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Abstract. We present a semi-analytic method based on the propagation matrix for-
mulation of indirect boundary element method to compute response of elastic (and
acoustic) waves in multi-layered media with irregular interfaces. The method works
recursively starting from the top-most free surface at which a stress-free boundary
condition is applied, and the displacement-stress boundary conditions are then sub-
sequently applied at each interface. The basic idea behind this method is the matrix
formulation of the propagation matrix (PM) or more recently the reflectivity method
as wide used in the geophysics community for the computation of synthetic seismo-
grams in stratified media. The reflected and transmitted wave-fields between arbitrary
shapes of layers can be computed using the indirect boundary element method (BEM,
sometimes called IBEM). Like any standard BEM, the primary task of the BEM-based
propagation matrix method (thereafter called PM-BEM) is the evaluation of element
boundary integral of the Green’s function, for which there are standard method that
can be adapted. In addition, effective absorbing boundary conditions as used in the
finite difference numerical method is adapted in our implementation to suppress the
spurious arrivals from the artificial boundaries due to limited model space. To our
knowledge, such implementation has not appeared in the literature. We present sev-
eral examples in this paper to demonstrate the effectiveness of this proposed PM-BEM
for modelling elastic waves in media with complex structure.
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1 Introduction

Computation of elastic wave propagation in layered media with arbitrary shapes of inter-
faces has found applications in many areas, such as engineering, geophysics, underwater
acoustics, etc. Traditionally, domain-based finite difference or finite element methods are
used. For stratified flat layered media, the propagation matrix or more recently reflectiv-
ity method can be used (Fuchs and Muller, 1971). Chen (1990, 1995, 1996) has extended
the propagation matrix method to multi-layered media with irregular interfaces using
the so-called global generalized reflection/transmission formulations. Recently the in-
direct Boundary Element Method (BEM) has been extended to model wave propagation
in multi-layered media with arbitrary interfaces (see for examples, Bouchon et al., 1989;
Bouchon & Coutant, 1994; Pedersen et al., 1996, Vai et al., 1999, and cited references in
those papers). Note that BEM has been extensively used to study topographic effects us-
ing exact Green functions by Sanchez-Sesma and his co-authors (e.g. Sanchez-Sesma and
Campillo, 1991). This method has a distinct advantage over domain-based methods in
that only boundaries, or in the case of multi-layers interfaces, need to be discretized. This
method is based on the matrix formulation of the propagation matrix method (Fuchs and
Muller, 1971; Kennett, 1981) and essentially works recursively to match boundary con-
ditions at each successive interface (Pedersen et al., 1996). Reflection and transmission
at internal interfaces are computed using the BEM. We shall refer to this method as PM-
BEM. We have tested extensively the validity and limitations of the PM-BEM and its sta-
bility in a variety of situations, examining in particular dependence on source frequency,
distance of the source from boundaries and separation of two boundaries. Comparison
with results from the reflectivity method shows that this PM-BEM is very accurate. The
method can be potentially used to perform large scale seismic modelling.

2 Indirect boundary element method

For simplicity, we shall consider 2D here. In the absence of body forces the displacement
~u at any point ~x in an area V surrounded by the boundary S (Fig. 1) can be expressed as
follow, i.e. mathematical description of Huygen’s principle (Liu et al., 1997; Liu & Zhang,
2001; Pointer et al., 1998):

ui(~x)=
∫

S
ϕj(~x

′)Gij(~x,~x′)dS′, (2.1)

where ~Gij(~x,~x′) is the ith displacement Green’s function at ~x due to a point source in jth
direction at~x′ (the variable with an arrow above implies a vector, matrix or tensor). ϕj(~x

′)
is the force density at ~x′ in jth direction.

