a rest circle and all the directors do not point parallel with the normal vectors.
The initial tilt angle between the director and the normal vector is π

4 . We take a large
length of the director: φ=1.0, to get a clearer phenomenon. The graphs in Fig. 3 display
the numerical results for T = 0.00, 0.40, 0.80, 1.60. We circle a point to show the rotation
of the circle clearer. Since the tilt director tends to return back to the normal direction,
the curve is pulled to rotate anticlockwise by the directors (T =0.40). While the directors
point parallel with the normal directions (T=0.80), the curve has the lowest elastic energy
but the largest kinetic energy. The directors go on wiggling to another side of the normal
directions (T =1.60), and then come back pulling the curve to rotate clockwise. In Fig. 4,
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Figure 4: The graphs show the total energy minus 0.08545, kinetic energy and elastic energy respectively. The
total energy should be a conservation quantity and the first graph shows that the amplitude of its range is about
10−7, which are numerical errors. These three energies have no strong oscillation which is very different from
the process of ellipse (Fig. 2), because the directors are much longer and wiggle in a slow frequency.

the energy does not oscillate strongly, which is different from Fig. 2, because the director
is so long that it wiggles in low frequency.

4.2 The effects of the osmotic pressure

Secondly, we simulate the director model with the osmotic pressure. In nature, the cell’s
volume must be remained in a range. The cell controls its volume by preserving the
concentration inside equaling the outside. If the concentrations inside and outside are
different, a pressure will push water to permeate through the membrane from the lower-
concentration side to the higher side. Based on this point of view, the osmotic pressure
Fosm is in direct proportion to the difference between inner and outer concentration, and
its direction points parallel with the normal vector

Fosm = fosmn= c0

(
1

V
−

1

V0

)
n,

where V and V0 are the current and balance areas respectively, c0 is a positive parameter.
The osmotic pressure contributes a volume energy to the total energy, and the energy
estimation is

∂

∂t

[∫

Γ

(
γ

2
|v|2+

γφ

2

∣∣∣∣O×
∂O

∂t

∣∣∣∣
2

+Eel

)
dS+c0

(
V

V0
−lnV

)]
=0.
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The membrane’s equilibrium shape minimize the elastic energy plus the volume energy.
But the volume term (V/V0−lnV) reaches minimum at V = V0, which is not a circle.
Thus the structure of the membrane has to balance the elastic energy and the volume
energy and the steady state is no longer a circle. Therefore, the osmotic pressure can be
considered as constraint of the membrane’s inner area, not to leave the area invariable,
but to lead the area to the anticipated value. There are some more interesting phenomena.

If the initial state is a rest circle, the osmotic pressure is isotropic at the beginning. But
with the accumulation of numerical errors, the osmotic pressure can produce anisotropic
effect to make the circle asymmetric. The membrane moves slowly to be concave in two
opposite directions and convex in two vertical directions, which looks like a biconcave
cell. To accelerate this process, we add a two-periodic initial velocity to the initial condi-
tions:

v1 =−
1

4
sin(4πs), v(n) =

1

4
cos(4πs), s∈ [0,1]. (4.1)

The dynamic process is similar with the rest circle initial state. The graphs in Fig. 5 show
the numerical results of a circle with two-periodic initial velocity at time T = 0.0, 0.50,
1.50, 2.60, 3.00, 3.50. While the curve reaches the minimum volume state (T=1.50), it will
moves back to a biconcave shape in the vertical direction (T =3.00, 3.50).

T =0.00 T =0.50 T =1.50

T =2.60 T =3.00 T =3.30

Figure 5: Osmotic pressure: the initial state is a circle with the two-periodic initial velocity (Eq. (4.1)). The
first image is the initial circle. By the two periodic velocity, two opposite parts will concave (from T =0.00 to
T =1.50). Since there is no dissipation, the curve will move back (T =2.60) and then concave in another two
directions (T =3.00, 3.30).

If we take three-periodic initial velocity

v1 =−
1

4
sin(6πs), v(n) =

3

4
cos(6πs), s∈ [0,1], (4.2)
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the circle is concave in three directions and convex in other three opposite directions (see
Fig. 6). The curve looks like a triconcave cell (three concave parts).

