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Abstract. We apply the CIP (Cubic Interpolated Profile) scheme to the numerical sim-
ulation of the acoustic wave propagation based on characteristic equations.The CIP
scheme is based on a concept that both the wavefield and its spatial derivative propa-
gate along the same characteristic curves derived from a hyperbolic differential equa-
tion. We describe the derivation of the characteristic equations for the acoustic waves
from the basic equations by means of the directional splitting and the diagonaliza-
tion of the coefficient matrix, and establish geophysical boundary conditions. Since
the CIP scheme calculates both the wavefield and its spatial derivatives, it is easy to
realize the boundary conditions theoretically. We also show some numerical simula-
tion examples and the CIP can simulate acoustic wave propagation with high stability
and less numerical dispersion. The method of characteristics with the CIP scheme is
a very powerful technique to deal with the wave propagation in complex geophysical
problems.

AMS subject classifications: 35L05, 65M25, 81T80
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1 Introduction

The Finite Difference method has been widely accepted for wave simulation in solids
because of the simplicity of computational implementation. However, careful treatment
of the numerical dispersion and computational stability are required in order to obtain
the meaningful simulation results. Several advanced techniques are known to reduce
numerical dispersion, for example; staggered grids scheme [8] and the high order com-
putation scheme [5]. The pseudo spectra method [3] is also well known as a highly ac-
curate numerical scheme in the Fourier domain. The CIP (Cubic Interpolated Profile)
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scheme [10, 11] was proposed as a stable and less dispersive scheme in CFD (Computa-
tional Fluid Dynamics) and applied to many difficult problems such as the plasma phe-
nomena [4, 11]. The CIP method in combination with the method of characteristics was
developed to simulate the Maxwell equation accurately, and it was compared with FDTD
method in [6]. The CIP scheme is based on a fact that not only the wavefield but also its
spatial derivatives propagate along the same characteristic curve derived from a hyper-
bolic differential equation.

In this paper we apply the CIP scheme to simulate the P wave propagation by solving
an acoustic wave equation. We derive the characteristic equations for the acoustic wave
and we solve these equations by the CIP scheme, and establish the treatment of several
geophysical boundary conditions such as; the free surface boundary, the irregular to-
pographic boundary, and the absorbing boundary. We also show results of numerical
simulations for a simple half space model and topographic variation model.

2 CIP scheme

The phenomenon of the wave propagation in one dimensional space obeys the following
first-order differential equation,

∂ f

∂t
+ u

∂ f

∂x
=0. (2.1)

This first-order wave equation shows that a wave packet on the wavefield f propagates
along a curve dx/dt=u in the phase space. This curve is known as a characteristic curve
and Eq. (2.1) is called a characteristic equation for the forward propagation of the wave-
field. Although this equation is simple, it is difficult to evaluate numerically with high
stability and less numerical dispersion. The CIP scheme can overcome these problems by
solving not only (2.1) but also a differential equation for a spatial derivative of the wave-
field f . If the propagation velocity u is constant, we obtain the same equation as (2.1) for
g which is a spatial derivative of f [10],

∂g

∂t
+ u

∂g

∂x
=0, g=

∂ f

∂x
. (2.2)

These two equations, (2.1) and (2.2), become the governing equations for the propa-
gation of the wavefield f and its spatial derivatives g obey the same characteristic equa-
tions. The CIP scheme utilize this property in solving a hyperbolic differential equation
and Fig. 1 shows conceptual diagrams of the CIP scheme. In Fig. 1(a), the solid line
corresponds to an initial wave packet and dashed line becomes an exact solution at one
time-step ahead. Solving the wave equation numerically using the finite difference ap-
proximation, we may obtain the white circle (see in Fig. 1(a)) after one time progressed. If
the values of the wavefield between the grid points are interpolated linearly using values
at each grid, the numerical diffusion occurs shown in Fig. 1(b). However, if we can use
the information of the spatial derivatives at every grid points, we can overcome this nu-
merical dispersion problem and may keep the original shape of the wave packet through
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(a) (b) (c)udt