The corresponding expression for traction, for a smooth boundary, is given by:

τi(~x)= cϕi(~x)+
∫

S
ϕj(~x

′)Tij(~x,~x′)dS′, (2.2)
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Figure 1: A scattering object S bounded by the curve L with outwards normal n. Upon an incidence of u0

located at source the total wave-field received at receiver is the superposition of the incident wave-field u0 and
the scattered wave-field us.

where c is 0 if ~x is outside S, c is 0.5 if ~x tends to S from the inside V, and c is -0.5 if ~x
tends to S from the outside V (Pointer et al., 1998). τ1(~x) is the ith component traction on
S at ~x and Tij is the traction Green’s function. The BEM based on Eqs. (2.1) and (2.2) is
known as the indirect BEM (Liu & Zhang, 2001; Pointer et al., 1998).

The total wave field utotal
i at a receiver point ~x is the superposition of the direct wave

u0
i from the source (called free field) and the scattered waves us

i , i.e.,

utotal
i =u0

i +us
i . (2.3)

If we discretize the boundary S into N elements and combine Eqs. (2.1) and (2.2) with
(2.3) we obtain the following expressions for displacement and traction:

ui(~x)=u0
i (~x)+

N

∑
n=1

ϕj(~x
′
n)Ḡij(~x,x′n), (2.4)

where

Ḡij(~x,~x′n)=
∫

∆Sn

Gij(~x,~x′n)dS′, (2.5)

and

τi(~x)= cτ0
i (~x)+

N

∑
n=1

ϕj(~x
′
n)T̄ij(~x,x′n), (2.6)

where

T̄ij(~x,~xn)=
1

2
δijδnk+

∫

∆Sn

Tij(~x,~x′n)dS′. (2.7)

∆Sn is the length of the nth element. If the surface forces densities ~ϕ are known then
displacements and tractions can be computed for any source.
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Figure 2: A multilayered model configuration.

3 The propagation matrix method

We consider a model with M+1 interfaces (refer to Fig. 2 for the model configuration).
Layers are numbered m = 0 to m = M+1, where layer 0 is the free surface and layer
M+1 is the last interface. N is the number of boundary points on each layer. We define

the following four displacement-traction matrices ~Am,1, ~Am,2, ~Bm,1 and ~Bm,2 of the form
(Pedersen et al., 1996):

~A=

[

ℑ
ℜ

]

, (3.1)

where

ℑ=

[

g11 g13

g31 g33

]

and ℜ=

[

t11 t13

t31 t33

]

.

gij and tij are N×N matrices containing the ith components of the displacement and trac-

tion Green’s functions from the jth component of the source. ~A1,m contains the Green’s

functions for receivers on interface m from sources on interface m. ~A2,m contains the
Green’s functions for receivers on interface m from sources on interface m−1. ~B1,m con-
tains the Green’s functions for receivers on interface m−1 from sources on interface m.
~B2,m contains the Green’s functions for receivers on interface m−1 from sources on inter-
face m−1. ~Qm, a 4N vector, contains secondary sources for every segment on interface

m, including the two components of the secondary sources. ~Qm can be split into two vec-

tors ~Q1,m and ~Q2,m: ~Q1,m being the secondary sources heading downwards into the layer

from interface m and ~Q2,m the secondary sources heading upwards into the layer from
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interface m. ~F1,m is the free-field at interface m from the layer above. ~F2,m is the free-field
at interface m from the layer below.

Continuities of displacement and traction on the mth interface give us the following
recursive relation:

~Am,2
~QT

m−1,2+ ~Am,1
~QT

m,1+~FT
m,1 =~Bm+1,2

~QT
m,2+~Bm+1,1QT

m+1,1+~FT
m,2. (3.2)

We can write this equation in the form:

~Am,2
~QT

m−1,2 = ~Dm
~QT

m,1+~ET
m, (3.3)

where ~DM and ~EM are defined as follows:

~Dm =[−~Am,1;~Bm+1,2+~BT
m+1,1(~D

−1
m+1)

sup ~Am+1,2], (3.4)

