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Abstract. We investigate the validity of stationary simulations for semiconductor quan-
tum charge transport in a one-dimensional resonant tunneling diode via fluid type
models. Careful numerical investigations to a quantum hydrodynamic model reveal
that the transient simulations do not always converge to the steady states. In particular,
growing oscillations are observed at relatively large applied voltage. A dynamical bi-
furcation is responsible for the stability interchange of the steady state. Transient and
stationary computations are also performed for a unipolar quantum drift-diffusion
model.
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1 Introduction

Miniaturization of semiconductor devices maintains a continuing trend in microelectron-
ics industry, approaching the nanometer length scale [15]. In the modeling and simula-
tions for nano-devices, it is crucial to incorporate the quantum effects in a proper manner.
Because a complete description at the quantum mechanics level would require immense
computing power, one usually makes a compromise between the numerical cost and the
modeling accuracy. Due to their simplicity in formulation and similarity to the governing
equations for classical devices, fluid type models have been widely explored, both theo-
retically and numerically [16, 20, 21]. However, these models involve strong nonlinearity
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and high order spatial derivatives representing quantum effects. Rigorous mathematical
analysis are desirable and challenging. We refer to [1, 17, 19, 22] and references therein
for more details. There then arises an urgent demand to justify fluid type models, which
are typically derived in a formal way using closure assumptions, temporal and spatial
scalings, etc. Careful numerical studies are an indispensable tool to serve this purpose,
namely, to validate a model or to identify its effective range.

In this paper, we are concerned with the dynamical stability of steady states for fluid
type models. To be more specific, we take a resonant tunneling diode (RTD) in one space
dimension to investigate a quantum hydrodynamic (QHD) model, and a quantum drift-
diffusion (QDD) model. RTD is a simple device that bears distinct quantum features.
With a double potential barrier, the electric current decreases when the applied voltage
increases in a certain range. This negative differential resistance (NDR) is caused by the
quantum tunneling effect. Comparing transient and stationary QHD simulations, we
observe that the steady states lose dynamical stability at moderate applied voltage. At
a higher voltage, the transient solutions exhibit both spatial and temporal oscillations.
Even the average current density differs from the stationary computations. A dynamical
bifurcation occurs for the governing partial differential equations. The role of dissipation
is a common issue for discussing instabilities. Actually, interplay between the quantum
mechanism and the dissipative mechanism has been explored in a viscous quantum hy-
drodynamic (vQHD) model [17,18]. On the other hand, steady states are stable in all our
numerical experiments for the QDD model, where the diffusion dominates. However,
the QDD model fails to reproduce the NDR phenomenon.

This study poses, likely for the first time, a question on whether stationary computa-
tions are always reliable in producing the current-voltage (I-V) curves for nano devices.
As a matter of fact, almost all semiconductor quantum charge transport simulations have
been performed with stationary problems, e.g. by using the Gummel iterations [8,13,23].

The rest of the paper is organized as follows. First, we sketch the derivation for the
QHD model and the QDD model in Section 2. Then we describe the numerical algorithm
for the QHD model in Section 3, and some numerical results are presented in Section 4.
We briefly discuss the numerical scheme and simulations for the QDD model in Section
5. Finally, we make some further discussions in Section 6.

2 QHD model

Dynamics of carrier transport is governed by the Wigner-Poisson system at the quantum
level [10, 21]:

∂w

∂t
+

p

m
·∇xw+

q

m
θ[V](w)=Q(w), (2.1)

εs△V =q

(

∫

R

wdp−C(x)

)

, (2.2)



1036 X. Hu, S. Tang and M. Leroux / Commun. Comput. Phys., 4 (2008), pp. 1034-1050

where the pseudo-differential operator is defined by

θ[V](w)(x,p,t)

=
i

(2π)d

∫

R2d

m

h̄2

[

V(x+
η

2
,t)−V(x− η

2
,t)
]

×w(x,p′,t)ei(p−p′)η/h̄dp′dη.

