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Abstract. Polynomial chaos methods (and generalized polynomial chaos methods)
have been extensively applied to analyze PDEs that contain uncertainties. However
this approach is rarely applied to hyperbolic systems. In this paper we analyze the
properties of the resulting deterministic system of equations obtained by stochastic
Galerkin projection. We consider a simple model of a scalar wave equation with ran-
dom wave speed. We show that when uncertainty causes the change of characteristic
directions, the resulting deterministic system of equations is a symmetric hyperbolic
system with both positive and negative eigenvalues. A consistent method of imposing
the boundary conditions is proposed and its convergence is established. Numerical
examples are presented to support the analysis.
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1 Introduction

In recent years there is a growing interests in studying efficient numerical methods for
solving differential equations with random inputs. The Polynomial Chaos (PC) based
methods have received intensive attention. The original PC method was developed by
R. Ghanem, cf. [3], and was inspired by the Wiener chaos expansion which uses Hermite
polynomials of Gaussian random variables to represent random processes [5]. Later the
approach was extended to generalized Polynomial Chaos (gPC) where general orthogo-
nal polynomials are adopted for improved representations of more general random pro-
cesses [7]. With PC/gPC serving as a complete basis to represent random processes, a
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stochastic Galerkin projection can be used to transform the (stochastic) governing equa-
tions to a set of deterministic equations that can be readily discretized via standard nu-
merical techniques. Although such a Galerkin approach is effective in many problems,
see, e.g., [2, 6, 8], its application to hyperbolic problems has been limited as of now. We
believe that the primary reason is that the properties of the system of equations result-
ing from a Galerkin projection is not fully understood. (When the uncertainty does not
change the direction of the characteristics, the Galerkin system can be shown to be hy-
perbolic and solved in a straightforward manner [1]).

We discuss in this paper the application of the gPC Galerkin method to the simula-
tions of hyperbolic systems that contain uncertainties. In general these uncertainties may
enter through initial conditions, boundary conditions or through uncertainties in the co-
efficients of the problem. Here we deal with the case that the coefficients are functions
of random variables. In particular we use a scalar wave equation as a model and study
the situation in which the inflow-outflow conditions change as a function of a random
variable. The problem is whether it is possible to impose boundary conditions on the
deterministic system, consistent with the boundary conditions of the original equation.

We show, in this paper, that the deterministic system is a symmetric hyperbolic sys-
tem with positive as well as negative eigenvalues. A consistent and stable method of
imposing the boundary conditions is outlined. The boundary conditions are not satis-
fied exactly at the boundaries but rather to the order of the scheme. Convergence of the
scheme is established.

The paper is organized as follows. In Section 2 we present the model problem of a
scalar hyperbolic equation where the wave speed is a random variable. A consistent set
of boundary conditions are presented for the deterministic system resulted from a gPC
Galerkin procedure, and we prove convergence of the scheme. In Section 3 we present
numerical results to support the theory.

2 Model problem: Scalar wave equation with uncertainty

A simple scalar equation that illustrates the difficulties in applying the (generalized)
Polynomial Chaos to hyperbolic equations is:

∂u(x,t,y)

∂t
= c(y)

∂u(x,t,y)

∂x
, x∈ (−1,1), t>0, (2.1)

where c(y) is a random transport velocity of a random variable y∈Ω in a properly defined
complete random space with event space Ω and probability distribution function ρ(y).
With this the expectation of a given function is

E[ f (y)]=
∫

f (y)ρ(y)dy.

At this stage we would like to mention that we can consider (2.1) as a system where c is
a symmetric matrix and obtain similar results. For simplicity we stay with the example
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above to highlight the fundamental properties. The physical domain is bounded, (−1,1)
upon proper scaling, so that we can study the effects of boundary conditions.

The initial condition is given by

u(x,0,y)=u0(x,y). (2.2)

The boundary conditions are more complicated as they depend on the sign of the
random transport velocity c(y). A well posed set of boundary conditions is given by:

u(1,t,y)=uR(t,y), c(y)>0,

u(−1,t,y)=uL(t,y), c(y)<0.
(2.3)

Eqs. (2.1)-(2.3) complete the setup of the problem.