ET
m =−~Bm+1,1[(~D

−1
m+1)

sup~ET
m+1+∆~FT

m]. (3.5)

For the deepest interface (m= M+1) these expressions become:

~Dm =[−~AM,1;~BM+1,2], (3.6)

and

ET
m =∆~FT

M. (3.7)

If ~DM and ~EM are computed and propagated upwards using equations (3.4) and (3.5),
~Dm and ~Em matrices can be found for any layer. At interface m =0 (the free surface) the
traction is equal to zero, we can obtain the following equation:

~C~XT =~YT, (3.8)

where

~C=

[

−~D
le f t
1 −~D

right
1

~A1,2

~Binf
1,1 0 ~Binf

1,2

]

, (3.9)

~X =
[

~Q1,1;~Q1,2;~Q0,2

]

, (3.10)

~Y =
[

~E1;−~Finf
0,2

]

. (3.11)

Solving Eq. (3.9) yields the force distributions ~Q0,2, ~Q1,1 and ~Q1,2. We can then compute
the force distributions for every interface working from top to bottom using Eq. (3.3). The
displacement at any point ~x within the mth layer can be found by convolving the Green’s
function with the appropriate force distribution. The contribution to the displacement
is found in this way for all the boundary points lying on the interfaces above and below
layer m, and all the contributions are summed to give the displacement. In the case where
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the source and the receiver lie in the same layer the displacement from the incident wave
should be added.

The coefficient matrix of the linear equations (3.8) is a fully populated complex matrix
and is non-symmetric. This is often regarded as the disadvantage of BEM in comparison
with finite element methods. Nevertheless, this matrix can be easily manipulated as the
number of elements is not exceedingly high and the system of equations is only solved
once for each frequency. A standard method such as the Gaussian elimination or LU de-
composition can be used, and for large M, a conjugate gradient method can be used. In
this paper we only use a standard LU decomposition method to solve the linear equa-
tions. The maximum number of elements is restricted by the power of current computers
and it also depends on the specified accuracy. In general, the number of elements de-
pends on the particular frequency considered. At low frequencies, a minimum number
of elements is required, while at high frequencies this number should be chosen such that
at least three surface elements are sampled per seismic wavelength to give satisfactory
results (Bouchon & Coutant, 1994).

4 Absorbing boundary conditions

Spurious waves will be generated from the edges of the models as a result of the trunca-
tion of layers. A simple way of reducing this effect is by introducing an absorbing zone
at the edges of the models. We weight the Green’s functions by an exponential function
for segments within the absorbing zone (Cerjan et al., 1985):

w=

{

exp{−[a(W−x)]2}, x< L,
exp{−[(a(L−W+x)]2}, x> xmax−L.

(4.1)

In other words, the displacements generated by the secondary sources in the absorbing
zones are weighted by the above function to reduce its contributions to the overall dis-
placements outside the absorbing zones. This is very similar to the application of Cerjan’s
et al. (1985) method for conventional finite difference methods (e.g. Vlastos et al. 2003).
The variables a and W are the absorption factor and the absorption zone width respec-
tively. L is the model size excluding the absorbing zone, i.e., L=xmax−2W, where xmax is
the total model size. a=0.001 is suggested. xmax is the model size (i.e. the maximum hor-
izontal distance of our 2D models concerned). This simple technique was first proposed
for FD method, and our tests show it can also be effectively used for PM-BEM.

Fig. 3 shows the variation of the absorbing function w with the distance from the
boundary (of the model area or space) for different variations of parameter a. As we
can see the choice of parameter a is crucial for the effective elimination of the boundary
effects. If a is too large, the absorbing area can be chosen to be small, but this will cause
additional spurious reflections; if a is too small, a large absorbing area has to be used to
allow the boundary reflection to arrive much later (as the reflected wave amplitudes are
only slightly reduced).
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Figure 3: Variations of absorbing weight w with the distance from the model area/space for different parameter
a.

