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Abstract. The boundary plasma turbulence code BOUT models tokamak boundary-
plasma turbulence in a realistic divertor geometry using modified Braginskii equations
for plasma vorticity, density (ni), electron and ion temperature (Te, Ti) and parallel mo-
menta. The BOUT code solves for the plasma fluid equations in a three dimensional
(3D) toroidal segment (or a toroidal wedge), including the region somewhat inside
the separatrix and extending into the scrape-off layer; the private flux region is also
included. In this paper, a description is given of the sophisticated physical models,
innovative numerical algorithms, and modern software design used to simulate edge-
plasmas in magnetic fusion energy devices. The BOUT code’s unique capabilities and
functionality are exemplified via simulations of the impact of plasma density on toka-
mak edge turbulence and blob dynamics.
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1 Introduction

The performance of tokamaks and other toroidal magnetic fusion devices depends cru-
cially on the dynamics of the boundary region, i.e., the transition region from the hot
core plasma through the separatrix to the material surface of the first wall, as shown
in Fig. 1. Plasma turbulence, and the resulting anomalous cross-field plasma transport,
are physical processes in the boundary region, affecting both core plasma confinement
[e.g. high confinement mode (H-mode) and Edge Localized Modes (ELMs)], the density
limit, and plasma-wall interactions [1]. The plasma boundary region has a number of
physics attributes which make it quite distinct from the core: relatively low temperature,
large radial gradients, and high neutral-gas and impurity densities, proximity of open and
closed flux surfaces, presence of X-point and sheath physics in the Scrape-Off-Layer (SOL). The
large radial gradients tend to drive turbulent fluctuations which are a larger percentage
of background values than in the core plasma.

Strong boundary turbulence has been observed in nearly all magnetic confinement
devices [2, 3]. There exist many experimental turbulence measurements in the pedestal
region and in the SOL. Common diagnostics include electrostatic probes, reflectometry,
phase contrast imaging (PCI), Beam Emission Spectroscopy (BES), and Gas Puff Imag-
ing (GPI) [2]. Observed boundary turbulence has many common features, and a great
deal of experimental data has been obtained over the past 20 years on e.g. fluctuation
levels, spectra, correlation lengths, and scalings, but until recently this data could not
be understood from first principles. The reason is simple. The diagnostics typically are
limited either to local measurements in space or to particular turbulence quantities with
certain working assumptions [2]. Predictive simulation of boundary turbulence from
fundamental physics models is therefore an important but daunting challenge owing
to the special properties of the boundary plasma, its importance to an overall under-
standing of fusion plasmas, and the vast range of relevant spatial and temporal scales.
A critical task is to demonstrate that simulations are able to reproduce the phenomena
observed in real magnetic confinement devices. With the recent development of three
dimensional (3D) non-linear codes, such as BOUT, it has become possible to make a di-
rect computation of boundary turbulence, and validating these codes with experiments
has since begun [4–11]. Using well benchmarked codes at the location of a particular
measurement, boundary turbulence simulations are able to validate diagnostic tools and
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Figure 1: (color online). Schematic views of tokamak and boundary plasma region (magnetic separatrix is red
line) from [38].

patch the experimental measurements together, yielding global understanding of bound-
ary turbulence dynamics, and, most importantly, leading to scientific discoveries.

The BOUT code is a nonlinear initial-value two-fluid electromagnetic turbulence code
in boundary plasmas which spans the separatrix [4, 12]. This 3-dimensional (ψ,θ,ζ) code
represents configuration space via a grid in poloidal magnetic flux (ψ), poloidal angle
(θ) and toroidal angle (ζ). The geometry can be a circular annulus or that of a diverted
tokamak and includes boundary conditions for both closed magnetic flux surfaces and
open field lines. The same set of fluid moment equations for plasma vorticity, density,
ion and electron temperature and parallel momentum is discretized for both geometries.
The equations are solved via a Method-of-Lines approach and an implicit backward-
differencing scheme using a Newton-Krylov iteration to advance the system in time via a
fully implicit Newton-Krylov solver PVODE [13]. The spatial derivatives are discretized
with finite differences. A fourth-order upwinding algorithm is used for nonlinear convec-
tion, and a second-order central difference scheme is used for the rest. Boundary condi-
tions at conducting material surfaces are implemented on the plasma side of the sheath.
The 3D BOUT code is parallelized based on a domain decomposition model by imple-
menting message passing between multiple processors by using the MPI package [14].
In order to investigate boundary turbulence, BOUT is able to couple to the edge plasma
transport code UEDGE [15], and MHD equilibrium code EFIT [16] and Corsica [17] to get
the realistic X-point divertor magnetic geometry and plasma profiles.

BOUT contains much of the relevant physics for the edge barrier problem for the
experimentally relevant X-point divertor geometry. The calculations were carried out
to validate experimental measurements and simultaneously to provide consistent under-
standing of boundary turbulent dynamics. Encouraging results have been obtained using
measured plasma profiles in current generations of major fusion devices such as DIII-D,
C-Mod and NSTX. The resistive X-point mode has been identified in X-point divertor ge-
ometry [4,18]. Comparison of the shifted-circle vs. X-point geometry shows the different
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dominant modes and turbulence fluctuation levels [4]. The poloidal fluctuation phase
velocity shows experimentally observed structure across the separatrix in many fusion
devices [19]. The fluctuation phase velocity is larger than E×B velocity. The Quasi-
Coherent mode is believed to be responsible for the high energy confinement (H-mode),
yet acceptably low particle (impurity) confinement in the Alcator C-Mod high density
plasma regime. The experimentally measured dispersion and mode stability is in good
agreement with the resistive ballooning X-point mode predicted by the BOUT code [20].
A strong poloidal asymmetry of particle flux in the proximity of the separatrix may ex-
plain the paradox of the JET probe measurement of the particle flux when comparisons of
the limiter vs. divertor experiments had been made [19]. BOUT simulations performed
with the measured discharge parameters show a Geodesic-Acoustic Mode (GAM) oscil-
lation at the experimentally observed frequency [21]. Our L-H transition with simple
sources added shows transitions with resistive X-point modes dominating L-mode and
the levels of turbulence are similar to experimental measurements [19]. Blobs have also
been clearly identified from BOUT runs and analysis of blob dynamics has shed insight
on 3D X-point effects associated with increased convective velocity [3, 22, 23]. X-point
effects can isolate blobs in the main SOL from divertor legs [24]. Simulations of C-MOD
find blob-like structures with amplitudes and spatial correlation lengths comparable to
those observed experimentally. BOUT simulations also provide evidence of instability
and fluctuations in divertor legs that is uncorrelated with activity in the main SOL [25].
Simulations of Edge Localized Modes (ELMs) using the BOUT code find the expected
peeling-ballooning mode structure and growth rates in the linear phase, followed by
rapid radially outward propagation of filaments in the nonlinear phase [26]. Simulations
of ELMs in DIII-D plasmas find a mode structure similar to that directly observed with
fast cameras [26–28].

