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Abstract. An improved three-field gyrofluid model is proposed to numerically simu-
late ion-scale turbulence in tokamak plasmas, which includes the nonlinear evolution
of perturbed electrostatic potential, parallel ion velocity and ion pressure with adi-
abatic electron response. It is benchmarked through advancing a gyrofluid toroidal
global (GFT G) code as well as the local version (GFT L), with the emphasis of the col-
lisionless damping of zonal flows. The nonlinear equations are solved by using Fourier
decomposition in poloidal and toroidal directions and semi-implicit finite difference
method along radial direction. The numerical implementation is briefly explained, es-
pecially on the periodic boundary condition in GFT L version. As a numerical test and
also practical application, the nonlinear excitation of geodesic acoustic mode (GAM),
as well as its radial structure, is investigated in tokamak plasma turbulence.

PACS: 52.35.Kt, 52.35.Ra, 52.65.Tt, 52.55.Fa
Key words: Geodesic acoustic mode (GAM), zonal flow, ion temperature gradient (ITG) turbu-
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1 Introduction

The study on turbulent particle and heat transport is of key importance for the improve-
ment of confinement performance in magnetized fusion devices including current toka-
maks/stellarators and the coming ITER. In a tokamak, plasma turbulence is rather copi-
ous in the spatio-temporal scale due to various linear and nonlinear instabilities. Typi-
cally the ion temperature gradient (ITG) driven turbulence is a representative of the ion-
scale fluctuations. An important ingredient in turbulence is a poloidally and toroidally
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symmetric, coherent structure, namely the so-called zonal flow. A remarkable progress
on understanding ion transport in tokamak plasmas has been achieved in past years
through the extensive investigations on the ITG turbulence and the zonal flow dynamics.
It is the very zonal flow that may regulate the ion-scale turbulence and reduce the ion
transport to the neoclassical level observed in present tokamak experiments. Meanwhile,
another large-scale structure, the so-called geodesic acoustic mode (GAM), has also at-
tracted much attention recently. The GAM is a class of toroidal eigenmode with finite low
frequency [1–4], which is characterized in spatial structure by poloidally and toroidally
symmetric potential and poloidally asymmetric density or pressure fluctuations. The lat-
ter gives rise to a time-dependent zonal flow in toroidal plasmas. On the other hand, the
GAM is a damped oscillator with finite frequency coupling with axisymmetrical static
potential (i.e., the stationary zonal flows). The level of zonal flows in toroidal ITG tur-
bulence is strongly influenced by the collisionless damping of the GAMs [5]. Hence, the
GAM dynamics have been intensively studied in toroidal plasma experiments and large-
scale parallel simulations in light of theoretical analyses [6–23].

To study the turbulent transport in tokamak plasma with the dynamics of zonal flows
and GAMs, advanced numerical simulations based on modern gyrokinetic theory have
been developed as the first principal simulation: particle-in-cell (PIC) and Continuum
(Vlasov) approaches. These methods benefit from the dramatic progress of computa-
tional capacity although they are very CPU-time-consuming. On the other hand, the
conventional computational fluid dynamics (CFD) is still a very useful method in plasma
turbulence simulation to illustrate the complex nonlinear plasma interaction. An im-
proved fluid version, which could properly involve the most important kinetic effects
such as the finite Larmor radius (FLR) and Landau damping, has also been proposed
and extensively testified. It is noticed that while this approximated approach has shown
the advance in understanding the saturation mechanism and fluctuation characteristics
of turbulence, the adequacy of the existent gyrofluid models for calculating the zonal
flow damping is quite questionable and becomes a crucial failing. The zonal flow is in-
adequately damped due to the inappropriate closure of the moment hierarchy so that the
transport is overestimated. This is still a remaining problem and the improved model
is being chased [24–27]. In this paper, we propose a new gyrofluid closure relation for
the zonal flow and GAM components. A toroidal global ITG code accompanying with a
local version is advanced to benchmark the model with the theoretical prediction of the
zonal flow damping. As a practical application, the nonlinear excitation of the GAM and
its radial spectral characteristics are investigated.