Here w(x,p,t) and V(x,t) are the Wigner function and electrostatic potential, respectively.
The independent variables are x∈R

d for the space, p∈R
d for the momentum, and t for

the time. The physical constants and parameters include the reduced Planck constant
h̄ = 1.0546×10−34 kgm2/s, Boltzmann constant kB = 1.3807×10−23 kgm2/s2K, effective
electron mass m =0.0607×10−31kg, elementary charge q =1.602×10−19As and semicon-
ductor permittivity εs =12.9×8.8542×10−12 A2s4/kgm3. The doping concentration C(x)
is material and device dependent, and shall be specified later for RTD. The collision op-
erator Q(w) represents the interaction among different quantum states. We assume that
it conserves the first three momenta, i.e.

∫

Rd
Q(w)κ(p)dp=0, for κ(p)=(1,p/m,|p|2/2m). (2.3)

We define the macroscopic particle density n(x,t), current density J(x,t) and energy
density e(x,t) by

(n, J,e)=
∫

Rd
f (x,p,t)κ(p)dp. (2.4)

Multiplying κ(p) to (2.1) and integrating over p∈R
d, we obtain a system

∂tn+∇· J =0, (2.5)

∂t J+∇·
(

J⊗ J

n
+P

)

−n∇V =0, (2.6)

∂te+∇·
(

(P+eI)· J

n
+S

)

− J ·∇V =0. (2.7)

In order to find the constitutive relations for the stress tensor P and quantum thermal
flux S, we follow [9, 17] and assume that the temperature varies slowly in space, and
the device has spatial and temporal scales much larger than the quantum characteristic
scales. Then we find that

P=
kB

m
nTI− h̄2

12m2
n(∇⊗∇)logn, (2.8)

and

S=
h̄2

8m2
n△
(

J

n

)

. (2.9)

Following [11], we include a thermal diffusion term kBσ/m∇·(n∇T). Here the coefficient
σ=0.2τ0kBT0/m, with a relaxation time τ0=0.9×10−12s and a lattice temperature T0=77K.
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Figure 1: Geometry of RTD and potential barrier.

We further make a potential modification. In a one dimensional RTD as shown in Fig. 1,
there is a quasi-Fermi energy shift due to the double potential barrier

B(x)=

{

−0.209eV, for x∈ [55nm,60nm]∪[65nm,70nm],
0eV, elsewhere.

(2.10)

Meanwhile, the doping profile for this RTD is

C(x)=

{

5×1015 cm3, for x∈ [50nm,75nm],
1018 cm3, elsewhere.

(2.11)

In summary, the QHD model for a one-dimensional RTD reads as follows:

nt+ Jx =0, (2.12)

Jt+

(

J2

n

)

x

+
kB

m
(nT)x−

q

m
n(V+B(x))x−

h̄2

6m2
n

(

(
√

n)xx√
n

)

x

=0, (2.13)

et+

[

5kB

2m
TJ+

J3

2n2
− h̄2

8m2

(

J(logn)xx+n

(

J

n

)

xx

)

]

x

− q

m
J(V+B(x))x =

kBσ

m
(nTx)x , (2.14)

εsVxx =q(n−C(x)). (2.15)

To make a comparison, we mention that a vQHD model may be derived in a similar
manner from a viscous Wigner-Fokker-Planck equation [2, 18]:

nt+ Jx = Dqqnxx, (2.16)

Jt+

(

J2

n

)

x

+
kB

m

(

1+
Dpq

kBT0

)

(nT0)x−
q

m
n(V+B(x))x

− h̄2

6m2
n

(

(
√

n)xx√
n

)

x

=− J

τ0
+Dqq Jxx, (2.17)

εsVxx =q(n−C(x)). (2.18)
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Here the energy equation is not included, and additional quantum terms appeared with
coefficients

Dpq =
h̄2

6πkBT0τ0
, Dqq =

h̄2

12mkBT0τ0
.