2.1 Polynomial chaos Galerkin approach

Following the standard gPC expansion, we assume that u(x,t,y) is sufficiently smooth in
y and has a converging expansion of the form

u(x,t,y)=
∞

∑
k=0

ûk(x,t)Pk(y), (2.4)

where the polynomials Pk(y) correspond the distribution of the random variable y and
satisfy the following orthogonality relation

E[PkPl]=
∫

Pk(y)Pl(y)ρ(y)dy=δkl , ∀k,l, (2.5)

where δkl is the Kronecker delta function. Note the polynomials are normalized. The
commonly seen correspondences between the polynomials Pk(y) and the distribution of
the random variable y include Hermite-Gaussian (the original PC expansion), Legendre-
uniform, Laguerre-Gamma, etc., cf. [7, 8]. For simplicity we will discuss in this paper
the case of random variable y with beta distribution in (−1,1) (upon proper scaling). In
this case the expansion functions Pk are the (normalized) Jacobi polynomials. (Note this
includes the special case of Legendre polynomials with uniformly distributed random
variable y.) For the converged series (2.4), we also assume that the expansion coefficients
decay fast asymptotically, i.e.,

‖ûj(x,t)‖2
1 ≤

K

j2m
, j≫1, (2.6)

where K,m>0 are constants and the ‖·‖1 norm is defined as

‖ûj(x,t)‖2
1 =

∫ 1

−1

[

û2
j +

(

∂ûj

∂x

)2
]

dx. (2.7)
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We also use ‖·‖2 to denote the standard L2 norm, i.e.,

‖ f (x)‖2
2 =

∫ 1

−1
f 2(x)dx.

By utilizing the expansion (2.4) and employing a Galerkin projection, it is straightfor-
ward to verify that the coefficients ûj(x,t) satisfy the following infinite system of equa-
tions

∂ûj(x,t)

∂t
=

∞

∑
k=0

aj,k
∂ûk(x,t)

∂x
j=0,1,··· , (2.8)

aj,k =
∫ 1

−1
c(y)Pj(y)Pk(y)ρ(y)dy. (2.9)

The equations for the first (N+1) coefficients can be written as

∂ûj(x,t)

∂t
=

N

∑
k=0

aj,k
∂ûk(x,t)

∂x
+

∞

∑
k=N+1

aj,k
∂ûk(x,t)

∂x
, j=0,··· ,N. (2.10)

In the gPC Galerkin method we seek an approximation to the true solution via a finite-
term gPC expansion

v(x,t,y)=
N

∑
k=0

v̂k(x,t)Pk(y) (2.11)

and project

∂v(x,t,y)

∂t
−c(y)

∂v(x,t,y)

∂x
=0

onto the subspace spanned by the first (N+1) gPC basis polynomials and obtain the
following system

∂v̂j(x,t)

∂t
=

N

∑
k=0

aj,k
∂v̂k(x,t)

∂x
, j=0,··· ,N, (2.12)

where aj,k are defined as in (2.9). If we denote by A the (N+1)×(N+1) matrix whose

entries are {aj,k}0≤j,k≤N and v=(v̂0,··· ,v̂N)T a vector of length (N+1), then system (2.12)
can be written as

∂v(x,t)

∂t
=A

∂v(x,t)

∂x
. (2.13)

Note that from the definition aj,k=ak,j, i.e., A=AT, the system (2.13) is therefore symmetric
hyperbolic, this is consistent with the fact that the original equation (2.1) is hyperbolic for
each realization of y.
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2.2 Eigenvalues of the PC Galerkin equations

A less trivial question is the nature of the inflow-outflow boundary conditions. The
boundary conditions for the original scalar equation (2.1) depend on the particular re-
alization of the random variable y (see (2.3)). However upon the Galerkin projection in
the random dimension the deterministic system (2.13) is independent of y. In Theorem
2.1 we investigate how the inflow-outflow conditions are reflected in the system (2.13).