The remainder of this paper is organized as follows: the new gyrofluid closure re-
lation is proposed in Section 2 with the nonlinear governing equations of toroidal ITG
turbulence. The numerical implementation for both global and local versions is briefly
explained in Section 3, the benchmarking tests are presented. In Section 4, the nonlin-
ear excitation is numerically simulated as a practical application of the newly developed
gyrofluid modeling and codes. Finally, the summary is given in Section 5.
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2 3-field gyrofluid ITG model in a tokamak plasma

The gyrofluid modeling has been well developed in plasma turbulence simulation [24–
26]. However, a precise closure relation for lower order moment equations is still under
improvement, especially for correct residual level of the zonal flows in ITG turbulence
due to the collisionless GAM damping [27]. Here, we propose an empirical closure re-
lation for the GAM components by considering the Landau damping and its parallel
wavenumber, which may implicitly involve the effect of finite orbit width (FOW). Fol-
lowing the standard procedure [28], a set of three-field fluid equations of the normalized
potential φ; parallel ion velocity υ‖ and ion pressure pi can be derived as follows under
the assumption of adiabatic electron response ne=(neq/Teq)(φ−<φ>)=(neq/Teq)(1−δ)φ
[15, 16]

(

1−δ−∇2
⊥

)

∂tφ=−(a/Ln)∇θφ−(1+ηi)(a/Ln)∇θ∇
2
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The normalized perturbed quantities are conventionally defined as [15]
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r
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Here the magnetic drift term is expressed as ωD f = 2ε(cosθ∇θ +sinθ∇r) f for any per-
turbed quantity f with ε = a/R. Heaviside step function δ = 0(1) is used for ITG fluctu-
ations (the zonal flow component < φ >, < ·> denotes the flux surface average), which
represents appropriately the adiabatic electron response to ITG fluctuations and the zonal
flow. ηi = LTi/Ln with Ln = (dlnneq

/

dr)−1 and LTi = (dlnTeq

/

dr)−1, i.e., the characteris-
tic length of equilibrium density (and ion temperature); ρi = υti/ωci ion Larmor radius
with ion cyclotron frequency ωci = eB0/mi. µ⊥, η⊥ and χ⊥ are the numerical normalized
cross-field viscosities and thermal conductivity, which can absorb the energy cascaded to
short wavelength region. The dominant nonlinear terms come from the ~E×~B convective
nonlinearity, which are expressed by the Poisson bracket [ f ,g] = (∂r f ∂θ g−∂θ f ∂r g)

/

r in
circular tokamak geometry (r,θ,ζ) with the radius of the magnetic surface r, the poloidal
and toroidal angles θ and ζ, respectively. In this work, Γ=5/3 and τ =1 are used.

The kinetic Landau damping physics is also represented by Hammett-Perkins closure

model for the parallel heat flux moment q‖=−iγLD

√

8Teq

/

πk‖Ti

/∣

∣k‖
∣

∣ [24]. However, the

coefficients γLD for the ITG fluctuations and for the GAM components are different. It is
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empirically determined as

γLD =

{

Γ−1 for ITG,
3Γ for GAMs.

(2.4)

Further, the parallel wavenumber for the GAMs is chosen with the parametric depen-
dence of the safety factor q and the inverse aspect ratio ε, which may implicitly involve
the FOW effects.

∇‖= ik‖ =

{

ε
(

∂θ

/

q+∂ζ

)

for ITG,

(3+Γ)
(

q
/

1.6
)1/4

ε1/2
(

ε∂θ

/

q
)

for GAMs.
(2.5)

It is noticed that the coefficients in Eqs. (2.4) and (2.5) for the GAMs are still adjustable,
which depend on the nonlinear modification of pressure profile.

3 Numerical implementation and benchmarking test

3.1 Numerical algorithm

The nonlinear equations (2.1)-(2.3) in a tokamak plasma can be numerically solved using
a conventional hybrid finite-difference spectral method in a toroidal geometry (r,θ,ζ).
Usually the Fourier decomposition in poloidal and toroidal directions are applied for
any perturbed variable f (t,r,θ,ζ), i.e,

f (t,r,θ,ζ)= ∑
m,n

fm,n(t,r)exp[i(mθ−nζ)]. (3.1)

Here the poloidal and toroidal mode numbers (m,n) are any integer but satisfy posi-
tive safety factor q = m/n for the resonant modes with ∇‖ f = 0. The components with
n = 0 correspond to the non-resonant modes. For example in this paper, the potential
φ0,0 is the zonal flow and the pressure p0,0 is identical to the nonlinear modification of
radial profile. The pressure components p±1,0 coupling with φ0,0 represent the so-called
GAM. (Precisely speaking, the GAM perturbation also includes all toroidally symmetri-
cal components p±m,0 due to the geometrical coupling). For large-scale simulation with
high resolution, the nonlinear terms are computed in real space using a de-aliased fast
Fourier transform (FFT) algorithm and then transforming back to Fourier space with an
inverse FFT while the linear terms are calculated in Fourier space. This is more efficient
way for the calculation of quadratic nonlinearity in plasma turbulence. In the radial di-
rection, centred finite-differences are employed to calculate the derivatives. Hence the
resulting code is the second order accurate in space. The differential operators in space
are expressed as