The BOUT project originally started in the late 1990s to simulate boundary turbulence
across the magnetic separatrix. The goal of the BOUT project is the development and
deployment of a user-friendly, state-of-art, nonlinear fluid turbulence capability for the
analysis of boundary turbulence in a general geometry on a routine basis. Since then, the
BOUT code has been further developed with emphasis on readability of the source code,
modularity in physics models, functionality and/or macros for differential operators,
consistency in higher-order spatial differencing, and finally thorough verification via test
problems [29]. The most recent development, BOUT++, is based on a object-oriented
approach using language C++. The aim of BOUT++ is to automate the common tasks
needed for simulation codes, and to separate the complicated (and error-prone) details
such as differential geometry, parallel communication, and file input/output from the
user-specified equations to be solved. Thus the equations being solved are made clear,
and can be easily changed with only minimal knowledge of the inner workings of the
code. As far as possible, this allows the user to concentrate on the physics, rather than
worrying about the numerics [30].

A method for obtaining a self-consistent model of edge-plasma turbulence and long-
time edge profile evolution has been explored by coupling 2D edge transport code
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UEDGE and 3D turbulence code BOUT via a relaxed iterative approach where each code
is run on its own characteristic time scale. During each cycle of the iterative procedure,
the toroidally averaged plasma profiles are evolved to steady state. A fraction of these
profiles is used to update the profiles driving fluctuations in the 3D turbulence code.
Likewise, a fractional update of the turbulent fluxes is provided to the transport code
from the turbulence simulation [31]. The coupled transport/turbulence simulation tech-
nique provides a strategy to achieve physics-based predictions for future device perfor-
mance.

The remainder of the paper is organized as follows. Section 2 presets physical models
for boundary turbulence and a set of BOUT dynamical equations. The magnetic geome-
try and BOUT field-aligned coordinates are described in Section 3. The spatial numerical
implementations is explained in Section 4. The background for understanding an implicit
backward-differencing scheme using a Newton-Krylov iteration is presented in Section
5. The brief description of BOUT software suite is given in Section 6. The sample BOUT
simulations results are illustrated in Section 7. Finally, a summary of this paper is pre-
sented in Section 8.

2 BOUT dynamical equations

2.1 BOUT plasma equations

In the boundary plasma, the application of a fluid model is reasonable in part because of
the low temperature and thus high collisionality along the magnetic field. Further, the
dominant modes in our simulations are in the long-wavelength regime, k⊥ρj ≪1, so the
perpendicular motion can also be described by a fluid approach. The small parameters
to define the ordering are:

β=8π(pj +pe)/B2≪1, δj =ρj/L⊥∼ k⊥ρj ≪1, ∆j =λj/L‖∼ k‖λj ≪1, k⊥≪ k‖.

Here k⊥ and k‖ are the components of the fluctuation wave vector perpendicular and
parallel to magnetic field, respectively. As usual, pj is pressure, ρj = vTi/ωcj is gyrora-
dius, and λj = vTi/νj is the mean-free path with vTi =

√

2Tj/Mj, the thermal speed, ωcj

the gyrofrequency, νj the characteristic collision frequency, Tj temperature, Mj mass for
species j (j = i,e). The magnitude of magnetic field is denoted by B. For application to
micro-turbulence in tokamak edge transport barriers, an additional ordering δv ≡ v/vth,i

is introduced: the ratio of plasma species flow velocities to ion thermal velocity. The short
mean-free path description of magnetized plasma was originally formulated by Bragin-
sikii assuming a MHD ordering δv ≃ 1 [32]. Mikhailovskii and Tsypin first adopted a
drift-ordering to give an approximate set of two-fluid equations [33], and Simakov and
Catto completed the derivation with corrections [34]. The drift-ordering is defined as
v≃vpi with δv≪1 and the ion heat flux divided by ion density will be on the same order
as the diamagnetic drift velocity vpi. The end result is the “parallel” viscous stress ten-

sor
↔
πcj being modified. Thus an appropriate set of equations to describe the turbulence
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is given by a seven-field model obtained by reduction of the Braginskii equations [4] in
toroidal geometry based on drift-wave ordering with sources and sinks added:
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Also, the auxiliary variables, the vorticity ̟, the ”parallel” viscous stress tensor πci,e, the
parallel electric field, and the parallel Ampère’s law are given by the following set of
equations:

∇2
⊥A‖=−

(

4π

c

)

j‖, (2.7)
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Definitions of various quantities associated with plasma physics are as follows:

VE = cb0×∇⊥φ/B, VPi,e = cb0×∇⊥Pi,e/NiZi,eeB,

B̃=∇A‖×b0, µii =
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Here ∇‖F= B∂‖(F/B) for any F,

∂‖=∂0
‖+b̃·∇, b̃= B̃/B, ∂0

‖=b0 ·∇, κ =b0 ·∇b0.

The symbol tilde represents the fluctuation quantities. Also, µii, µ‖, and χc
‖ are the classi-

cal diffusion coefficients, and νei is electron collision frequency. Except for parallel viscous
damping, magnetic pumping terms, and source and sink terms, similar equations are de-
rived by Zeiler et al. [35]. Parallel electron viscous damping is important as it smoothes
the high-k‖ oscillations near the X-point. The ion temperature equation is important for
proper determination of the fluctuating electric fields (because of the ion diamagnetic
drift); also it may introduce the ηi-mode in the inner edge region [36, 37]. The last two
group terms in curved brackets on the right-hand-side of Eq. (2.2) are the part of the
lowest-order nonlinear convection terms after the gyroviscous cancellation in an expan-
sion in inverse aspect ratio ǫ= a/R.

Definitions of various quantities associated with neutrals are as follows:

νI = Nn〈σv〉I , νcx = Nn〈σv〉cx,

Sp = NiνI , Scx = Niνcx, WI ≃20eV.

Here νI is the ionization rate, νcx the charge exchange rate, WI the average energy loss
per ionization. The particle source term Sp arises from ionization of neutral gas and re-
combination and momentum source term Scx arises from charge exchange. The external
source terms are Sm for momentum, SE for energy. The derivation neglects ion momen-
tum source/sink due to neutrals.
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2.2 Modified “parallel” viscous stress tensor
↔
πcj

As we show in [38], the “parallel” viscous stress tensor
↔
πcj yields magnetic pumping

term, which is important because it damps the plasma flow shear. The turbulence fluc-
tuation levels and transport are in turn regulated by the shear flow, via the time-varying
E×B flow shear de-correlation. However, the magnetic pumping term makes a negligi-
ble contribution to linear instability because it is on the order of ∆j smaller than other
dominant linear curvature drives, such as the first ∇P term on the right-hand-side of
Eq. (2.2).

Motivated by the important observation of flow shear damping, the self-consistent

expression for the ion “parallel” viscous stress tensor,
↔
πcj, is then carefully examined and

is re-derived by Simakov and Catto in the drift-ordering as follows: [34]
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.

In particular, this expression for
↔
πcj allows the neoclassical Pfirsch-Schlüter expression

for VPS
‖i

to be recovered. Comparison with Eq. (2.10) for a MHD ordering shows the

difference in last three-group terms with square brackets.