Theorem 2.1. Consider the deterministic system (2.13) where the coefficients are defined in
(2.9). Then if c(y)≥ 0 (reps. c(y)≤ 0) for all y, then the eigenvalues of A are all non-negative
(reps. non-positive); if c(y) changes sign, i.e., c(y)>0 for some y and c(y)<0 for some other y,
then A has both positive and negative eigenvalues for sufficiently large N.

Proof. First let us consider the case of c(y)≥0. Let β(y) be a random variable with an
expansion

β(y)=
N

∑
k=0

bkPk(y).

Let b=(b0,··· ,bN)T be the coefficient vector with length (N+1). Note here b is an arbitrary
vector. Then

bTAb =
N

∑
j=0

N

∑
k=0

bjaj,kbk

=
N

∑
j=0

N

∑
k=0

bj

(

∫ 1

−1
c(y)Pj(y)Pk(y)ρ(y)dy

)

bk

=
∫ 1

−1
β2(y)c(y)ρ(y)dy.

Since c(y) is non-negative
bTAb≥0

for all b, thus all the eigenvalues of A are non-negative. The case of c(y)≤ 0,∀y follows
similarly.

A more interesting case is when c(y) changes sign. Let us divide the domain Ω where
y belongs into the following non-overlapping open sets: Ω+ = Ω1∪Ω2 be defined as the
subdomain of y where c(y) > 0 and Ω3 is the subdomain of y in which c(y)≤ 0. Let us
also define γ(y) be a smooth function such that

γ(y)>δ, y∈Ω1, (2.14)

0<γ(y)≤δ, y∈Ω2, (2.15)

γ(y)=0, y∈Ω3. (2.16)

Let βN(y) be the best polynomial approximation of degree N to
√

γ(y) such that

max
y

|β2
N(y)−γ(y)|≤ǫ, (2.17)
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where N is sufficiently large such that

ǫ<δ

∫

Ω1
c(y)ρ(y)dy

∫

Ω
|c(y)|ρ(y)dy

. (2.18)

Then
∫

Ω
β2

N(y)c(y)ρ(y)dy

=
∫

Ω+
γ(y)c(y)ρ(y)dy+

∫

Ω+
(β2

N(y)−γ(y))c(y)ρ(y)dy+
∫

Ω3

β2
N(y)c(y)ρ(y)dy

≥
∫

Ω1

γ(y)c(y)ρ(y)dy−

∣

∣

∣

∣

∫

Ω+
(β2

N(y)−γ(y))c(y)ρ(y)dy

∣

∣

∣

∣

−

∣

∣

∣

∣

∫

Ω3

β2
N(y)c(y)ρ(y)dy

∣

∣

∣

∣

.

Now
∣

∣

∣

∣

∫

Ω3

β2
N(y)c(y)ρ(y)dy

∣

∣

∣

∣

≤ǫ
∫

Ω3

|c(y)|ρ(y)dy,

∣

∣

∣

∣

∫

Ω+
(β2

N(y)−γ(y))c(y)ρ(y)dy

∣

∣

∣

∣

≤ǫ
∫

Ω+
|c(y)|ρ(y)dy,

and therefore
∫

Ω
β2

N(y)c(y)ρ(y)dy>0

under the condition (2.18). Thus there exists a polynomial βN(y) with expansion coef-
ficients b = (b0,··· ,bN)T such that bTAb is positive. Similarly, if c(y) is negative in a
subinterval there exists a polynomial βN(y) with sufficiently large N such that

∫ 1

−1
β2

N(y)c(y)ρ(y)dy<0.

Thus the matrix A has positive and negative eigenvalues. This concludes the proof. 2

2.3 Boundary conditions and convergence

We now turn to the issue of imposing the boundary conditions. Since A is symmetric
there is an orthogonal matrix ST =S−1 such that

STAS=Λ,

where Λ is a diagonal matrix whose entries on the eigenvalues of A, i.e.,

Λ=diag(λ0,··· ,λj+ ,··· ,λj− ,··· ,λN).