Furthermore, we may derive the standard quantum drift-diffusion (QDD) equations
by considering the limit τ0→0 in the inviscid system (with Dpq = Dqq =0):

nt+ Jx =0, (2.19)

kB

m
(nT0)x−

q

m
n(V+B(x))x−

h̄2

6m2
n

(

(
√

n)xx√
n

)

x

=− J

τ0
, (2.20)

εsVxx =q(n−C(x)). (2.21)

3 Numerical algorithms for QHD computations

We describe the numerical algorithms in three parts, namely, the transient simulation, the
stationary simulation, and initial data preparation.

3.1 A central difference scheme for transient computations

An admissible weak solution for a standard fluid system is usually obtained through a
vanishing viscosity approach. As is well-known, a hyperbolic solver introduces numer-
ical viscosity around sharp gradients (or discontinuities). The numerical viscosity coef-
ficient decreases when we refine the mesh. Accordingly, in numerical simulations with
such a solver, a finer mesh usually yields better resolution at discontinuities. In contrast,
complexity due to the interplay between the quantum mechanism and the dissipations
was revealed in careful numerical explorations on RTD with the vQHD model [18]. In
Fig. 2, we observe that even the current density, an averaged quantity, has a big difference
at two small viscosity coefficients. Simulation results demonstrate that the numerical so-
lution under decreasing viscosity does not converge, and further indicates that the (in-
viscid) QHD model (without energy equation) is likely not well-posed. Hence we would
not expect reliable and robust simulations for the QHD model. This may shed insight to
the difficulties occurred in earlier numerical simulations [3,5–7], where quite different I-V
curves were reported for essentially the same RTD device. We notice that an I-V curve is
the key output for device simulations, passed to circuit simulations for chip design and
analysis.

To avoid artifacts corresponding to the numerical viscosity, we adopt a central differ-
ence scheme for the transient QHD computations.

We make a uniform discretization xi = i△x, i=0,··· ,N, with △x=L/N the mesh size,
and L=125nm the device length. The primary numerical variables are

ni(t)=n(xi,t), ei(t)= e(xi,t), Vi(t)=V(xi,t), Ji−1/2 = J(xi−1/2,t).



X. Hu, S. Tang and M. Leroux / Commun. Comput. Phys., 4 (2008), pp. 1034-1050 1039

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4
x 10

4

V
L

Figure 2: Effective current density (in A/cm−2) versus applied voltage (in V) by vQHD simulations with two
viscosity constants: normal Dqq (thin solid line) and double Dqq (thick dotted line).

We adopt the standard second order Runge-Kutta method to solve the following semi-
discrete equations:

dni

dt
=− Ji+1/2− Ji−1/2

△x
, i=1,··· ,N−1, (3.1)

dJi−1/2

dt
=− 1

△x

(

J2
i

ni
− J2

i−1

ni−1

)

− kB

m△x
(niTi−ni−1Ti−1) (3.2)

+
qni−1/2

m△x

[

(Vi+B(xi))−(Vi−1+B(xi−1))
]

+
h̄2ni−1/2

6m2△x
(Pi−Pi−1), i=1,··· ,N,

dei

dt
=− 5kB

2m△x
(Ji+1/2Ti+1/2− Ji−1/2Ti−1/2)−

1

2△x

(

J3
i+1/2

ni+1/2
−

J3
i−1/2

ni−1/2

)

× qJi

m△x

[

(Vi+1/2+B(xi+1/2))−(Vi−1/2+B(xi−1/2))
]

+
h̄2

8m2△x
(Qi+1/2−Qi−1/2)

+
kBσ

(△x)2

[

ni+1/2(Ti+1−Ti)−ni−1/2(Ti−Ti−1)
]

, i=1,··· ,N−1, (3.3)

0=ǫs
Vi+1−2Vi+Vi−1

(△x)2
−q(ni−C(xi)), i=1,··· ,N−1. (3.4)

Here, Pi and Qi+1/2 are the discrete quantum terms

Pi =
1

△x

(√

ni+1

ni
+

√

ni−1

ni
−2

)

, (3.5)

Qi+1/2 =
Ji+1/2

(△x)2
(logni+3/2−2logni+1/2+logni−1/2)

+
ni+1/2

(△x)2

(

Ji+3/2

ni+3/2
−2

Ji+1/2

ni+1/2
+

Ji−1/2

ni−1/2

)

. (3.6)
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We use Ji =(Ji−1/2+ Ji+1/2)/2, ni+1/2 =(ni+ni+1)/2 and similar for other variables.
Furthermore, Ohmic contact boundary conditions are imposed [3]:

n(0)=C(0), n(L)=C(L), nx(0)=nx(L)=0,

Jx(0)= Jx(L)=0, T(0)=T(L)=T0, V(0)=0, V(L)=VB.