T =0.00 T =1.00 T =1.30

T =2.00 T =2.50 T =2.70

Figure 6: Osmotic pressure: the initial state is a circle with three-periodic initial velocity (Eq. (4.2)). The first
graph is the initial circle. By the three periodic velocity, three parts will concave (from T = 0.00 to T = 2.00).
Since there is no dissipation, the curve will move back (T = 2.50, 2.70) and then concave in another three
directions similar to Fig. 5.

Actually, because the elastic energy of the biconcave steady state is lower than the
triconcave state, the dynamic process of the membrane with no initial velocity is bicon-
cave not triconcave. The triconcave state is metastable. The three-periodic initial velocity
helps the membrane go beyond the energy barrier.

4.3 The effects of the spontaneous curvature

Thirdly, we consider the effects of the spontaneous curvature. Spontaneous curvature
is important for the membrane’s shape. The origin of spontaneous curvature is very
complex. There are two kinds of explanation. One is about the membrane’s bilayer struc-
ture. The outer monolayer should have more lipids than the inner one. The difference
between the number of two layers causes the spontaneous curvature, which is a global
quantity independent of the space. Another one is about the binding of proteins, such
as the clatharin coat protein, which support the membrane to keep a certain shape. This
property causes the local spontaneous curvature. In the 2-dimensional space, the global
spontaneous curvature has no effect. From the Helfrich’s curvature elastic energy, we can
understand this clearly. The curvature elastic energy in 2-dimensional space is

EH =
∫

Γ
k(κ−c0)

2 ds=
∫

Γ
k(κ2−2c0κ+c2

0)ds.
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Since the arc length of the curve and the integral of the curvature on the curve are con-
stants, the global spontaneous curvature has a constant effect on the elastic energy. Thus
we only consider local cases. In the director model, the spontaneous curvature is a vector
b vertical to the director O. Here, we set two opposite values to b,

{
b=7sin[8π(s− 7

16)](−sinθ,cosθ), s∈ [ 7
16 , 9

16 ],

b=(0,0), s∈ [0, 7
16)∪( 9

16 ,1),
(4.3)

and {
b=−7sin[8π(s− 7

16)](−sinθ,cosθ), s∈ [ 7
16 , 9

16 ],

b=(0,0), s∈ [0, 7
16)∪( 9

16 ,1).
(4.4)

The graphs in Figs. 7 and 8 show the numerical results of the director model with the
spontaneous curvature given above. Fig. 7 is for (4.3), which is an endocytosis process:
the part of the membrane where the spontaneous curvature is positive will concave to
form a small bubble in the main body, similar to the white blood cell’s phagocytosis.
Fig. 8 is for (4.4). It is an exocytosis process: the part which has negative spontaneous
curvature will convex to form a small bulb out of the main body, similar to the cell’s
gemmation.

T =0.00 T =0.40 T =0.60 T =1.00

Figure 7: Spontaneous curvature: endocytosis. The directors at the part where the local spontaneous curvature
does not vanish will no longer point parallel with each other, but have negative angles. It causes the curve to
be concave.

T =0.00 T =0.40 T =0.60 T =1.00

Figure 8: Spontaneous curvature: exocytosis. The directors at the part where the local spontaneous curvature
does not vanish will no longer be parallel with neighbors, but have positive angles. It causes the curve to be
convex.
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4.4 The relation between the director model and the reduced model

The reduced model is a limiting case of the director model. In [1], Hu et al. proved it
formally. The reduced model is similar to Waxman’s model [9] and they are the same in
the 2-dimensional space. We use a similar numerical algorithm to simulate the reduced
model.

Table 2 gives the L2 errors

||Rdirector(T)−Rreduced(T)||2,

which is the error between the director model and the reduced model with different k2

at time T = 1. The initial state is a rest circle with three-periodic initial velocity and the
directors being parallel with the normal vectors in the director model. From the errors,
it is so clearly that as k2 tending to infinity, the dynamics process of the director model
converge to the reduced model. Otherwise, while k2 tends to infinity, the deflexion of the
director O from normal position will be smaller and the velocity of director’s swing will
get larger. The fast wiggling will lead to the shake of the kinetic energy (see Fig. 9).