Figure 1: Conceptual diagrams of the CIP scheme (modified from [11]). (a) The solid line corresponds to
an initial wave packet and dashed line becomes an exact solution at one time-step ahead. Solving the wave
equation numerically using the finite difference approximation, we may obtain the white circle after one time
progressed. (b) If the values between the grid points are interpolated linearly using values at each grid, the
numerical diffusion occurs (solid line). (c) By using the information of the spatial derivatives (arrows) at every
grid points, we can overcome this numerical dispersion problem and may keep the original shape of the wave
packet (solid line).

the whole simulation steps. This is the core idea of the CIP scheme and the values at grid
points are interpolated using a cubic polynomial (Fig. 1(c)).

If values of the wavefield f and its derivative g are known at two grid points, xi and
xi+1, the wavefield between these two points can be interpolated using a cubic polyno-
mial,

Fn
i (x)= ai

(

xiup − xi

)3
+ bi

(

xiup − xi

)2
+ gn

i

(

xiup − xi

)

+ f n
i , (2.3)

ai =
gn

i + gn
iup

D2
+

2
(

f n
i − f n

iup

)

D3
, (2.4)

bi =
3
(

f n
iup − f n

i

)

D2
−

2gn
i + gn

iup

D
. (2.5)

Here, D = −∆x, iup = i − 1 for u ≥ 0 (forward propagation) and D = ∆x, iup = i + 1
for u < 0 (backward propagation). From above equations, the profiles of f and g at the
n + 1 step are obtained by shifting the previous profiles by ui∆t; f n+1

i =Fn
i (xi − ui∆t) and

gn
i =dFn

i (xi − ui∆t)/dx,

f n+1
i = aiξ

3
i + biξ

2
i + gn

i ξi + f n
i , (2.6)

gn+1
i =3aiξ

2
i + 2biξi + gn

i , (2.7)

ξi =−ui∆t. (2.8)

We can summarize the CIP scheme as follows; the wavefield is interpolated by a cubic
polynomial and it is shifted to the wave propagation direction by ui∆t at each time step.

In order to investigate stability and dispersion features of the CIP scheme, we com-
pare with other numerical schemes such as the first order up-wind scheme (UPW), Lax-
Wendroff scheme (LXW), the second order central difference scheme (FDC), and Crank-
Nicholson scheme (C-N). Fig. 2 shows simulation results for the one-way wave propaga-
tion of a square wave packet which has sharp discontinuous edges and flat part. We set
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Figure 2: Numerical simulation of one-way wave equation for a square wave (top) with five difference schemes;
the CIP scheme (CIP), the first-order up-wind schema, Lax-Wendroff scheme (LXW), central difference scheme
(FDC), and Crank-Nicolson scheme (C-N). Solid lines show the simulation results and dashed lines show the
exact solution.

∆x = 10m with 256 grids, ∆t = 0.001s, and u = 3,000m/s (u∆t/∆x = 0.30). As an initial
condition, we set f (x)= 1 (300m≤ x≤ 500m) and f (x)= 0 (x < 300m and x > 500m). In
the figure, solid lines show the simulation results and dashed lines show the exact solu-
tion. The CIP scheme mostly keeps the shape of the initial waveform. however the UPW
scheme shows the numerical diffusion and the LXW scheme and the C-N scheme show
the numerical dispersions. The FDC is not stable for this problem. This figure shows that
the CIP scheme has the best results with stable and little numerical dispersion even in the
case where the input wavelet has high frequency.