3.2 A central difference scheme for stationary computations

Discarding the temporal derivatives in (2.12)-(2.15), we obtain the ODE system that de-
scribes the steady states. The first equation may be readily integrated once, which implies
a constant current density

J(x)= J0. (3.7)

Then we solve by the Newton-Raphson method the following nonlinear algebraic sys-
tem:

0=− 1

△x

(

J2
0

ni
− J2

0

ni−1

)

− kB

m△x
(niTi−ni−1Ti−1) (3.8)

+
qni−1/2

m△x

[

(Vi+B(xi))−(Vi−1+B(xi−1))
]

+
h̄2ni−1/2

6m2△x
(Pi−Pi−1), i=0,··· ,N−1,

0=− 5kB

2m△x
(J0Ti+1/2− J0Ti−1/2)−

1

2△x

(

J3
0

ni+1/2
− J3

0

ni−1/2

)

× qJ0

m△x

[

(Vi+1/2+B(xi+1/2))−(Vi−1/2+B(xi−1/2))
]

+
h̄2

8m2△x
(Qi+1/2−Qi−1/2)

+
kBσ

(△x)2

[

ni+1/2(Ti+1−Ti)−ni−1/2(Ti−Ti−1)
]

, i=1,··· ,N−1, (3.9)

0=
Vi+1−2Vi+Vi−1

(△x)2
− q

ǫs
(ni−C(xi)), i=1,··· ,N−1. (3.10)

Here the quantum terms are

Pi =
1

△x

(√

ni+1

ni
+

√

ni−1

ni
−2

)

, (3.11)

Qi+1/2 =
J0

(△x)2
(logni+3/2−2logni+1/2+logni−1/2)

+
ni+1/2

(△x)2

(

J0

ni+3/2
−2

J0

ni+1/2
+

J0

ni−1/2

)

. (3.12)

3.3 Initial data preparation and continuation strategy

The nonlinear interaction between the quantum mechanism and the convection/diffusion
terms is a delicate issue. The quantum terms involve high order derivatives, and a strong



X. Hu, S. Tang and M. Leroux / Commun. Comput. Phys., 4 (2008), pp. 1034-1050 1041

initial layer appears in the transient computations. If the initial data is not well prepared,
the initial layer can be so strong that the numerical simulation breaks almost immedi-
ately. Similarly, to solve the nonlinear algebraic system, the stationary computations also
require a well-prepared initial guess.

We compute the transient solution for zero applied voltage VB = 0 in the following
way. First, we ignore the potential barrier and take a classical hydrodynamic model,
namely, with B(x) = 0 and h̄ = 0. Without the quantum terms, a transient computation
may be readily performed, and the numerical solution converges toward the steady state.
Next, we gradually increase h̄ from 0 to the true physical value in 10 sub-steps. At each
sub-step, we use the steady state to the previous choice of h̄ as the initial data. Using
the solution with the true physical value of h̄, we compute corresponding steady states
with gradually increasing barrier height in a similar way, until it reaches 0.209V. In this
manner, we obtain the asymptotic solution to the transient QHD system at zero applied
voltage.

We use this solution as the initial guess for the Newton-Raphson code at VB = 0. In
particular, we take the average current density (in space) as the initial guess for J0. The
stationary computations then adopt a continuation strategy. That is, we iterate until the
stationary solution is obtained at a certain applied voltage VB. We then use this steady
state as the initial guess for the iterations at applied voltage VB+△VB. In simulations
presented hereafter, we take △VB =0.1mV. By this procedure, we obtain the steady states
for applied voltages in the range of [0,0.22V].