Here the positive eigenvalues occupy indices j=0,··· , j+, the negatives ones j= j−,··· ,N,
and the rest, if exist, are zeros. Obviously, j+, j−≤N.
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Denote by q=(q0,··· ,qN)T =STv, i.e.,

qj(x,t)=
N

∑
k=0

sk,jv̂k(x,t),

where sj,k are the entries for S, then we obtain

∂q(x,t)

∂t
=Λ

∂q(x,t)

∂x
. (2.19)

The boundary conditions of this diagonal system are determined by the sign of the eigen-
values, i.e., we need to specify

qj(1,t)=
N

∑
k=0

sk,jûk(1,t), j=0,··· , j+,

qj(−1,t)=
N

∑
k=0

sk,jûk(−1,t), j= j−,··· ,N.

(2.20)

Here the coefficients ûk at the boundaries are determined by the exact gPC projection of
the boundary conditions of u, i.e.,

uR(t,y)=
∞

∑
j=0

ûk(1,t)Pk(y),

uL(t,y)=
∞

∑
j=0

ûk(−1,t)Pk(y).

Subsequently the boundary conditions for the gPC Galerkin system of Eq. (2.13) are spec-
ified as

v(1,t)=Sq(1,t), v(−1,t)=Sq(−1,t). (2.21)

Note the above specification of boundary conditions via (2.20) and (2.21) implicitly satisfy
the following relation

N

∑
k=0

sk,jv̂k(1,t)=
N

∑
k=0

sk,jûk(1,t), j=0,··· , j+,

N

∑
k=0

sk,jv̂k(−1,t)=
N

∑
k=0

sk,jûk(−1,t), j= j−,··· ,N.

For vanishing eigenvalues, if they exist, no boundary conditions are required.

Theorem 2.2. Consider the hyperbolic equation (2.1) where y is a random variable with beta
distribution in (−1,1). Let u(x,t,y) be the solution of (2.1) whose exact gPC expansion is (2.4)
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and let v(x,t,y) be the (N+1)-term gPC solution (2.11) solved via the Galerkin system (2.13)
with boundary conditions given in (2.21). Then for any finite time t

E
[

‖u−v‖2
2

]

=
N

∑
j=0

(

∫ 1

−1
(ûj(x,t)− v̂j(x,t))2dx

)

≤
K

N2m−1
t. (2.22)

Note the linear growth in time.

Proof. Let

ej(x,t)= ûj(x,t)− v̂j(x,t), j=0,··· ,N.

From (2.10) and (2.12) we have

∂ej(x,t)

∂t
=

N

∑
k=0

aj,k
∂ek(x,t)

∂x
+

∞

∑
k=N+1

aj,k
∂ûk(x,t)

∂x
, j=0,··· ,N. (2.23)

Denote by e=(e0,··· ,eN)T and let d=STe. Then we obtain

∂d

∂t
=Λ

∂d

∂x
+R, (2.24)

where the residual vector R=(R0,··· ,RN)T is

Rj(x,t)=
N

∑
l=0

∞

∑
k=N+1

sl,jal,k
∂ûk

∂x
. (2.25)

By multiplying (2.24) by dT and integrating in x one gets

1

2

d

dt

∫ 1

−1
dTddx=

1

2

N

∑
j=0

λj

(

d2
j (1,t)−d2

j (−1,t)
)

+
∫ 1

−1
dTRdx. (2.26)

From the boundary conditions (2.21) it follows that if λj >0 then dj(1,t)=0 and if λj <0
then dj(−1,t) = 0. Thus the first term in the right hand side of the above equation is
negative. This leads to

1

2

d

dt

∫ 1

−1
dTddx≡

1

2

d

dt
‖d‖2 ≤‖d‖·‖R‖,

where

‖R‖2 =
N

∑
j=0

∫ 1

−1
R2

j (x,t)dx
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and ‖d‖ is defined similarly. Thus

d

dt
‖d‖≤‖R‖, ‖d(x,t)‖≤max

t≥0
‖R‖·t.