3 Characteristic equation for acoustic wave propagation

In applying the CIP scheme to three-dimensional acoustic wave propagation, we rewrite
governing equations for the wave motion into combined one-way wave equations. These
equations correspond to the characteristic equations describing the acoustic wave prop-
agation in three-dimensional space. As is well known, the equation of continuity and the
equation of motion in an acoustic medium are expressed using pressure P and particle
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velocity v as

∂P

∂t
+ κ∇ · v=0, (3.1)

∂v

∂t
+

1

ρ
∇P=0. (3.2)

In these equations, κ is bulk modulus, ρ is density, and ∇= (∂/∂x,∂/∂y,∂/∂z) . We can
rewrite these equations in a matrix form with matrices A, B, and C, which are 4 × 4
matrices including the bulk modulus and the density,

∂

∂t

[

P
v

]

+ A
∂

∂x

[

P
v

]

+ B
∂

∂y

[

P
v

]

+ C
∂

∂z

[

P
v

]

=0, (3.3)

where

[ P v ]−1 =
[

P vx vy vz

]−1
,

A=









0 κ 0 0
1/ρ 0 0 0

0 0 0 0
0 0 0 0









, B=









0 0 κ 0
0 0 0 0

1/ρ 0 0 0
0 0 0 0









, C=









0 0 0 κ
0 0 0 0
0 0 0 0

1/ρ 0 0 0









.

Since the CIP scheme requires the interpolation of the wave field and its shifting of
the wavefields and the spatial derivatives, we adopt direction splitting [7, 9] and rewrite
this equation into three separate independent equations with the diagonalized matrices
in (x,y,z) directions. At first, we separate Eq. (3.3) in three directions as follows,

∂

∂t

[

P
v

]

+ A
∂

∂x

[

P
v

]

=0, (3.4)

∂

∂t

[

P
v

]

+ B
∂

∂y

[

P
v

]

=0, (3.5)

∂

∂t

[

P
v

]

+ C
∂

∂z

[

P
v

]

=0. (3.6)

Then, we diagonalize the matrices A, B, and C. Here we show the derivation of the
characteristic equations in x direction from Eq. (3.4). Solving the eigenvalue problem, we
can rewrite the matrix A using a diagonal matrix M,

A=LML−1. (3.7)

By substituting this relation into Eq. (3.4), we can finally obtain the following matrix
equation containing the pressure and the particle velocities which are propagating in the
forward and backward x direction,

∂

∂t
L−1

[

P
v

]

+ M
∂

∂x
L−1

[

P
v

]

=0, (3.8)
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where

M=









√

κ/ρ 0 0 0

0 −
√

κ/ρ 0 0
0 0 0 0
0 0 0 0









, L−1 =
1

2









1/
√

ρκ 1 0 0
−1/

√
ρκ 1 0 0

0 0 0 0
0 0 0 0









.

Finally in the three-dimensional case, we derive the following characteristic equations
for the acoustic wave propagation, in x direction,

∂

∂t

[

+P + Ipvx

]

+ Vp
∂

∂x

[

+P + Ipvx

]

=0, (3.9)

∂

∂t

[

−P + Ipvx

]

− Vp
∂

∂x

[

−P + Ipvx

]

=0, (3.10)

in the y direction,

∂

∂t

[

+P + Ipvy

]

+ Vp
∂

∂y

[

+P + Ipvy

]

=0, (3.11)

∂

∂t

[

−P + Ipvy

]

− Vp
∂

∂y

[

−P + Ipvy

]

=0, (3.12)

and in the z direction,

∂

∂t

[

+P + Ipvz

]

+ Vp
∂

∂z

[

+P + Ipvz

]

=0, (3.13)

∂

∂t

[

−P + Ipvz

]

− Vp
∂

∂z

[

−P + Ipvz

]

=0. (3.14)

Here, Ip=
√

ρκ=ρVp is an acoustic impedance, Vp=
√

κ/ρ is the P-wave velocity. Eqs. (3.9)
and (3.10) respectively show the forward propagation of {+P + Ipvx} and the backward
propagation of {−P + Ipvx} in the x direction. Eqs. (3.9) to (3.14) represent the character-
istic equations of the acoustic wave propagation in three-dimensions.