Finally, we perform transient computations at selected VB’s, using the steady states
at each VB as the initial data. We remark that a numerical stationary solution solves
the nonlinear algebraic system, whereas a numerical transient solution solves the semi-
discrete ODE system. There is a difference in the formulation, which generates initial
layers in a transient computation. The deviation also provides a perturbation to a steady
state, which is desirable for dynamical stability check.

4 Numerical results for the QHD model

Simulations with the QHD model are summarized in Fig. 3. We use 500 grid points to
resolve the space. The transient computations are performed with a time step size △t =
10−5ps. We terminate the computations typically up to several hundred picosecond, or
when a steady state is reached. We remark that the same stationary results were reported
in [17] for a larger range of applied voltage, by a damped Newton method to solve the
nonlinear algebraic system.

There are two distinct features in Fig. 3. First, the negative differential resistance
(NDR) is captured. NDR occurs when VB goes beyond a threshold at around 0.18V. The
threshold and corresponding current densities are slightly different from the vQHD re-
sults in Fig. 2. The other feature, which we shall describe in more details is the obvious
difference in the transient and stationary computations.
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Figure 3: I-V curve: stationary computations (solid), and transient computations (circles).
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Figure 4: Current density (averaged in space) by transient computations at VB =0.01V.

When the applied voltage is small, the transient solution gradually converges to the
corresponding steady state. This is illustrated in Fig. 4 for VB = 0.01V. After a duration
of about 140ps, the current density becomes essentially constant. The damped oscillation
period is about 6ps. We remark that the time to equilibrate depends on the initial data
preparation. The particle density and current density are displayed in Fig. 5. The particle
density undergoes a very small change during evolution. The profile is slightly non-
symmetric due to the applied voltage. In the mean time, the current density experiences
an obvious initial layer, which keeps decaying afterwards. At t=90ps, the variation is at
about 1% of the average current density.

If we double the grid, namely, take N = 1000, the particle density remains almost
unchanged during the evolution. See Fig. 7 at t = 90ps. However, the current density is
more sensitive. Double grid leads to a much stronger initial layer, hence a longer time
to equilibrate. See Fig. 6. Accordingly, the current density profile differs considerably
with the N=500 computing results at t=90ps. Nevertheless, the average current density
converges to the same steady state.
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Figure 5: Particle density and current density by transient computations at t=90ps for VB =0.01V.
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Figure 6: Current density (averaged in space) by transient computations at VB =0.01V with double grid.
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Figure 7: Particle density and current density by transient computations at t=90ps for VB =0.01V with double
grid.

In Fig. 8, we depict the transient current density at VB = 0.15V. After a duration of
about 40ps, the current density becomes essentially constant. The damped oscillation
period is about 5ps. In a later stage, the particle density and current density are displayed
in Fig. 9. There is a charge accumulation between the barriers.

If we double the grid at this applied voltage, we find a quite different picture. In
Fig. 10, although the initial layer decays in the first 20ps, there appears a seemingly non-
decreasing temporal oscillation for current density. The period is about 65ps. The spatial
variation remains big, as shown in Fig. 11 for t=90ps. Because we start the transient com-
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Figure 8: Current density (averaged in space) by transient computations at VB =0.15V.
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Figure 9: Particle density and current density by transient computations at t=90ps for VB =0.15V.
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Figure 10: Current density (averaged in space) by transient computations at VB =0.15V with double grid.

putation from the steady state (with a perturbation), this obviously demonstrates that
the steady state loses dynamical stability. If we view the semi-discrete transient system
(3.1)-(3.3) as a dynamical system, the applied voltage VB is the only control parameter.
The steady state corresponds to a critical point. For small VB, the critical point is stable,
and the dynamical system converges to the critical point. At a larger applied voltage
VB (around 0.15V), the stationary solution becomes unstable. The temporally oscillating
solution corresponds to a closed orbit.
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Figure 11: Particle density and current density by transient computations at t=90ps for VB =0.15V with double
grid.
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Figure 12: Current density (averaged in space) by transient computations at VB = 0.19V with 500 grid points
(upward-triangle) and those with 1000 grid points (downward-triangle).