Since the matrix S is unitary and the elements of the matrix A are bounded then

‖R‖2≤
∞

∑
j=N+1

‖ûj‖
2
1 (2.27)

and the proof is established under assumption (2.6). 2

3 Numerical results

In this section we present a few numerical examples to support the theoretical results
derived above. In all of the following computations, we have used sufficiently fine reso-
lutions in physical space and time domain, such that the spatial and temporal errors are
negligible. In all computations, y is a random variable uniformly distributed in (−1,1)
and thus Pk(y) are (normalized) Legendre polynomials.

3.1 Periodic problem

We first consider problem (2.1) with a periodic boundary condition in physical space.
Subsequently the gPC Galerkin system (2.13) requires periodic boundary conditions that
can be trivially implemented. Therefore no errors will be induced by specifying bound-
ary conditions via (2.21). Let us consider

ut(x,t,y)=yux(x,t,y), 0< x<2π, t≥0,

u(x,0,y)=cos(x), 0< x<2π,
(3.1)

The exact solution is uex = cos(x−yt). In Fig. 1 we plot the evolution of the mean square
solution

E[‖u‖2
2]=

∫ ∫ 1

−1
u2(x,t,y)ρ(y)dydx

and its numerical solution via gPC Galerkin method. We observe that there is a finite
time where the numerical solutions lose accuracy, i.e., errors become O(1). The size of
the time domain in which the errors remain small grows almost linearly as the orders of
gPC expansion are increased. This observation can be cross-examined by comparing the
mean-square errors at different time level, as shown in Fig. 2. We observe that with suf-
ficiently high orders of gPC expansions, exponential error convergence can be achieved.
However, as time increases, the critical orders of expansions, beyond which errors start
to decay exponentially fast, increase linearly. All of these results support the convergence
analysis (2.22) where a linear error growth in time exists.
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Figure 1: Evolution of errors in mean-square norm over time.
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Figure 2: Convergence of mean-square errors with increasing orders.

3.2 Boundary conditions and discontinuity in random space

We now study a wave equation with a random wave speed that changes signs and also
contains a discontinuity in the random space

ut = c(y)ux, −1≤ x≤1, t>0,

u(x,0,y)=sin(κx), −1≤ x≤1, y>0,

u(x,0,y)=sin(2κx), −1≤ x≤1, y<0.

(3.2)
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Here c(y)=σy with 0<σ <1 controlling the variability of the random input and κ >0 is
a real constant. We prescribe boundary conditions as

u(1,t,y)=sin[κ(1+c(y)t)], y>0,

u(−1,t,y)=sin[2κ(−1+c(y)t)], y<0.
(3.3)

The exact solution of (3.2)-(3.3) is ue(x,t,y) = sin[κ(x+c(y)t)] for y > 0 and ue(x,t,y) =
sin[2κ(x+c(y)t)] for y<0. Note the solution is discontinuous in term of y, although each
realization of y is a smooth function in x.

The numerical solutions are solved with σ = 0.5 and κ = 1. The numerical boundary
conditions are implemented via the eigenvalue analysis (2.21). For numerical solutions
of gPC order N, we examine three error measures: error in mean

emean(N,t)=max
x

|E(v)−E(ue)|,

error in standard deviation (STD)

estd(N,t)=max
x

|σv−σue |,

and the mean-square error

e2(N,t)=max
x

(E[(v−ue)
2])1/2.

Numerical simulations are conducted up to t=1, and we define convergence rate as

r(N)= [ln(e(N))−ln(e(M))]/[ln(N)−ln(M)]

for expansion orders N > M≥1, where e is one of the three error measures.