4 Acoustic wave simulation by the CIP scheme

4.1 The CIP scheme on the characteristic equations

In the modeling of acoustic waves based on the method of characteristics, Eqs. (3.9) to
(3.14) have to be evaluated numerically. The details of numerical treatments of Eqs. (3.9)
and (3.10) using the CIP scheme are shown here. The forward propagation of {+P +
Ipvx} and the backward propagation of {−P + Ipvx} are calculated from Eqs. (3.9) and
(3.10) respectively;

[

+Pn + Ip · vn
x

]

−→
[

+P+ + Ip · v+
x

]

, (4.1)
[

−Pn + Ip · vn
x

]

−→
[

−P− + Ip · v−x
]

. (4.2)
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Figure 3: Schematic diagrams of calculation of acoustic wave propagation by method of characteristics. The
wavefields at next time step {Pn+1, vn+1} can be calculated by adding or subtracting the forward and backward
wavefields {Pn+,Pn−,vn+

x ,vn−
x } according to Eqs. (4.3) and (4.4).

Here superscripts + and − mean the forward and the backward propagation. Then we
obtain the wavefield at the n + 1 th step by linear summation of the forward and the
backward wavefields;

Pn+1 =
1

2

[(

P+ + P−)

+
(

v+
x − v−x

)

· Ip

]

, (4.3)

vn+1
x =

1

2

[(

v+
x + v−x

)

+
(

P+ − P−)

/Ip

]

. (4.4)

The pressure P and the particle velocity vx are related by the acoustic impedance Ip.
Acoustic wave propagation is described not only by the pressure but also by the parti-
cle velocity that are related by the acoustic impedance each other. Fig. 3 show physical
meaning of Eqs. (4.3) and (4.4). In calculation of acoustic wave propagating in two di-
rections, we calculate both forward and backward wavefields {Pn+,Pn−,vn+

x ,vn−
x }, from

{Pn,vn
x}, and then we obtain the wavefield at next time step {Pn+1,vn+1

x } by adding or
subtracting them according to Eqs. (4.3) and (4.4). In addition, their spatial derivatives
are also calculated by the same relationship as above equations,

∂xPn+1 =
1

2

[(

∂xP+ + ∂xP−)

+
(

∂xv+
x − ∂xv−x

)

· Ip

]

, (4.5)

∂xvn+1
x =

1

2

[(

∂xv+
x + ∂xv−x

)

+
(

∂xP+ − ∂xP−)

/Ip

]

. (4.6)

Here, we defined ∂x as a spatial derivative ∂/∂x.
The total wavefield in a multi-dimensional medium is calculated by the characteristic

equations of each direction in order. In the three-dimensional case, at first we calcu-
late the wavefields propagated in x direction [P∗,v∗] by solving Eq. (3.4) from [Pn,vn],
and then we calculate the wavefields propagated in y direction [P∗∗,v∗∗] using the result
[P∗,v∗] by Eq. (3.5), and finally we obtain the wavefield at the next step [Pn+1,vn+1] by
solving Eq. (3.6) using the wavefields [P∗∗,v∗∗]. Fig. 4 shows an snapshot of a numerical
simulation in a three-dimensional homogeneous medium (Vp =3,000m/s, ρ=2.0g/cm3)
when the pressure (Ricker wavelet: fpeak = 100Hz) is applied as a source at the center.
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Figure 4: Acoustic wave propagation in a three-dimensional homogeneous medium; snapshot at 0.080s.

Grid spacing is ∆x=∆y=∆z=10m with NX × NY × NZ =64 × 64 × 64 grids, and time
interval is ∆t=0.001s (Vp∆t/∆x=0.3).