2.3 Analytic neutral model

Fueling at the edge of a tokamak is a complex process and requires the use of fluid or
Monte Carlo codes for the best available modeling. However, for purposes of examining
the role of neutrals in pedestal density formation, it is reasonable to have an analytic
neutral model that includes sufficient physics to deal with the problem. One such model
is a simple fluid neutral diffusion model where ion charge exchange (CX) gives rise to
diffusion and ionization to the loss of neutrals. Since neutrals do not follow field lines,
a simple neutral diffusion model can be setup from neutral continuity equation, with a
radial coordinate r (for length in this case) to the wall,

∂

∂r
λCXvth,n

∂Nn

∂r
= NnνI . (2.12)
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where CX gives rise to diffusion as Γn ≃−(Tn/Mnνcx)∇Nn and ionization to the loss
of neutrals. Here νI = Ne〈σionvth,e〉. This gives the well known results for the spatial
distribution of neutrals:

Nn = Nw f (θ)exp

(

− r−rw

(λIλcx)1/2

)

. (2.13)

where Nw is the neutral density at the main chamber wall and rw is the position of the
wall. The electron ionization and ion charge exchange lengths are, respectively, λI =
vth,n/νI , λcx =vth,n/νcx,vth,n =

√
Tn/Mn. Because the charge exchange collision frequency

is often the largest, the gas and ion temperature are typically assumed equal, i.e., Tn ≃Ti.
The model provides analytic expressions for the edge Nn profile in slab geometry with the
assumption that the fueling is entirely from the plasma edge. A poloidally nonuniform
source of neutrals is specified by f (θ). This simple model also allows the neutral density
to adjust itself to plasma profile evolution via the electron ionization length λI and ion
charge exchange length λcx. For a typical DIII-D L-mode plasma, the neutral density
varies radially less than 30% from the wall to a few centimeters inside the last closed flux
surface.

2.4 Transformation of the electron parallel momentum equation

Due to the time derivative in E|| of Eq. (2.8) in Eq. (2.1) one needs to introduce a new
variable (canonical parallel momentum with unity mass),

Aj||=V||e−(e/mec)A||, (2.14)

to cast the equation in the form solvable by the method of lines. The parallel derivative
is taken with respect to perturbed magnetic field
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After combining time derivative and convection terms, the following equation
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Denoting Aj||=V||e−(e/mec)A|| and the original equation (2.1) can be rewritten as
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Here in Eq. (2.18) and in Eq. (2.1) the higher order nonlinear contribution due to the time

variation of an unit direction vector of magnetic field has been neglected (term (∂~b/∂t+
~Ve ·∇~b)·~V||e in [34]).

Accordingly Eq. (2.7) becomes the Helmholtz equation for the A||
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ωpe
2

c2
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c
ZieNi(Aj||−V||i), (2.19)

So solving it from given Aj|| and V||i one can find A||, and then finds V||e.

2.5 Simplification of vorticity

Vorticity is defined as

̟ = NiZie∇2
⊥φ+Zie∇⊥φ·∇⊥Ni+∇2

⊥Pi. (2.20)

Note that BOUT deals with perturbations of physical quantities, assuming that the
zero order (equilibrium) terms cancel out altogether. The terms involving ∇⊥φ0 and
∇⊥Ni0 are dropped due to the large gradient scale length of equilibrium profiles. The
nonlinear terms are dropped by an argument that this nonlinearity is not important for
small fluctuations (e.g. Ni/Ni0≪1). Then what is left is

̟ = Ni0Zie∇2
⊥φ+∇2

⊥Pi. (2.21)

Again, Ni0 can be put under ∇⊥ by same argument, and therefore the equation solved is
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⊥
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Zieφ+
Pi

Ni0

)

=
̟

Ni0
. (2.22)

3 Magnetic geometry

3.1 Convention for magnetic field and its sign

In a axisymmetric toroidal system, the magnetic field can be expressed as

B= I(ψ)∇ζ+∇ζ×∇ψ, (3.1)
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where ψ is the poloidal flux, θ is the poloidal angle-like coordinate, and ζ is the toroidal
angle. Here, I(ψ) = RBt, R is the tokamak major radius and Bt is the toroidal magnetic
field. The two important geometrical parameters are: the curvature, κ, and the local pitch,
ν(ψ,θ)= I(ψ)J /R2. The local pitch ν(ψ,θ) is related to the MHD safety q by

q(ψ)=2π−1
∮

ν(ψ,θ)dθ

in the closed flux surface region, and

q(ψ)=2π−1
∫ outboard

inboard
ν(ψ,θ)dθ

in the scrape-off-layer. Here J = (∇ψ×∇θ ·∇ζ)−1 is the coordinate Jacobian, R is the
major radius, and Z is the vertical position.

In our notation ζ is the geometric toroidal angle as shown in Fig. 1. Positive Bt is in
the ζ direction, i.e., counter-clock-wise (looking from the top). For negative Bt, which is

considered the “normal” case, the ion ~∇B drift is down [39]. For the poloidal component,
Bp, the positive sign by convention corresponds to the direction from the inner plate to
the outer one.

3.2 The usual flux coordinates

For such an axisymmetric equilibrium the metric coefficients are only functions of ψ and
θ. Two spatial differential operators appear in the equations given as following: ∇‖ and

∇2
⊥, namely,

∇‖=b0 ·∇=
1

J B

∂

∂θ
+

I

BR2

∂

∂ζ
=

Bp

hB

∂

∂θ
+

Bt

RB

∂

∂ζ
, (3.2)

∇2
⊥Φ=−∇·[b×(b×∇Φ)]=∇2Φ−(∇·b)(b·∇Φ)−∇2

‖ . (3.3)

If we use the usual flux coordinates (ψ, θ, ζ) and study the mode with

ρj∇‖≃0, ρj∇⊥≃1,

since
∣

∣

∣

∣

ρj
Bp

hB

∂

∂θ

∣

∣

∣

∣

≃
∣

∣

∣

∣

ρj
Bt

RB

∂

∂ζ

∣

∣

∣

∣

≃ ε/q, for kθρj ≃1.

∇‖≃0 depends on the cancelation of two finite and almost equal numbers. Consequently,
it is difficult to obtain accurate numerical solutions.
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3.3 Field-aligned coordinates

In order to efficiently simulate turbulence with short perpendicular wavelengths k‖≪k⊥,
we choose field-aligned coordinates [4,40–42], (x, y, z), which are related to the usual flux
coordinates (ψ, θ, ζ) by the relations

x=ψ−ψs,

y=θ,

z=ζ−
∫ θ

θ0

ν(x,y)dy. (3.4)

In the field-aligned coordinates, the parallel differential operator is simple, involving
only one coordinate y

∂0
‖=b0 ·∇‖=

(

Bp

hB

)

∂

∂y
=J‖

∂

∂y
. (3.5)

which requires a few grid points. However, magnetic shear leads to strong deformation
of coordinate cells in the plane perpendicular to the field, and spatial discretization of
radial derivative has to be taken care with special methods [4, 40, 41]. To remedy this we
introduce a radial difference procedure in dual sets of coordinate systems. Even though
the simulation data resides on the field-aligned coordinates, the radial difference will be
computed in the usual flux (ψ,θ,ζ) coordinates. Thus a high order interpolation scheme
is needed to map data back and forth between the field-aligned coordinates and the usual
flux (ψ,θ,ζ) coordinates.