Fig. 3 shows the convergence of the three errors with increasing order of Legendre
expansions. In this case, we observe different convergence properties between even and
odd orders of expansions, although they appear to have similar asymptotic convergence
rate. Note that such different error behaviors between even and odd expansions can be
seen in classical spectral methods, cf. [4]. The errors, along with their convergence rates,
are tabulated in Tables 1 and 2, for odd and even orders of expansions, respectively. No
exponential convergence is achieved, as opposed to that in the earlier examples. Also,
the weak error measures (error in mean and error in STD) converge more rapidly than
the strong error measure in term of mean-square.

The slower convergence is due to the discontinuity in random space, and is mani-
fested in Fig. 4, where the numerical solution v(x,t,y) is shown at location x=0.454 with
N =21 order of expansion. Fig. 4(a) shows the approximation at t=0, i.e., the initial con-
dition, and Fig. 4(b) shows the numerical solution at t=1. The Gibbs’ oscillations around
the discontinuity at y=0 are clearly visible.
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Figure 3: Errors for odd and even orders of Legendre-chaos expansions.

Table 1: Errors for odd-order Legendre-chaos expansions and their convergence rate.

N emean rmean estd rstd e2 r2

1 0.1761 – 0.4460 – 0.7044 –
3 3.137(-2) 1.57 0.1747 0.85 0.4147 0.48
5 1.241(-2) 1.82 7.300(-2) 1.71 0.2965 0.66
9 4.470(-3) 1.74 4.095(-2) 0.98 0.2202 0.51

15 1.758(-3) 1.83 2.553(-2) 0.92 0.1713 0.49
21 9.188(-4) 1.93 1.815(-2) 1.01 0.1438 0.52
23 7.680(-4) 1.97 1.644(-2) 1.08 0.1368 0.55
25 6.503(-4) 2.00 1.498(-2) 1.12 0.1305 0.56
27 5.564(-4) 2.03 1.370(-2) 1.16 0.1248 0.58
29 4.803(-4) 2.06 1.257(-2) 1.20 0.1195 0.60

Table 2: Errors for even-order Legendre-chaos expansions and their convergence rate.

N emean rmean estd rstd e2 r2

2 0.1589 – 0.4791 – 0.6457 –
4 3.841(-2) 2.05 0.1985 1.27 0.4065 0.67
6 1.803(-2) 1.87 0.1215 1.21 0.3030 0.72

10 7.503(-3) 1.72 5.588(-2) 1.52 0.2249 0.58
16 3.295(-3) 1.75 3.042(-2) 1.29 0.1741 0.54
22 1.843(-3) 1.82 2.058(-2) 1.23 0.1457 0.56
24 1.577(-3) 1.79 1.846(-2) 1.25 0.1386 0.58
26 1.370(-3) 1.76 1.668(-2) 1.27 0.1321 0.59
28 1.204(-3) 1.74 1.516(-2) 1.29 0.1263 0.61
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Figure 4: Numerical approximations of uN(x,t,y) at x=0.454 with N =21. (a) t=0; (b) t=1.

4 Summary

The properties of (generalized) Polynomial Chaos method for uncertainty analysis of hy-
perbolic equations are studied. We show, via a simple model problem of a scalar wave
equation with random wave speed, some prominent features of the resulting determinis-
tic system of equations obtained by a Galerkin projection in random space. We proved the
existence of both positive and negative eigenvalues when the wave speed changes sign
in random space and presented a consistent and stable method for imposing boundary
conditions for the deterministic equations. The gPC Galerkin method, with the proper
boundary treatment, is shown to be convergent. Furthermore, the error contains a lin-
ear growth in time which is independent of the boundary conditions. We remark that
although the linear wave equation considered here is rather simple, it possesses one of
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the key issues in applying gPC Galerkin method to hyperbolic problems – the proper
way to enforce boundary conditions when the characteristic wave changes directions in
random space. This issue is addressed here and it opens up the possibility of apply-
ing gPC Galerkin method to other hyperbolic problems with uncertainty, e.g., nonlinear
wave equations, Maxwell equations, etc.
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