4.2 Boundary condition

For the simulation of wave propagation in geophysical problems, we need to set some
boundary conditions such as a free surface boundary (e.g. earth surface) and a transpar-
ent/absorbing boundary (e.g. to realize a semi-infinite medium). The boundary condi-
tions are generally described using the physical values {P,vj} and their spatial deriva-
tives {∂P/∂xi,∂vj/∂xk}. Therefore, in the simulation scheme based on the characteristic
equation with the CIP, it is easy to handle these boundary conditions in comparison with
other numerical schemes.

Here we show treatments of three kinds of boundary conditions; a free surface bound-
ary, a symmetric boundary, and a transparent/absorbing boundary, and also we mention
handling a topographic variation boundary. To simplify the problems, we treat a two-
dimensional case and we assume the boundary is located at z= j∆z (see Fig. 5(a)).

Free surface

The free surface is the most important boundary for the geophysical applications. The
free surface conditions are expressed as

P=0,
∂vx

∂z
=0,

∂vz

∂z
=0. (4.7)
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Figure 5: Boundary condition. (a) Down-going wavefield is replaced by up-going wavefield. (b) The sign of
the up-going and down-going wavefields at the free surface and (c) the symmetric boundary. (d) Calculation
of topographic boundary condition.

In order to realize these conditions, let us introduce the concept of a mirrored imaginary
wavefield. When we calculate the pressure and the particle velocity at the free surface
using underground wave and mirrored imaginary wave above the surface with opposite
or same sign respectively (see Fig. 5(b)), the above free surface boundary conditions are
satisfied automatically. We need to pay attention of the sign of both the physical values
and the spatial derivatives. From the calculation process at the n + 1 th wavefield repre-
sented in Eqs. (4.3) to (4.6), we need to prepare the wavefield propagating forward and
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backward. To satisfy the conditions in Eq. (4.7), we set the forward propagated wavefield
by using the backward propagated wavefield as follows; for the pressure,

P+ =−P−, ∂zP+ =∂zP−, (4.8)

and for the particle velocity,

v+
x =v−x , v+

z =v−z , ∂zv+
x =−∂zv−x , ∂zv+

z =−∂zv−z . (4.9)

Symmetric boundary

The symmetric boundary is occasionally useful to deal with the geophysical problem.
For example, when we simulate two- or three-dimensional full wave propagation in one-
dimensional stratified media, it is enough to calculate the wave propagation only in half
of the media. For a line symmetric boundary (Fig. 5(c)), we can define the conditions,

∂P

∂z
=0,

∂vx

∂z
=0, vz =0. (4.10)

To satisfy the conditions in Eq. (4.10), we set the forward propagated wavefield by
using the backward propagated wavefield as follows; for the pressure,

P+ = P−, ∂zP+ =−∂zP−, (4.11)

and for the particle velocity,

v+
x =v−x , v+

z =−v−z , ∂zv+
x =−∂zv−x , ∂zv+

z =∂zv−z . (4.12)

Transparent/absorbing boundary

The CIP scheme naturally satisfies transparent/absorbing boundary conditions in an or-
thogonal direction to the boundary, because it is solving the one-way wave equations
for a given simulation models. It is not necessary to consider special treatment at these
boundaries of the models. However, oblique incident waves with high angle at edges
dose not disappear perfectly. Especially, S wave with high incident angle reflect/refract
at the edge. This is a well-known problem in the conventional boundary condition based
on the approximation of the one-way wave propagation, too [2]. The easiest way to avoid
this difficulty is to combine the absorbing boundary by damping amplitude of waves
near the edges [1] with the transparent boundary conditions.

Topographic boundary

If we use rectangular grid mesh in the wave modeling, irregularity of topography is rep-
resented as a step boundary (Fig. 5(d)), and they are classified into vertical free surface
boundaries and the horizontal free surface boundaries respectively. However, in the CIP
scheme the boundary conditions can be treated easily since the wavefields are propa-
gated along two characteristic equations (x and z directions).
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Figure 6: Comparison of the CIP scheme and the FD-STG scheme, and different frequencies of the source
wavelet (snapshots at t=0.20s).