The derivatives are obtained from the chain rule as follows:

∂

∂ψ
=

∂

∂x
− I

∂

∂z
, (3.6)

∂

∂θ
=

∂

∂y
−ν(x,y)

∂

∂z
, (3.7)

∂

∂ζ
=

∂

∂z
, (3.8)

I =

(

∫ y

y0

∂ν(x,y)

∂ψ
dy

)

. (3.9)

The coordinate Jacobian and metric coefficients are defined as following:

J =(∇ψ×∇θ ·∇ζ)−1 =
h

Bp
, (3.10)

h=
√

Z2
θ +R2

θ, (3.11)

J11 = |∇x|2 =
R2

J 2
(Z2

θ +R2
θ), (3.12)

J12 =J21 =∇x·∇y=− R2

J 2
(ZθZψ+RψRθ), (3.13)
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J22 = |∇y|2 =
R2

J 2
(Z2

ψ+R2
ψ), (3.14)

J33 =
1

R2
, (3.15)

J‖=
Bp

hB
. (3.16)

Here h is the local minor radius, and y0 is an arbitrary integration parameter. The dis-
advantage of this choice of coordinates is that the Jacobian diverges near the X-point as
Bp→0. Therefore a better set of coordinates is needed for X-point divertor geometry.

3.4 Twist-shift boundary conditions

In the field-aligned coordinates the y coordinate is no longer periodic, but pseudo-
periodic, because it is the coordinate along the field line and it carries with it a toroidal
displacement in the binormal direction z. Therefore the twist-shift boundary conditions
are applied in the poloidal direction inside the separatrix and periodic boundary condi-
tions are applied in the binormal/toroidal direction:

f (ψ,θ+2π,ζ)= f (ψ,θ,ζ)−→ f

(

x,y+2π,z−
∮

νdy

)

= f (x,y,z), (3.17)

f (ψ,θ,ζ+2π)= f (ψ,θ,ζ)−→ f (x,y,z+2π)= f (x,y,z), (3.18)

where the integral
∮

ν(x,y)dy represents a global shift by the periodicity constraint in
the field-aligning transformation. If the simulation domain is the entire flux surface (the
parallelogram ABEF in Fig. 2, 0≤y≤2π, 0≤z≤2π), the complete set of the Fourier modes
n and m are kept.

3.5 Annular toroidal wedge

For efficient simulations of turbulence with the high toroidal mode number n (n ≫ 1),
in best practice a truncated computational domain on the full torus down to a toroidal
wedge (the parallelogram AB1E1F) is generally used, as shown in Fig. 2. To ensure
the toroidal periodicity, the full torus has to be divided into an integer ∆n equal parts
(toroidal wedges) and enforce periodicity on each of them. However, after one poloidal
cycle along the field line, the end of the field line is shifted by a global pitch ∆ζ ≡
∮

ν(ψ,θ)dθ, in general it may fall into a different but an identical toroidal wedge, so the
poloidal periodicity must be enforced after each such cycle. The periodic boundary con-
ditions in a annular toroidal wedge then become:

f (ψ,θ,ζ+2π)= f (ψ,θ,ζ)−→ f (x,y,z+2π/∆n)= f (x,y,z), (3.19)

f (ψ,θ+2π,ζ)= f (ψ,θ,ζ)−→ f

(

x,y+2π,z−
∮

νdy

)

= f (x,y,z), (3.20)
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Figure 2: (color online). (a) A sketch of the field-aligned coordinates mapping from (θ,ζ) to (y,z). The area
covered by the square ABCD is for the usual flux coordinates (ψ, θ, ζ). The area covered by parallelogram
ABEF is for the field-aligned coordinates (x, y, z). The green area covered by the parallelogram AB1E1F is
a truncated simulation domain by the name of an annular toroidal wedge; (b) A sketch of a annular toroidal
wedge. The width of the wedge ∆ζ =2π/∆n, where ∆n≥1 is an integer.

where ∆n is a quantization constant, an integer. The consequence of the truncation of
the computational domain is that the complete set of the n-spectrum is reduced from
n=(0,±1,±2,···) to n=(0,±1∆n,±2∆n,···) in simulations of a annular toroidal wedge.

4 Spatial numerical implementations

4.1 Radial derivatives in field-aligned coordinates

According to the chain rule, the transformation of the radial derivative in field-aligned
coordinates is given in Eq. (3.6). Due to the magnetic shear, the coordinate cell defor-
mation occurs: a rectangle cell (∆ψ ∼ ∆ζ) in the flux coordinate becomes elongated in
field-aligned coordinates ∆x≫∆z by a factor of I due to secular poloidal displacement of
the two field lines, as shown in Fig. 3. The best way to handle this is to use finite Fourier
transforms which is exact up to machine accuracy. Applying Fourier transform in z leads
to

∂

∂ψ
fkz(x,y)=

∂

∂x
fkz(x,y)−(ikz I) fkz(x,y), (4.1)

where I is defined in Eq. (3.9) and can be pre-computed from magnetic geometry. How-
ever a preferred method is to (1) shift the Fourier transformed variable by a phase factor
exp[−ikz

∫ y
y0

ν(ψ,y)dy], and then (2) perform a finite difference on the transformed vari-

able fkz(x,y)exp[−ikz

∫ y
y0

ν(ψ,y)dy] in the usual flux coordinates where there is no cell

deformation. Even though theoretically they are identical when ∆ψ→0, this method has
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Figure 3: (color online). A sketch of adjacent grid-points mapping from the field-aligned coordinates
(xi−1,yj,zk) → (xi ,yj,zk) → (xi+1,yj,zk) to the usual flux surface coordinates (ψi−1,θj,ζ) → (ψi,θj,ζk) →
(ψi+1,θj,ζk).

a advantage for a consistency in numerical approximations to match the twist-shifted
boundary condition at the branch cut due to finite radial grid spacing ∆ψ as following:

Ikz≡
∂

∂ψ
exp

[

−ikz

∫ y

y0

ν(ψ,y)dy

]

≃
exp[−ikz

∫ y
y0

ν(ψ+∆ψ,y)dy]−exp[−ikz

∫ y
y0

ν(ψ,y)dy]

∆ψ
∆ψ→0−→ −ikz I. (4.2)

In other words, the variable −ikz I in Eq. (4.1) should be numerically pre-computed as
one complex variable Ikz defined as in Eq. (4.2), instead of as (−ikz) times I.

4.2 Inversion of the elliptic operators

The field equations (2.19) for A‖ and (2.22) for φ are elliptic partial differential equations

of second order in divergence form ∇2u−αu= f . When α is equal to zero a “pure” Lapla-
cian or Poisson equation results and when α is greater than zero a so called Helmholtz
equation is produced. The modern numerical schemes to efficiently solve this type of
equations on massive parallel computer platforms are iterative techniques based on the
multigrid methods [43–45]. However, a direct solver is still preferred for its simplicity
whenever possible.