5 Implementation and numerical examples

We implement our method in the frequency domain, that means that the frequency-
domain displacements are computed for a range of frequencies (for the examples be-
low, we typically consider the frequency ranges up to 200 Hz). The inverse FFT is then
performed to calculate the time-domain response. Like any BEM cited in the Introduc-
tion, the memory requirements to store the layer matrices are quite large depending on
the number of discretization needed for each layers. The basic requirement is that at
least 3 elements are required for the minimum frequency used (see Sanchez-Sesma and
Campilo, 1991). To speak up the computation, we divide the computational domain into
3 equal areas and then match the boundary conditions (continuity of stress and displace-
ments) between each domain – this is called the domain decomposition (see Dobson et al.,
2003). The adaptation of the domain decomposition effectively reduces the size of layer
matrices (used in Eqs.(3.1)-(3.11)) to one-third so that matrix inversions can be performed
much faster.

Here we shall present two examples. We first consider a simple model containing
only the flat free surface. This simple model is used to demonstrate the accuracy of the
proposed PM-BEM. The source is located at a distance of D from the free surface. The
receiver is fixed at 600m from the free surface and is immediately below the source (i.e.
no horizontal offsets). We compare the vertical components of synthetic seismograms
from PM-BEM presented in this paper using a vertical force source and results from the
reflectivity method (Kennett, 1981). The results are shown in Figs. 4 and 5 for different
source depths and different frequencies. We see that there is a very good agreement
between the two results except when the source is too close to the free surface (Fig. 4),
in which condition, very fine discretization grids, i.e. at least less than one-third of the
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Figure 4: Comparison of synthetic seismograms for different source depths.

Figure 5: Comparison of synthetic seismograms for different frequencies.

distance between source and the free-surface, has to be used. This is understandable as
the in our implementation of PM-BEM, we only use the far-field Green’s function and
the near field terms have been ignored (similar to the implementation of BEM by other
authors cited in the Introduction).

Fig. 6 shows a three-layer model. The top interface is a rough interface generated with
a sine function (the sine function has a period is 100m and the height of 10m). The param-
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Figure 6: A three-layer model consisting a rough interface (modeled using a sine function). The parameters for
each layer are shown in the table on the right side.

Figure 7: Horizontal and vertical synthetic seismograms corresponding to the model geometry shown in Fig. 6.
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eters for each layer are given in the table next to Fig. 6. The explosive source is located at
the origin with a range of receivers along the flat free surfaces. We use a Ricker wavelet
with a dominant frequency of 50Hz which gives the wavelengths of 66m for P-waves and
38m for shear-waves (using the velocities for the first layer). The horizontal and vertical
synthetic seismograms are shown in Fig. 7. We can clearly identify reflections from the
top and lower interfaces. The reflection from the top sine interface shows periodical am-
plitude variations, while the reflection from the lower interface shows almost continuous
variations. In general the amplitude variations will depend on the interface roughness
(period and height of the sine in our case) and the wavelength. Our studies have revealed
some interesting features, such as the interference patterns resulting in the periodical loss
or enhancements of amplitudes as in light scattering – this feature is known as the local-
ization of lights, and in our case, localization of seismic waves (see more discussion about
the coherent backscattering or localization of seismic waves in Schultz and Toksoz, 1994;
Larose et al., 2004).

6 Conclusions

We have presented results of modelling elastic wave propagation using the indirect BEM
for layered media. This method uses the idea from the propagation matrix formulation
and computes recursively the secondary source distributions at each interface. The BEM
is very accurate as long as certain factors are taken into consideration. An absorbing
boundary condition, developed for the FD method, can be applied to effectively elim-
inate spurious waves due to interface truncations. The PM-BEM has a potential to be
used as a tool to perform large scale seismic modelling, using, for example, the domain
decomposition method (Dobson et al., 2003; Ziolkowski et al. 2003).
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