∇2
⊥ f =∂r (r∂r)

/

r−m2
/

r2, (3.2)
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for GAMs.
(3.3)
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The magnetic drift term is expressed as the toroidal coupling of poloidal components

ωD fm,n = iε[m( fm+1,n+ fm−1,n)−(∂r fm+1,n−∂r fm−1,n)]. (3.4)

The scheme for time integration is more considerable due to the different physical
time scales in the model equation system. In a tokamak plasma with strong equilibrium
magnetic field, the perpendicular frequency of the ion-scale fluctuation is estimated es-
sentially by ion diamagnetic frequency while the parallel time scale is determined by the
sound waves. The short parallel wave-length components with fast time scale are not
much interesting in ion-scale turbulence of tokamak plasma and they are also dissipated
rapidly by the Landau damping although the gyrofluid model is still rough. For the
interested wavelengths, the parallel time scale is longer or comparable to the perpendic-
ular one. We choose the time step determined by the latter with a sufficient accuracy.
On the other hand, a hyper-viscosity dissipation is still kept in the gyrofluid model for
numerical consideration although the FLR effect has been improved in the model. This
may introduce a numerical instability on the transport scale for larger viscosity. Hence
we adopt an explicit second (or/and fourth) order Range-Kutta or Lax-Wendroff scheme
for the perpendicular and parallel dynamics. An implicit scheme with a Crank-Nicolson
method is adopted to avoid the possible numerical instability. Namely, a semi-implicit
scheme is employed.

Here it is worthwhile to explain the treatment of the boundary condition. In the global
code (GFT G) for plasma microturbulence, the resonant modes are generally arranged in
a toroidal annulus of rb ≤ r≤ ra considering linearly more unstable region. Here we set
0< rb ≤0.2 and 0.8≤ ra <1. Obviously, the periodic boundary condition for all variables
is naturally satisfied due to the Fourier expansion along the poloidal and toroidal direc-
tions. In the radial direction, all fluctuating quantities are set to zero at the boundaries.
The (0,0) components of the potential, parallel velocity and ion pressure are assumed to
zero at outer boundary r=rb and their radial derivatives are set to zero at the inner r=ra.
In some case, a fixed pressure profile is taken by artificially removing the component
p(0,0) to avoid the quasilinear flattening (QLF) effect or model the external heating.

On the other hand, in the local version (GFT L) of the code, plasma profile effect
is removed except for the gradient. The fixed boundary conditions are not applicable
for all fluctuating components and also for the (0,0) modes due to the probably non-
physical QLF effect. The periodicity boundary condition is one option to calm the QLF
effect. The heat flowing out of one side re-enters into another side so that the tempera-
ture remains the average gradient everywhere in the simulation domain. However, the
periodicity boundary condition is not simply implemented by directly connecting the
corresponding variables at two boundaries in a sheared magnetic geometry. The diffi-
culty in 3-dimensional tokamak plasma simulation comes from the magnetic shear. The
fluctuations tend to be elongated along the magnetic field line, which points in different
direction at different radii after one period along the toroidal direction. The magnetic
field is twisted with a shear and the fluctuation at the end of a toroidal period seems
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Figure 1: Growth rate and real frequency of toroidal ITG modes under the standard Cyclone base case pa-
rameters: LTi/R = 6.9, Ln/R = 2.2, a/R = 0.18, q = 1.4, ŝ = 0.78. Numerical parameters are chosen as
µ⊥=η⊥=χ⊥=0.8. The square-marked curves correspond to the global results from GFT G, the circle-marked
ones are the corresponding local results from GFT L.

to be radially shifted to connect another one. Corresponding to the ballooning repre-
sentation, the radial periodicity in real space means a shift of poloidal number for each
toroidal mode. The shift is determined by the magnetic shear. For the convenience, we
move the toroidal geometry to a curved 3D slab at around a reference surface r=r0=a/2.
The radial domain becomes Lx =(rb−ra)a and the toroidal mode number in the toroidal
coordinate corresponds to the wave-number my in y direction of curved slab geometry
due to q0 = m0/n0. Hence the wave-number mz in z direction determines the resonant
surface of each poloidal harmonic locally. The radial periodicity boundary condition can
be expressed as

fmy+ms,mz(x+Lx)= fmy,mz(x), (3.5)

with ms = my ŝLxLz

/

Ly being an integer. Here the magnetic shear ŝ = rq′
/

q, Ly and Lz

are the domain size in y and z directions, respectively. This is similar to the treatment
in the quasiballooning coordinate [29]. It is also equivalent to the method in a flux tube
simulation [25].