4.2.1 Inversion of potential vorticity

The vorticity equation is defined in Eq. (2.22). Using F≡Zieφ+Pi/Ni0 and the differential
operator given in the Appendix (A.4), and applying Fourier transform in z leads to

(RBθ)
2

{

∂2Fkz

∂x2
+2Ikz

∂Fkz

∂x
+

[

I2
kz−k2

z

B2

(RBθ)4

]

Fkz

}

=
̟k

N̂i0

. (4.3)
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Here Ikz is defined in Eq. (4.2). Solving the ordinary differential equation (ODE) using a
tridiagonal linear solver yields Fkz(x,y), then inverse Fourier transform yields F(x,y,z)
in the field-aligned coordinates, from the latter Zieφ=F(x,y,z)−Pi/Ni0. Note that in this
procedure the radial boundary conditions for Ni, Ti, and φ become linked together.

4.2.2 Inversion of A‖

Similarly, the Helmholtz equation for A‖ from Eq. (2.19) in Fourier space can be written
as

(RBθ)

{

∂2 A||kz

∂x2
+2Ikz

∂A||kz

∂x
+

[

I2
kz−k2

z

B2

(RBθ)4

]

A||kz−
ω2

pe

c2
A||kz

}

=
4π

c
Ni0Zie

(

Aj‖−V‖i

)

kz
. (4.4)

The solution procedure is same as that for the vorticity.

4.3 Numerical implementation of boundary conditions

4.3.1 Toroidal (z) boundary conditions

To ensure the toroidal periodicity, a full torus has to be divided into an integer ∆n equal
parts (toroidal wedges) and enforce periodicity on each of them.

F(x,yk,zk+N)= F(x,yk,zk), (4.5)

zk+N = zk +Lz = zk+Nz∆z, (4.6)

where Lz is the toroidal length of the wedges, Nz is the number of nodal points, and ∆z
is the cell width.

4.3.2 Parallel (y) boundary conditions

The boundary conditions for Φ is the sheath boundary conditions in y in the SOL and the
private flux regions at the divertor plates, pseudo-periodic in y in “Edge” (the outer part
of the closed flux region inside of separatrix), as shown in Fig. 4.

• Twist-shift Edge boundary conditions. After one poloidal cycle along the field line,
the end of the field line is shifted by a global pitch

∮

ν(ψ,θ)dy in the binormal direction
z, in general it may fall into a different but an identical toroidal wedge, so the poloidal
periodicity must be enforced after each such cycle. A sketch of such procedures is pictori-
ally shown in Fig. 5(a). The pseudo-periodic boundary conditions in an annular toroidal
wedge then become:

F(x,yk+N , z̄k+N)= F(x,yk,zk), (4.7)

z̄k+N =

{

zk−
[∮

ν(x,y)dy
]

%Lz, zk >
[∮

ν(x,y)dy
]

%Lz,
zk−

[∮

ν(x,y)dy
]

%Lz+Lz, zk <
[∮

ν(x,y)dy
]

%Lz,
(4.8)
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Figure 4: (color online). The radial-poloidal plane is divided into three main regions: outer part of core (Edge),
SOL, private flux region and divertor plates.
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Figure 5: (color online). (a) A sketch of poloidal periodic grid-points mapping from the field-aligned coordinates
(xi,yj+2π, z̄k)→ (xi,yj,zk) to the usual flux surface coordinates (ψ,θj+2π,ζ)→ (ψi,θj,ζk), where z̄k = zk−
∮

ν(ψ,θ)dθ; (b) test results of twist-shifted periodic y-boundary using Lagrange interpolation scheme.

where the integral
∮

ν(x,y)dy represents a global shift by the periodicity constraint in the
field-aligning transformation. The symbol % represents the modulus operator, and the
expression x%y produces the remainder when x is divided by y, and thus is zero when y
divides x exactly.

The consequence of these shifts is that there must be interpolation in zk to the fact
that the field-aligning transformation itself involves a shift and in general ẑk after the
shift does not fall exactly on a nodal point in zk. Therefore testing must be done to show
that to which order of interpolation it makes no difference in the turbulence. Of course,
finite Fourier transforms are exact up to machine accuracy. Using Lagrange interpolation
scheme [46], we found that for a longest wavelength in z-direction, the 2-, 3-, 4-, and
5-points interpolation yield almost the same result, as shown in Fig. 5(b).
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• Sheath boundary conditions. An electrostatic sheath will form at any plasma
boundary and acts to filter all but the high energy electrons while attracting ions, con-
trolling the particle and energy flux leaving the plasma. Each ion-electron pair crossing
the sheath convects to the surface a quantity of energy which is conventionally described
using a total sheath heat transmission coefficient where [39] qse = γekTeΓse with qse total
heat flux at the sheath edge, Te the temperature, Γse ≡Nicse the sheath edge particle flux
and where

γe =2.5
Ti

Te
+

2

1−δe
−0.5ln

[(

2π
me

Mi

)(

1+
Ti

Te

)

2

(1−δe)2

]

(4.9)

with δe the secondary electron emission coefficient and Ti the ion temperature. Therefore
in the SOL and private flux region, the divertor plate boundary conditions are

Vj = cse =

√

Ti+Te

Mj
, (4.10)

jel
‖ = Nie

[

cse−
vTe

2
√

π
exp

(

− eφ

Te

)]

, (4.11)

qse =−κ‖e∂‖Te =γeNiTecse, (4.12)

qsi =−κ‖i∂‖Ti =γiNiTicse, (4.13)

∂‖̟ =0, (4.14)

∂‖Ni =0, (4.15)

where γi ≃ 2.5 and γe ≃ 7 are sheath energy transmission factors. Here we assume that
a magnetic field is in the normal direction to the divertor plates. There is no boundary
condition for density Ni and vorticity ̟. If a boundary condition has to be imposed for
numerical reasons, the zero parallel gradient is used at the sheath entrance.

5 Solving BOUT equations with PVODE

The fluid equations in Section 2 solved by BOUT can be cast in the most general form in
terms of a system of time-dependent ordinary differential equations (ODEs)

du

dt
= f(u,∇u,∇2u,···) (5.1)

where u is the vector of unknowns at a given mesh point, and f is typically called right-
hand-side function (rhs-f), which involves variables u at a mesh point, and spatial deriva-
tives of variables u which are computed using finite difference. The rhs-f consequently
depends upon the mesh point, its close neighbors, and difference schemes used.