5 Numerical examples

5.1 Simple step structure model

We simulate the wave propagation in a step structure model using the characteristic
equation with the CIP scheme and compare simulation results with the results of the con-
ventional finite difference scheme with staggered grids (FD-STG) that approximates the
equations of motion and continuity by the fourth-order operator. The FD-STG method
is widely used in computational geophysics [5, 8]. The 101 × 101-grid model has a step
boundary (white line in Fig. 6) with grid spacing ∆x = ∆z = 10m, and the model prop-
erties are Vp = 3,000m/s and ρ = 1.5g/cm3 in the upper layer, and Vp = 4,000m/s and
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Figure 7: Comparison of the CIP scheme and the FD-STG scheme, and different frequencies of the source
wavelet (synthetic seismograms)

ρ = 2.5g/cm3 in the lower layer. An explosive source is located at (x,z)= (500m,200m),
and receivers are deployed (x,z)= (0m,100m)∼ (10000m,100m) with 50m spacing. The
source waveform is Ricker wavelet and we simulate two cases with different peak fre-
quencies, 30Hz and 60Hz, to evaluate the numerical dispersion. The time interval in the
calculation is ∆t=0.001s.

Fig. 6 shows snapshots at t = 0.20s, and Fig. 7 shows synthetic seismograms. Obvi-
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Figure 8: Wave simulation in a topographic medium (a), and snapshot of the wavefield at t=0.10s (b), t=0.20s
(c), and at t = 0.40s (d) after source generation. Waves are reflected at the topographic free surface with
opposite phase, and reflected and transmitted at the subsurface boundary with coordinate phase.

ously, even if the wave length is relatively short compare to the grid distance the CIP
scheme can simulate the wave propagation with far less numerical dispersion than the
FD-STG. However, our code developed in this study takes more computation cost, time
and memory. The calculation time by our CIP scheme required about ten times of that of
by FD-STG. This result shows that the CIP scheme with the regular mesh grid can simu-
late the wave propagation with smaller number of grids than the finite difference scheme
with the staggered grid.

5.2 Topographic media

We simulate the wave propagation in the model with the topographic variation. In the
model in Fig. 8, the free surface has a sinusoidal wavy variation of the topography, and
the boundary between the upper layer and the lower layer is slightly inclined. Model
properties are Vp =3,000m/s, ρ=2,500 kg/m3 in the upper layer, and Vp =4,000m/s, ρ=
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3,000 kg/m3 in the lower layer. The compressional source (Ricker wavelet: fpeak =60Hz)
is applied at (x,z)=(820m,150m). Grid spacing is ∆x=∆z=5m with NX × NZ=501× 251
grids, and time interval is ∆t=0.0005s.

Figs. 8(b)-8(d) shows snapshots of wavefield at different time; t=0.10s, t=0.20s, and
t = 0.40s. We can recognize the propagation of reflected waves at the surface along the
varied topography, and reflected and transmitted waves at the subsurface boundary. In
addition, the transparent boundary works well. Our boundary conditions work appro-
priately even in the geophysical model with the topographic variation.

6 Discussions

We applied the CIP scheme to the numerical simulation of the acoustic wave propagation
based on characteristic equations in geophysical problems. The characteristic equations
for the acoustic waves are derived from the basic equations of motion and continuity
by means of the directional splitting and the diagonalization of the coefficients matrix.
For the realistic wavefield modeling, we established several boundary conditions in this
method. Since the CIP scheme calculates the propagation of both physical values and
their spatial derivatives also, we can simulate acoustic wave propagation with high sta-
bility and less numerical dispersion, and we can satisfy the boundary conditions theoret-
ically. We conclude the CIP scheme is a very powerful technique to deal with geophysi-
cal problems such as accurate, high-frequency, full-wavefield simulation in models with
highly inhomogeneous and complex topographic media.
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