3.2 Benchmarking test

The standard Cyclone base case parameters have been extensively applied to benchmark
newly developed kinetic codes [30]. However, it is difficult to precisely benchmark a
three-field fluid and/or gyrofluid model due to the low-order moment closure relation
for finite Larmor radius (FLR) effects. In Eqs. (2.1)-(2.3), several additional terms, which
represent more precise FLR effects, have been incorporated to have a correct spectral
structure of linear ITG instability. We have applied the Cyclone base case parameters to
both GFT G and GFT L versions to calculate linear ITG instability. Fig. 1 displays the
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Figure 2: Eigenfunctions of toroidal ITG mode for different toroidal mode number n=20 (left); n=40 (center)
and n = 60 (right). The corresponding wavenumbers are kθρi = 0.175; 0.35 and 0.525. The standard Cyclone
base case parameters are used: LTi/R = 6.9, Ln/R = 2.2, a/R = 0.18, q = 1.4, ŝ = 0.78. µ⊥ = η⊥ = χ⊥ = 0.8,
a/ρi =320.

eigen frequency and growth rate of toroidal ITG mode under the standard Cyclone base
case parameters: LTi/R = 6.9, Ln/R = 2.2, a/R = 0.18, q = 1.4, ŝ = rq′/q = 0.78. Here the
characteristic lengths of density and temperature and the magnetic shear are taken at
local region with maximum pressure gradient. The profiles of the safety factor q, the
density and ion temperature are assumed as [31]

q(r)=0.854=2.184(r/a)2,

n(r)=n0exp
{

−0.667εtanh
[

(r/a−0.5)
/

0.3
]}

,

Ti(r)=Ti0exp
{

−2.076εtanh
[

(r/a−0.5)
/

0.3
]}

.

Note that the maximum growth rate and corresponding frequency are close to the kinetic
values near the spectral peak kθρi ≈ 0.4. The global mode structure near the surface of
maximum pressure gradient exhibits strong ballooning characteristics, as shown in Fig. 2,
which is comparable to the results based on a gyrokinetic Vlasov simulation [31]. It is
also noticed that in the global calculations, a discontinuity of the eigenvalues versus kθρi

appears around kθρi ≈ 0.23. This phenomenon may come from a local singularity of the
fluid model (likely fluid resonance) due to the global profile for some cases of parameter.
Since the fluid/gyrofluid model truncates the moment chain so that a fluid resonance
may be unexpectedly brought in lower order fluid model such as this 3-filed equation
system, which also depends on the parameters. In a global simulation, it probably occurs
due to the involvement of radial profile. It has been observed that a broken ballooning
structure locally appears for the parameters around kθρi ≈ 0.23. In this case, the lower
order fluid/gyorfluid equation system should be improved to include some higher order
fluid moments, such as the 4-field or 6-field gyrofluid model [25]. This issue will be
discussed in future publications.

The most important motivation for developing these gyrofluid codes is to correctly
calculate the zonal flow level in tokamak ITG turbulence. The residual zonal flow in tur-
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Figure 3: Time evolution of an initial static zonal flow VZF0(t=0)=sin(0.19x) in the zonal flow damping tests
for different q values with ε=0.18 (a) and for different ε values with q=1.4 (b).

Figure 4: Wavelet energy analysis for the zonal flow damping. It produces clearly the parametric dependence of
the GAM frequency on the inverse aspect ratio, i.e., ωGAM∝ε(=a/R). ε=0.18 (a) and ε=0.09 (b). The initial
static zonal flow is assumed as VZF0(t=0)= sin(0.19x), q =1.4. The contours indicate the spatially averaged

ln(<φ2
ZF/2>) in the frequency-time plane.

bulent fluctuations determines the regulation of turbulence and the anomalous transport.
It sensitively depends on the collisionless Landau damping due to the toroidal coupling
with the GAMs. To have a suitable coefficient of the closure relation for the GAMs, an ini-
tial value test for the zonal flow damping is performed by comparing the residual zonal
flows with the analytical theory under the Cyclone base case parameters. Fig. 3 illus-
trates the residual level of the zonal flows for different parameters q and ε. It can be seen
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that the new closure relation shows the zonal flow damping and a correct residual level,
which are well in agreement with the theoretical prediction VZF =(1.+1.6q2

/

ε1/2)−1VZF0

by Rosenbluth and Hinton [32]. The wavelet energy analysis as shown in Fig. 4 also
clearly exhibits the zonal flow damping process and the parametric dependence of the
GAM frequency on ε= a/R.