BOUT code presently uses the Newton-Krylov approach. This scheme is exemplified
by the BDF method (for Backward Differentiation Formula). For the BDF method, the
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advancement of u from time level n−1 to n takes the form

un =(β1un−1+···+βkun−k)+∆tγ0fn. (5.2)

The BDF method is usually solved by a Newton iteration which expands fn at iteration j
as

f(uj)≈ f(uj−1)+
∂f

∂u
(uj−uj−1). (5.3)

Eq. (5.2) then is a linear equation for u
j
n which can be written as

(I/∆tγ0−J)u
j
n =g (5.4)

where I is the identity matrix, J≡∂f/∂u is the Jacobian evaluated with u from a previous
iteration or time step. Also, g is a vector which depends on values of u from the past iter-
ation, uj−1, and at previous time steps as obtained from Eqs. (5.2)-(5.3). Eq. (5.4) is usually
solved by an iterative method to an accuracy somewhat better than the estimated error in
un−1 from the time advancement; this is known as an inexact Newton method. We shall
use a Krylov projection method to solve the linear system provided by a fully implicit
solver: PVODE [47, 48]. Although more work is required for such Newton methods per
iteration, they often have superior overall performance for stiff ODEs since larger time
steps can be used. We compared two methods of advancing the equations in time: one
is the Adams functional iteration (equivalent to predict-corrected method for a one-step
functional iteration) and the second is the inexact Newton method utilizing matrix-free
Krylov projections as described. We found that the Newton-Krylov method is able to
expand its time step by a factor of 70 in linear stage compared to the functional-iteration
Adams method for the same accuracy [49]. However, it is only about six times more
efficient due to the extra work required to expand the large time step. In the nonlinear
stage of the simulation where different wave modes are strongly coupled, the Newton
method reduces its time step by about 1/2 to satisfy the accuracy constraint. In fact, this
simulation includes the shear in the magnetic equilibrium near the X-point which was
a problem that we could not integrate successfully with the previous predictor-corrector
method (a one-step functional iteration). Thus, using the Newton-Krylov method has
become an essential part of our BOUT simulations.

Newton schemes that utilize a matrix-free Krylov projection method often require
preconditioning [47,48]. The procedure requires the ability to solve related linear systems
Pv = h with a matrix P which approximates the original matrix, but is simpler to solve.
By assumption, P∼ (I/∆tγ0−J). Noting that P−1P = I, we may insert this product into
Eq. (5.4) to form the preconditioned system

[(I/∆tγ0−J)P−1](Pu
j
n)=g. (5.5)

The new variables are Pun, and this system is easier to solve by iterative methods such
as the Krylov method since

[(I/∆tγ0−J)P−1≡A∼ I
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is more diagonally dominant. The Krylov method does require matrix-vector products
of A(Pun), and these are done in a matrix-free manner with a finite-difference quotient
approximation Jv [47]. However, we find that the implicit BOUT works well without
a preconditioner, which may be related to the smaller time step required to resolve the
turbulent fluctuations.

6 BOUT software design

To simulate boundary plasma turbulence and validate with the corresponding experi-
ments, the BOUT code uses realistic X-point magnetic and plasma profiles. The back-
ground magnetic field structure is obtained from an MHD equilibrium code (usually
EFIT [16]) for a typical shot. The plasma profiles are obtained by taking density and tem-
perature as analytic fits (such as modified tanh) to Thomson scattering data or calculated
from the edge transport code UEDGE [15]. For theoretical scaling studies with plasma
current, the background magnetic field structure is obtained from another MHD equilib-
rium code, Corsica [17]. For typical DIII-D boundary plasma profiles in L-mode, the mid-
plane values on the magnetic separatrix are: Te =60eV, Ti =240eV, and ni =6.5×1018/m3.
From the given magnetic geometry and plasma profiles corresponding to a specific ex-
perimental device and discharge, the simulation is initialized with a set of small random
fluctuations. The fastest growing modes dominate the initial phase of the calculation, in
which the fluctuations grow at an approximately exponential rate. After this initial lin-
ear phase, the density and electrostatic potential fluctuations evolve to a saturated state
with many modes. From the saturated steady state, turbulence statistical properties can
be extracted from the BOUT simulations by using the correlation function analysis and
validated with the various fluctuation measurements [19, 20, 38, 50]. The procedures of
utilization of BOUT software suite is sketched in Fig. 6. Here EFIT and Corsica are MHD
equilibrium codes for initial magnetic geometry setup for a whole device, UEDGE is an
edge transport code for finer grid generation at the boundary region across the magnetic
separatrix using spline and/or for plasma profiles. ELITE is a linear MHD stability code
for peeling-ballooning modes [51] and BAL is a linear stability code for drift-wave-type
instabilities [18] and lately 2DX [52] for BOUT benchmark studies, and GKV is a collec-
tion of IDL routines using the correlation function techniques for data analysis. Data from
BOUT simulations are saved and later analyzed with the GKV and other BOUT data anal-
ysis IDL routines for post-processor to obtain fluctuation spectra, two-point correlation
functions (including correlation times and lengths), bi-spectra, etc.

BOUT kernel code is a collection of subprograms that embodies physical or numerical
functionalities, which includes, but is not limited to, the following: grid generation, data
allocation, initial conditions, boundary conditions, field-solve for vorticity and vector
potential, rhs-f evaluation, and parallelization, and interface between the BOUT data and
PVODE data (which advances a vector of variables u using the Newton-Krylov method).
The complete BOUT code description can be found in BOUT manual [53].
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Figure 6: (color online). BOUT software suite: a suite of the codes work together to make BOUT simulation
results similar to real experiments.

BOUT is parallelized via a poloidal domain decomposition model that uses the MPI
(Message Passage Interface) system [14]. The parallel implementation is straightforward
and efficient: one or several poloidal meshes with the entire radial-toroidal plane are
stored on each processor. At the end of a time step, the data in the domain bound-
ary planes are passed to its physically neighboring processor. Because of this parallel
paradigm, the amount of message passing scales linearly with the problem size. For a
typical run with 64 processors, the communication time is less than 1% [49].

7 BOUT simulation results

BOUT is an electromagnetic fluid edge turbulence code [4, 12]. The physics model is
based on the Braginskii equations for a collisional plasma, and the equations are solved
numerically in the real geometry of a divertor tokamak. BOUT model supports a large
variety of plasma modes: ideal and resistive ballooning and kink modes, drift, shear-
Alfven, sheath-driven modes and others.

With such a complex simulation software suite, as discussed in [29], two questions
naturally arise: (i) whether the equations form a valid physics model for the phenomena
studied, and (ii) whether the equations are solved correctly by the code. The answer to
the first question is that for sufficiently collisional plasma, the collisional closure should
hold and thus the model should be valid. To address the second question one needs to
do thorough verification testing to make sure the numerical model can be trusted as a
research tool. Four test problems have been benchmarked for verification of the BOUT
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code [29]: (1) Shear Alfven wave; (2) Resistive drift instability; (3) Resistive interchange
instability; (4) Axisymmetric benchmark with UEDGE. A suite of codes are under devel-
opment to extend the verification studies, and it is a step toward the creation of accepted
verification standards for edge turbulence codes. These include linearized and nonlocal
(e.g. separatrix-spanning) modes in axisymmetric (realistic divertor) toroidal geometry.
The suite consists of (i) an initial value approach using the BOUT 3D fluid turbulence
code, here run with the nonlinear terms turned off, and (ii) a new linear eigenvalue code
2DX [52] for the boundary plasma. These are so-called Verification and Validation (V&V)
processes, and essentially confidence building activities [54–58].