Table 2: the error ||Rdirector(T)−Rreduced(T)||2 between the director model and the reduced model for different
k2. The initial state is a rest circle with three-periodic velocity. Time is T =1.0. As k2 →∞, the error tends to
zero.

k2 ||Rdirector(T)−Rreduced(T)||2
0.1 2.28583×10−1

0.2 1.37893×10−1

0.4 6.79945×10−2

0.8 3.10456×10−2

1.6 1.29714×10−2

3.2 4.60772×10−3

6.4 2.42708×10−3

5 The director model with area constraint

In nature, the membrane is in a complex environment. There are many things, such as
water, protein, lipid, filling around the membrane. These things have a great influence on
the membrane’s dynamic properties. In this section, we consider the effects of the inner
incompressible fluids partially: the area circled by the membrane in the 2-dimensional
space is constant. We add the area constraint to the director model, which can describe
the dynamics of a curve leaving its local arc length and inner area constant.

5.1 Adding the constraint to the director model

Based on the energy law, physical dynamic processes are optimal in minimizing the total
energy. A process remaining a quantity constant means its energy estimation has a La-
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Figure 9: Contrast between the director model and the reduced model. The x-axis is time T, y-axis is the
kinetic energy. The solid line is for the reduced model. The dotted line, the dashdot line, and point line are for
k2 =0.1,0.8,12.8 in the director model respectively. The dynamic process of the director model converges to the
reduced model as k2 tends to infinity.

grangian term to express the constraint. Thus, we add a Lagrangian multiply fV , which
depends only on time but not on space, to the energy estimation to preserve the area:

Etotal =
∫

Γ

(
1

2
γ|v|2+

1

2

∣∣∣∣O×
∂O

∂t

∣∣∣∣
2

+Eel

)
ds− fV (V−V0). (5.1)

Here V0 and V are the initial and current areas. V can be solved by

V =
1

2

∫

Γ
R·n ds. (5.2)

By applying the principle of virtual work, we add a ”volume force” fV n to the director
model. Without other extra forces and the spontaneous curvature, the dynamic equations
are

γ
∂v

∂t
=

∂(Ta)

∂s
+k2

∂(O(n)O1n)

∂s
+ fVn, (5.3)

γφO×
∂2O

∂t2
=(k1+ε1)O×

∂2O

∂s2
−k2O1O×a, (5.4)

∂v1

∂s
−κv(n) =0. (5.5)

Now, we need another equation for fV to close the system of equations. The area V
remains constant, which means

dV

dt
=
∫

Γ
v(n) ds=0.
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Taking the time derivative of this equation, we have

d2V

dt2
=
∫

Γ

∂v(n)

∂t
ds=0.

Simplifying the middle part

∫

Γ

∂v(n)

∂t
ds=

∫

Γ

∂(v·n)

∂t
ds

=
∫

Γ

(
∂v

∂t
·n+v·

∂n

∂t

)
ds

=
∫

Γ

[
1

γ

(
Tκ+k2(O(n)O1)s+ fV

)
+v·

∂n

∂t

]
ds.

We can get another equation for T,v, fV

d2V

dt2
= L fV +

∫

Γ

(
1

γ
Tκ+v·

∂n

∂t

)
ds=0, (5.6)

where L is the length of the curve. From this equation, we can express fV by other vari-
ables. But notice that this equation is just a necessary but not a sufficient condition for V
to remain constant. Thus, we cannot use this equation alone. We need the condition

V =V0, (5.7)

to which we must pay more attention in the numerical simulation. The system of Eqs. (5.3)-
(5.7) is the director model with the area constraint.

The term fV n looks like the osmotic pressure. They are all the inner area constraint
of the membrane, but have different effects. The osmotic pressure comes from the differ-
ent concentrations between the interior and the exterior of the membrane. It causes the
membrane’s inner area tend to the expected value. fV n comes from the incompressible
fluid filling in the membrane. It leaves the membrane’s inner area constant.