4 Nonlinear excitation of GAMs in ITG turbulence

The GAM is a damped eigenmode in toroidal plasmas, which is coupled with axisymmet-
rical static potential through the geodesic curvature. The generation mechanism and/or
the excitation process of the GAMs become an interesting topic in theory and experi-
ments. Generally, the GAM oscillation can be kicked through a static potential like an
initial stationary zonal flow or a stationary pressure ripple. It is quickly damped through
the Landau damping and the coupling with ion sound wave (SW). The decay rate is
roughly estimated as ∝ q5exp(−αq2) with constant α for small drift orbits [20, 23]. It is
believed that the GAMs can be excited nonlinearly through the Reynolds stress like the
stationary zonal flows. Based on Eqs. (2.1)-(2.3), the GAM oscillator and the nonlinear
source terms are expressed as follows

−∇2
⊥∂tφ(0,0) =−2ΓωD(φ+pi)(±1,0)−

1
2 ωD∇

2
⊥φ(±1,0)+

[

φ,∇2
⊥φ

]

(0,0)
, (4.1)

∂t pi(±1,0) =4ΓωD pi(0,0)+
(

Γ− 1
2

)

ωD∇
2
⊥φ(0,0)−Γ∇‖υ‖(±1,0)

−γLD

√

8
π

∣

∣k‖
∣

∣(pi−φ)(±1,0)−[φ,pi](±1,0) . (4.2)

In addition, the equations of φ(±1,0) and υ‖(±1,0) should be also incorporated to have a
coupled system of the GAMs, ion SWs and the zonal flows. When the nonlinear terms
are ignored, the damped GAM oscillator accompanied by the ion SW is established with
the frequency ωGAM. Here we will simulate the nonlinear excitation of the GAMs due to
the ITG fluctuations.

The GAMs are the combination of the perturbation of (m,n)=(0,0) and kr 6=0 in poten-
tial field and the perturbation of (m,n)=(±1,0) and kr 6=0 in the density and/or pressure
fields. The former is mixed by the stationary zonal flows and the components with finite
low frequency ωGAM. The radial structure of the GAMs may also be different from the
counterpart of the zonal flows. Hence, the zonal flow component φ(0,0) is composed in a
general sense by two parts with different frequencies, i.e.,

φ(0,0) =λZFφ(0,0)(ω =0)+λGAMφ(0,0)(ω =ωGAM). (4.3)

The ratio of the two parts is determined by the balance between the driving force and
damping sink of the GAMs. The stationary part of the zonal flows is commonly gener-
ated nonlinearly through a modulational instability [4]. Meanwhile, it also suffers from
the collisionless damping due to the coupling with the GAMs. For the part with GAM



1254 J. Li and Y. Kishimoto / Commun. Comput. Phys., 4 (2008), pp. 1245-1257

Figure 5: Wavelet energy analyses for the nonlinear excitation of the GAMs in high q plasmas (q =2.6) by the

ITG fluctuation with different pump amplitude level < φ2
ITG/2>≈ 0.3 (a); 0.12 (b); 0.047 (c). The contours

exhibit the spatially averaged ln(<φ2
ZF/2>) in the frequency-time plane. Note that the nonlinear excitation of

GAM instability depends on the ITG pump amplitude. The inset graphs are the corresponding time evolution of
total zonal flow energy and the pump wave. The standard Cyclone base case parameters are used here except
for q value.

Figure 6: Wavelet energy analyses for the nonlinear excitation of the GAMs in low q plasmas (q = 1.0) by the

ITG fluctuation with different pump amplitude level < φ2
ITG/2>≈ 0.58 (a); 0.082 (b). The standard Cyclone

base case parameters are used here except for q value.

frequency, it may be driven nonlinearly through a parametric instability [25], namely 3-
wave interaction, due to the finite frequency. The parametric instability may involve the
nonlinear terms [φ,pi](±1,0), [φ,υ‖](±1,0) and [φ,∇2

⊥φ](±1,0) as well as the coupling with the

Reynolds stress [φ,∇2
⊥φ](0,0). The parametric instability results from the balance between

the nonlinear driving and the Landau damping as well as the coupling with the ion SW.
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To have a direct simulation of the nonlinear excitation of the GAMs in ITG turbulence,
several simulations have been designed to investigate the detailed physics processes.