Due to the inability to obtain an exact analytical solution, assessing the accuracy of
a nonlinear turbulence code and simulations is even harder and requires: (1) a grid re-
finement study to show that the grid is sufficiently refined such that the solution is in the
asymptotic range of convergence; (2) inter-code benchmarks; simulation results have to
be verified with other turbulence codes which have the same underlying physics models
and simulation parameters; (3) code verification by the method of manufactured solu-
tions [57]. Even so, one must recognize the distinction between a numerical result which
approaches an asymptotic numerical value and one which approaches the true solution.
It is hoped that as the grid is refined and resolution improves that the simulated turbu-
lence dynamics, its ensemble averages and statistics will not change much and approach
an asymptotic value (i.e. the true numerical solution). There still may be error between
this asymptotic value and the true physical solution to the equations. Sources of error
include, but not limit to, numerical algorithms, spatial or temporal gridding, coding er-
rors, language or compiler bugs, iterative convergence errors, computer round-off, and
so forth.

In the following, two nonlinear BOUT simulation results are presented to demon-
strate its capabilities, functionalities, preliminary V&V efforts (to compare trends rather
than absolute values).

7.1 Density effects on tokamak edge turbulence

A series of BOUT simulations has been conducted to investigate the physical processes
which limit the density in tokamak plasmas [59]. In this section, the plasma profiles
are frozen, while they are evolved in Section 7.2. With poloidal flux, ψ, normalized to
unity on the separatrix, we typically take the inner simulation boundary condition to be
ψc=0.9 and the outer boundary at ψw =1.1. The toroidal segment is typically one tenth of
the torus with full poloidal cross section. The boundary conditions for turbulence vari-
ables are homogeneous Neumann at ψ = xc and at ψ = xw, sheath boundary conditions
in y in the SOL and the private flux regions at the divertor plates, twist-shifted periodic
in y in the closed flux region due to the choice of field-aligned coordinates, and periodic
in z. However for the electrostatic potential with the toroidal mode number n = 0 com-
ponent, the boundary conditions are homogeneous Neumann at x = xc and Dirichlet at
x = xw. The computational mesh has 64 poloidal and 64 toroidal mesh points, and 50
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radial points. The background magnetic field structure is obtained from an MHD equi-
librium code (e.g., EFIT [16]) for a typical discharge. The plasma profiles of density and
electron temperature Te, are analytic fits (modified tanh) to Thomson scattering data. For
scaling studies with plasma density, the plasma pressure is held constant. For scaling
studies with plasma current, the background magnetic field structure is obtained from
the MHD equilibrium code Corsica [17]. Since there is no unstable edge localized mode
(ELM) for our base case (L-mode), there is also no ELM for the density scans. Further-
more, the current gradient driven modes are explicitly turned off in this study to focus
our efforts on the density effects [38]. In these simulations, a grid convergence study
shows 20% variation of the peak ion heat flux over following scan: nζ =32, nζ =64, and
nζ =256 with nψ =50 and nθ =64.

Simulations of turbulence in tokamak boundary plasmas show that turbulent fluctu-
ation levels and transport increase with collisionality. As the edge density increases and
the temperature decreases, BOUT simulations show that the resistive X-point mode tran-
sitions to the resistive ballooning mode, perpendicular turbulent transport approaches
and finally dominates parallel classical transport, leading to substantially reduced con-
tact with divertor plates and the destruction of the E×B edge shear layer; the region of
high transport then extends inside the last closed magnetic flux surface. The full con-
sequences of the large radial transport were assessed by a set of 2D UEDGE transport
simulations with increasing outboard convective radial transport to mimic the BOUT re-
sults for increasing density. These simulations show that this transport can lead to an
X-point MARFE when a fixed-fraction carbon impurity radiation is included [59]. BOUT
further demonstrates that the current scaling appears on a plot of discharge current ver-
sus density as an abrupt increase in radial transport once ne/nG >1. All of these results
indicate that rapid edge cooling due to large radial transport is a key physics element of
the tokamak density limit. The simulation results are qualitatively consistent with exper-
imental observations from C-mod and DIII-D [60, 61] and analytical analysis including
perpendicular heat convection based on the blob heat transport model [62].

These simulations are qualitatively consistent with previous theory and simulations
given by Rogers, Drake, and Zeiler (RDZ) [5], with the exception of the safety factor q-
dependence in their αd scaling. The three sets of simulations are extrapolated to compare
with RDZ theory and experiments, and to check whether a density limit boundary line is
crossed, as the arrows indicate in Fig. 7. In what follows, the words “agree” or disagree”
is in a qualitative sense, i.e., the same trend. (1). For fixed q, current Ip and pressure P, an
increase in density ne leads to a fixed α and a decrease in αd,

αd ∝
√

λe
m f p ∝

1√
ne

.

In this case, the density-limit boundary is crossed, and RDZ theory, BOUT simulations
and experiments agree. (2). For fixed q, temperatures Te, Ti and density ne, a decrease in
current Ip leads to an increase in α≈1/I2

p and constant αd. In this case, the density limit
boundary is crossed, and RDZ theory, BOUT simulations and experiments agree. (3). For
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Figure 7: (color online). A sketch of edge plasma phase space from Rogers, Drake, and Zeiler theory [5].

fixed Ip, Te, Ti and ne, an increase in toroidal magnetic field Bt leads to a fixed α and a
decrease in αd ≈ 1/q since q ∝ Bt. In this case, the RDZ theory predicts a density limit,
but both experiments [63] and BOUT find no transition for this case. The disagreement
may be due to two important pieces of physics omitted from RDZ theory that are kept
in BOUT simulations: X-point physics and SOL open-magnetic-field-line physics. X-
point physics limits the mode to the outside midplane such that the parallel connection
length qR is not a good measure of the parallel mode width because of qa →∞ near the
magnetic separatrix in the divertor geometry. SOL physics contributes significantly to the
formation of the Er well and our simulations show that the onset of large radial transport
is associated with the destruction of the Er well [59].

7.2 Blob dynamics and correlation analysis

For self-consistent turbulence and transport simulations with a neutral source added, as
described in Section 2.3, we find that as density rises due to neutral fueling, turbulent
transport increases. The same trend has been obtained with fixed plasma profiles as dis-
cussed in the previous section. The characteristics of the fluctuations also change from
small scale turbulence to large density structures called blobs [3, 64]. At high density
during density ramp-up simulations, we have identified convective transport by local-
ized plasma blobs in the SOL [22, 23, 65]. Such strong intermittent edge transport has
been simulated previously in a 2D slab geometry [66].