5.2 Numerical method and results

As in the director model, we introduce the angle α and θ as well, and have the similar
equations

γαtt =2Tsαs+Tαss+
1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]
, (5.8)

−γ(αt)
2 =Tss−T(αs)

2+
1

2
k2 [2βsαs cosβ+αss sinβ]+ fV αs, (5.9)

γφθtt =−k2cos(α−θ)sin(α−θ)+kθss. (5.10)
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Eq. (5.6) can be changed into

d2V

dt2
= L fV +

∫

Γ

(
1

γ
Tαs+αtv

1

)
ds=0. (5.11)

This equation is also a constrained equation for αt and T. Unfortunately, v1 cannot be
expressed by the angle α directly and only can be solved by

∂v

∂s
=−αtn,

∫

Γ
v ds=

∫

Γ
v0 ds, v1 =v·n,

with the periodic boundary condition. We can see that v1 is dependent on αt, but it can
not be expressed by αt explicitly.

Taking the same division of the curve Γ and the same symbols, the central differential
formulas of Eqs. (5.8)-(5.10) are

γ
(αt)

j+ 1
2

i −(αt)
j− 1

2
i

∆t
=

[
2Tsαs+Tαss+

1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]]j

i

, (5.12)

−γ(αt)
j+ 1

2
i (αt)

j− 1
2

i =

[
Tss−T(αs)

2+
1

2
k2 [2βsαs cosβ+αss sinβ]+ fV αs

]j

i

, (5.13)

γφ
θ

j+1
i −2θ

j
i +θ

j−1
i

∆t2
=[−k2cos(α−θ)sin(α−θ)+kθss]

j
i . (5.14)

To get the discrete equation of (5.11), we must notice that Eq. (5.11) is a necessary but not
a sufficient condition. In the discrete situation, what we want is to maintain V j+1 =V0 by
V j,V j−1. Hence, we can set up the discrete equation

V0−2V j+V j−1

∆t2

= L f
j
V +

N−1

∑
i=0


T

j
i

γ

α
j
i+1−α

j
i−1

2∆s
+

(αt)
j+ 1

2
i +(αt)

j− 1
2

i

2

(v1)j+ 1
2 +(v1)

j− 1
2

i

2


∆s. (5.15)

Putting this equation into Eq. (5.13), we can eliminate f
j
V to get the equations containing

only (αt)
j+ 1

2
i ,T

j
i ,θ

j+1
i (v1 is dependent upon αt implicitly) . But in Eq. (5.15) there is a

nonlinear term which is a discrete form of αtv
1. We can use the linearized term

(αt)
j+ 1

2
i (v1)

j− 1
2

i

instead, but it is not a second-order approximation. Thus, we use nonlinear iteration by
the steps below to solve the system, with the initial data solved by the linearized formula.

Below we summarize the steps used in our numerical algorithm.
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Step 1. We can get the initial data (αt)
j+ 1

2 ,(0)
i ,T

j,(0)
i by the linearized equation of

Eq. (5.15);

Step 2. Assume we know (αt)
j+ 1

2 ,k

i ,T
j,k
i , we also have (v1)

j+ 1
2 ,k

i . By the equations

γ
(αt)

j+ 1
2 ,k+1

i −(αt)
j− 1

2
i

∆t
=

[
2Tsαs+Tαss+

1

2
k2

[
(β2

s +α2
s )sinβ−βss cosβ

]]j,k

i

,

−γ(αt)
j+ 1

2 ,k+1

i (αt)
j− 1

2
i =

[
Tss−T(αs)

2+
1

2
k2 [2βsαs cosβ+αss sinβ]+ fV αs

]j,k+1

i

,

V0−2V j+V j−1

∆t2
−L f

j
V =

N−1

∑
i=0


[Tαs]

j
i

γ
+

(αt)
j+ 1

2 ,k

i +(αt)
j− 1

2
i

2

(v1)j+ 1
2 ,k+(v1)

j− 1
2

i

2


∆s,

which is a linear system for (αt)
j+ 1

2 ,(k+1)
i , T

j,(k+1)
i and f

j
V , we can solve them.