The GAMs are robust in toroidal plasmas with higher q [15, 16]. To observe the para-
metric instability of the GAMs, ITG fluctuations with different amplitude are provided as
the pump wave. In these simulations, linear ITG modes are initially excited to some level
and then artificially controlled to keep a constant amplitude. In such a quasi-steady ITG
fluctuation, the nonlinear excitation of the zonal flows with the GAMs can be analyzed
by choosing different ways for the comparison. Fig. 5 shows the dependence of the non-
linear excitation of the GAMs on the ITG pump amplitude. The inset graphs illustrate
the time evolution of total zonal flow energy and the pump waves. It can be seen that
the GAM instability becomes weaker as the ITG pump amplitude decreases. Further, the
GAM fluctuation may be stabilized or damped even if the zonal flows still grow up for
lower ITG pump amplitudes, indicating that the pump amplitude threshold for the GAM
instability is higher than that of the zonal flow instability. This is understandable at least
since the GAMs suffer from strong Landau damping. As the ITG pump amplitude be-
comes lower, weak GAMs are initially produced only through the beat wave of the pump
fluctuations and strongly damped as shown in Fig. 5(c). In addition, the zonal flow en-
ergy decreases after the saturation due to the collisionless damping of the GAMs. Hence,
the GAMs are difficult to survive in turbulent fluctuations if there exists no enough strong
nonlinear driving force.

On the other hand, for the plasmas with lower q values, weak GAM instability can
be observed only in higher ITG pump amplitude case, and it is quickly damped after the
zonal flow saturation, as shown in Fig. 6(a). For the ITG pump wave with low ampli-



1256 J. Li and Y. Kishimoto / Commun. Comput. Phys., 4 (2008), pp. 1245-1257

tude, the GAM fluctuation is almost damped. A reference simulation without the GAM
components is performed for the comparison with Fig. 6(b). It shows that the damped
GAMs can efficiently reduce the zonal flow instability and the suppression role in ITG
fluctuations even if they are very weak.

The GAM fluctuations are characterized by finite low frequency in the zonal flow
potential and the perturbed components with (m,n)=(±1,0). They also possess a radial
structure. Two local simulations are performed for the cases without and with the GAMs
under the Cyclone base case parameters for the most unstable ITG mode kθρi = 0.35 to
compare the difference of the zonal flows and the GAMs. It is observed that the radial
structure of the GAMs is shorter than that of the pure zonal flow fluctuation as shown in
Fig. 7. This result approaches the observation krρi∼1.0 in the global ITG simulation [16].
Note that some scaling of the radial structure of the GAMs has been also estimated as

krρi ∝ L1/3
T or L1/3

n [21,33]. Some simulations with different LT/R have been done and the
results show almost the same spectra of the GAMs.

5 Summary

The precise gyrofluid model is helpful in large-scale turbulence simulations and physics
analyses. In this work, a new empirical closure relation for the conventional three-field
gyrofluid model is presented with emphasizing the zonal flow residual level due to the
collisionless damping. A gyrofluid toroidal global ITG code (GFT G) and the local ver-
sion (GFT L) have been developed. It is shown that the model can well reproduce the
linear spectra of the toroidal ITG mode and the ballooning structures under the standard
Cyclone base case parameters. The simulation tests for the zonal flow damping show that
the key parametric dependence of the residual level of the static zonal flows on both the
safety factor and the inverse aspect ratio is in agreement with the analytical prediction of
the gyrokinetic theory.

As an application of the newly developed gyrofluid modeling, the nonlinear exci-
tation of the GAMs is simulated in toroidal ITG turbulence. The spatio-temporal spec-
tra of the zonal flows with the GAM components are analyzed by using time-depended
wavelet energy analysis. It is examined that the damped GAMs can be nonlinearly driven
to excite an instability by an ITG pump wave with larger amplitude, which is higher than
the pump amplitude threshold of the zonal flow instability. Furthermore, it is found that
the radial structure of the GAMs is scaled as krρi ≤ 1.0, which is shorter than that of the
pure zonal flows.
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