An animation (http://www.global-sci.com/video/v4/949.mpg) is given during
density ramping, showing shear flow and blob dynamics. A simple fluid neutral dif-
fusion model is used where ion charge exchange (CX) gives rise to diffusion and ion-
ization to the loss of neutrals. The neutral density at the wall is Nw = 1×1011cm−3 and
exponentially decays into the plasma. A poloidally nonuniform source of neutrals is
specified with a peak around the X-point to mimic 2D neutral calculations, such as those
in UEDGE. The detailed description of simulations is given in [69]. The animation clearly
demonstrates that the turbulence originates inside the separatrix due to the steep density



X. Q. Xu, M. V. Umansky, B. Dudson and P. B. Snyder / Commun. Comput. Phys., 4 (2008), pp. 949-979 973

y(cm)x(cm)

(a) (b)

Figure 8: (color online). (a) Blob detached from the separatrix, showing vorticity (contour lines) and density
(color); (b) history of blob vorticity at the wall, density (contour lines) and vorticity (color).
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Figure 9: (color online). (a) correlation function for reference point at outer midplane vs poloidal and parallel
correlation length; (b) correlation function for reference point at outer divertor leg.

gradient. As density rises, the fluctuating density increases, the large-scale radial mode
structure peels off near the separatrix due to poloidal shear flow, and isolated plasma
blobs are therefore born. Plasma jets occasionally develop and remain connected to hot
core plasma inside the separatrix.

The important properties include [70]: (1) Blob detachment from the separatrix: spa-
tially localized and non-diffusive transport of positive density fluctuations radially out-
ward, as shown in Fig. 8(a). (2) Blob translation from dipole vorticity with the E×B drift



974 X. Q. Xu, M. V. Umansky, B. Dudson and P. B. Snyder / Commun. Comput. Phys., 4 (2008), pp. 949-979

calculated from potential fluctuations, as shown in Fig. 8(b). The self-consistent E-field
of the blob is predominantly a dipole field, increasingly as the blob moves away from the
separatrix. The radial velocity shows a weak variation with blob radius, as expected from
“disconnected” blob models [22, 67]. (3) Blob rotation (monopole vorticity): observed to
decay, probably due to Te relaxation and/or sheath disconnection. (4) Cross correlation
analysis indicates a decorrelation of turbulence between the midplane and the divertor
leg due to strong X-point magnetic shear [68]. Fig. 9(a) shows that the cross-correlation
has cutoffs near both the lower X-point and the upper X-point regions for reference point
at outer midplane, and the cutoff is more pronounced for larger poloidal wavenumber,
kθ . Fig. 9(b) shows that the cross-correlation has cutoffs near the X-point regions for refer-
ence point at outer divertor leg. Figs. 9(a) and 9(b) also show that the poloidal correlation
length is about 1 cm, and the parallel correlation length is about 20 meters.
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Figure 10: (color online). Background plasma density and its modified tanh fit to the simulation profiles after
∼0.5−1ms evolution vs. neutral density at the outside midplane.

The simulation results also show the density buildup around the separatrix in L-mode
during neutral fueling. The simulation data points with different neutral density at the
wall and their fit to a “modified tanh fit” formula [69] are plotted in Fig. 10. The main ef-
fect of raising the neutral density (aside from raising the overall density) is to increase the
density in the far SOL relative to the top of the density profile. The density gradient scale
length parameters are obtained by fitting the modified tanhfit function to the profiles.
There is a general overall trend for formation of a “knee” at the base of the profile and
for the minimum density gradient scale length Wdata to decrease with increasing density
as observed in the experimental data [71]. However, the center position of the modified
tanhfit (“knee” at the base of the profile) is moving toward the SOL and the modified
tanhfit is no longer the best fit, due to the appearance of large blob structures as the den-
sity increases. The flat density profile in the SOL at high neutral density is a feature of
convective transport by localized plasma blobs. The detailed blob dynamics for the case
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of neutral density Nn =1×1011cm−3 in Fig. 10 is shown in Fig. 8, in the animation, and is
analyzed in [22]. It is also found that the density gradient scale length at the separatrix
Wsep is roughly constant with increasing density.

8 Summary and conclusions

It is shown in this paper that the application of a fluid model is, in many cases, rea-
sonable in the boundary plasma of present fusion devices due to the low temperature
and thus high collisionality. A unique boundary plasma turbulence code, BOUT, has
been developed that spans the separatrix, including three distinct regions: the outer
part of the closed flux region (Edge), the SOL, and the private flux region. The field-
aligned coordinates and annular toroidal wedge concept have been used for efficient
simulations of the boundary turbulence. The detailed spatial numerical implementation
has been presented. The innovative implicit Newton-Krylov iterative method is utilized
via a fully implicit solver: PVODE. In order to simulate real experiments, BOUT is de-
signed to couple to the edge plasma transport code UEDGE, and MHD equilibrium codes
EFIT/Corsica to get the realistic X-point divertor magnetic geometry and plasma profiles.
The BOUT turbulence code suite offers unique and leading-edge numerical and compu-
tational resources that enable physical understanding for discovery, design and analysis.

We show that, in examples of BOUT simulation results, as density rises, the fluctua-
tions change from resistive X-point mode to resistive ballooning mode dominated, and
from small scale turbulence to large blobs. In the large blob regime at high density, the en-
hanced radial transport as shown can lead to rapid edge cooling, which leads to a density
limit. The description given here is consistent with recent experiments on C-Mod [60,61]
and analytical analysis including perpendicular heat convection based on the blob heat
transport model [62]. BOUT simulations show that X-point effects can isolate blobs in the
main SOL from divertor legs and also provide evidence of instability and fluctuations in
divertor legs that is uncorrelated with activity in the main SOL. In summary, our results
shed light on the qualitative trends and scalings, and provide suggestions of possible
experimental control techniques.
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Appendix: Differential operators

A.1 Derivative along unpertrubed magnetic field ~B0 ·~∇

~B0 ·~∇A=(~∇z×~∇x)·(~∇y
∂A

∂y
)=

1

J

∂A

∂y
. (A.1)

A.2 Laplacian ∇2
⊥

∇2 A=
1

J ∑
i

∂

∂xi

[

J

(

∑
j

∂A

∂xj

~∇xj

)

·~∇xi

]

. (A.2)

From Eq. (3.3), neglecting ∂/∂y terms, also dropping terms with first derivatives ∂A/∂x
and ∂A/∂z that are small compared to those with second derivatives,

∇2
⊥A= |~∇z|2 ∂2 A

∂z2
+2(~∇z·~∇x)

∂2 A

∂z∂x
+|~∇x|2 ∂2 A

∂x2
. (A.3)

Then we obtain

∇2
⊥A=(RBθ)

2

{

∂2A

∂x2
−2I

∂2 A

∂z∂x
+

[

I2+
B2

(RBθ)4

]

∂2 A

∂z2

}

. (A.4)

A.3 Operator ~B×~∇φ·~∇A

VE ·~∇A=
c

B2
~B×~∇φ·~∇A= c

(

∂φ

∂z

∂A

∂x
− ∂φ

∂x

∂A

∂z

)

. (A.5)

A.4 Operator ~̃b·~∇G

~̃b·~∇G=~∇A‖×~B·~∇G=
∂A||
∂x

∂G

∂z
−

∂A||
∂z

∂G

∂x
. (A.6)
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