Then repeat Step 2 until convergence.

By these two steps, we can get (αt)
j+ 1

2
i and T

j
i , and then α

j+1
i is obtained. The whole

numerical algorithm to solve the area constraint model is similar to the algorithm we
used to solve the director model. The difference is that we have to use iteration to solve
the quantities in the next time step.

Let Ṽ be the accurate area enclosed by the curve. We use the trapezoidal rule to
calculate it. Its error is O(∆s2) by the periodic boundary condition:

Ṽ j+1 =
1

2

∫

Γ
Rj+1 ·nj+1 ds=V j+1+O(∆s2), (5.16)

V j+1 =
n−1

∑
i=0

R
j+1
i ·n

j+1
i ∆s. (5.17)

Then it is easy to get

V j+1−2V j+V j−1

∆t2
=∑

i

(R
j+1
i ·n

j+1
i −2R

j
i ·n

j
i +R

j−1
i ·n

j−1
i )

∆s

∆t2

=
∆s

4

n−1

∑
i=0

(
R

j+1
i −2R

j
i +R

j−1
i

∆t2
·(n

j+1
i +2n

j
i +n

j−1
i )+

R
j+1
i −R

j−1
i

2∆t
·
n

j+1
i −n

j−1
i

2∆t

)

+
1

4

n−1

∑
i=0

(
R

j
i ·(n

j+1
i +n

j−1
i )−(R

j+1
i +R

j−1
i )·n

j
i

) ∆s

∆t2

= −∑
i

T
j
i

γ

α
j
i+1−α

j
i−1

2∆s
∆s+∑

i

(v1)
j
i ·

(αt)
j+ 1

2
i +(αt)

j− 1
2

i

2
∆s+L f

j
V +O(1) (5.18)
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by Eq. (5.3). Compared with Eq. (5.15), the numerical error of the accurate area is

Ṽ j+1 =V0+O(∆t2+∆s2). (5.19)

Here, we use the following curve without velocity and all the directors pointing in
normal directions to be the initial state,

x=

(
1

2
+0.15cosη

)
cosη,

y=

(
1

3
+

1

30
sinη

)
sinη,

where η ∈ [0,2π) is a parameter. This initial curve looks like an egg (see Fig. 10), whose
bigger part is on the left. The motion of this curve is very simple. The bigger part of it
will move to right and then move back (see Fig. 11 for time T=0.00, 0.30, 0.60, 0.90). From
the numerical results, the area V oscillates strongly (see Fig. 12. But the amplitude of its
range is only about 3.0×10−8. Our algorithm is found to be powerful in maintaining the
area constraint.

Figure 10: The initial curve, looks like an egg.

T =0.00 T =0.30 T =0.60 T =0.90

Figure 11: Area constraint. The graphs show the numerical results at time T=0.00, 0.30, 0.60, 0.90 respectively.
The dotted curve shows the initial state. The bigger part moves to the right and moves back.
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Figure 12: The area minus the initial area. It oscillate strongly, but the amplitude is only 3.0×10−8, which is
the numerical error.

6 Conclusion

In this paper, we study the dynamical deformation of a vesicle membrane in the 2-
dimensional space by the director model. Several interesting phenomena are discovered
from numerical simulations, especially the actions affected by the osmotic pressure and
different local spontaneous curvatures. The osmotic pressure can lead the membrane to
the shape which circles the anticipant area. With different initial velocities, the membrane
has different dynamic processes. The local spontaneous curvature can influence the di-
rectors’ stable positions and introduce the deformation in some part of the membrane.
The vital actions exocytosis and endocytosis are all caused by the local spontaneous cur-
vature. Moreover, by some simulations with different values of the elastic coefficient k2,
the relation between the director model and the reduced model is clear. Finally, con-
sidering the incompressible property of the fluid in the membrane partially, we add the
inner area constraint to the director model. From the numerical results, we can study
the dynamic motion of a membrane whose local arc length and the inner area remain
constant.
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