For larger applied voltages, the oscillations may grow indefinitely. At an applied volt-
age slightly higher than the NDR threshold, we see a persistent growth of the oscillation
in Fig. 12 (VB = 0.19V). The oscillation period is again about 65ps. Nevertheless, the
temporal average current density remains basically unchanged. Double grid results give
rise to a higher amplitude, with a similar growing rate. We remark that when there is an
oscillation in the current density, a temporal average is performed and displayed in the
I-V curve in Fig. 3.

When we further increase the applied voltage, the oscillation becomes stronger with a
larger growing rate. See Fig. 13. The period is always about 65ps. At even larger applied
voltage, the numerical code breaks down. The stationary system still works for a bigger
range, but also fails when applied voltage reaches about 0.22V. More careful study shows
that there are accumulations of electrons around the boundary, and the Ohmic boundary
conditions cause severe boundary layer. In this range, we are sceptical about the validity
of the QHD model and the boundary condition for the one dimensional RTD. With a
comparison to the vQHD model, we speculate that the energy equation with thermal
diffusion is not enough to stabilize the QHD system. Rigorous mathematical analysis is
desirable to substantiate understanding of the QHD model.
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Figure 13: Current density (averaged in space) by transient computations at larger applied voltages.

5 Simulations for the QDD model

The QDD model (2.19)-(2.21) is easier to resolve numerically than the QHD model. We
first rescale the system by

x→ Lx, t→ mL2

kBT0τ0
t, n→Cmn, C(x)→CmC(x),

V→ kBT0

q
V, B(x)→ kBT0

q
B(x), J→ kBT0Cmτ0

Lm
J.

Here Cm =C(0)=1018cm−3. The undimensionalized QDD system reads

nt+ Jx =0, (5.1)

nx−n(V+B(x))x−ε2n

(

(
√

n)xx√
n

)

x

=−J, (5.2)

λ2Vxx =n−C(x). (5.3)

The scaled Planck constant ε and the Debye length λ are defined by

ε2 =
h̄2

6mkBT0CmL
, λ2 =

ǫskBT0

q2CmL2
. (5.4)

We introduce a quantum quasi Fermi level

F=−ε2 (
√

n)xx√
n

+logn+(V+B(x)). (5.5)
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Figure 14: Particle density for QDD model at VB =0V.
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Figure 15: Particle density for QDD model at VB =0.3V.

Here, the term −ε2(
√

n)xx/
√

n is the so-called quantum Bohm potential. Thus, we obtain
the complete system of QDD model

nt =(nFx)x, (5.6)

−ε2 (
√

n)xx√
n

+logn+(V+B(x))= F, (5.7)

λ2Vxx =n−C(x). (5.8)
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Figure 16: I-V curve by QDD model.

Furthermore, the current density J may be recovered from

J =−nFx. (5.9)

By a similar central difference and Newton-Raphson method, we simulate the tran-
sient and stationary problems. In contrast to the QHD model, the transient solution al-
ways converges, without oscillation. The difference between the two computations is
quite small. In Figs. 14 and 15, we display the particle densities of both computations at
two different applied voltages. The particle density distribution is symmetric at VB = 0.
Electrons tend to move along with the electric field for VB>0. Four humps appear. Two of
them correspond to the doping boundary, and the other two correspond to the barriers.

From the I-V curve, we observe that the NDR phenomenon is not captured due to
the strong diffusion in QDD. Actually, with a bipolar (two carriers) model, NDR was
reported [23].

6 Discussions

In this paper, we have studied numerically the transient and stationary problems for fluid
type models, including a QHD model and a QDD model. Different from a general per-
ception that stationary simulations are enough for microelectronic devices, we discover
that the quantum effects may influence charge transport in a more delicate manner for
fluid type models. Steady states may lose stability and an incorrect I-V relation may be
produced from the stationary computations. It is important to note that this instability
could occur at an applied voltage that falls into the operation range of the quantum de-
vice. We believe that transient computations are necessary for quantum charge transport
simulations with fluid type models in general.
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