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Abstract. The steady-state heat conduction in heat conductors with temperature de-
pendent thermal conductivity and mixed boundary conditions involving radiation is
investigated using the method of fundamental solutions. Various computational issues
related to the method are addressed and numerical results are presented and discussed
for problems in two and three dimensions.
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1 Introduction

Two-dimensional boundary value problems of heat conduction in nonlinear materials
and nonlinear boundary conditions have been investigated using the boundary element
method (BEM) by Bialecki and Nowak [3] and Ingham et al. [12]. However, the imple-
mentation of the BEM becomes rather tedious for problems in three-dimensional irreg-
ular domains. Moreover, the evaluation of the gradient of the temperature solution on
the boundary requires the use of finite differences or the evaluation of hypersingular
integrals. In order to alleviate some of these difficulties, this paper proposes the use
of the method of fundamental solutions (MFS), a meshless Trefftz-type method which
is considerably easier to implement. The advantages of the MFS over the finite differ-
ence method (FDM), the finite element method (FEM), and the BEM for solving elliptic
boundary value problems, especially in higher-dimensions where no discretization of the
solution domain, or its boundary, is necessary, are well-documented, see for example the
survey papers [6, 7, 10].
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The MFS was first applied to potential flow problems by Johnston and Fairweather
[13] and has since been applied to a large variety of physical problems. In this work, we
shall employ the same idea of expressing the solution of the Laplace equation as a linear
combination of fundamental solutions with singularities located outside the domain of
the problem under consideration. In [14], Karageorghis and Fairweather used the MFS
for solving linear material problems with nonlinear radiative boundary conditions. The
purpose of this study is to extend this analysis to nonlinear material problems in two and
three dimensions.

The mathematical formulation of the problem is given in Section 2 and the MFS de-
scription in Section 3. In the previous study of Karageorghis and Fairweather [14], the
gradient of the nonlinear least-squares objective function which is minimized was cal-
culated internally by default using ’blind’ finite differences. Thus with perturbing the
parameters one at a time, the Jacobian matrix is recalculated at every iteration. There-
fore, the finite-difference approach for calculating the gradient has a high computational
cost, see Rus and Gallego [25]. In order to save on the computational time the Jacobian
matrix is calculated analytically. Numerical results are compared with the BEM results of
Bialecki and Nowak [3] for two test examples in Section 4. Moreover, a three-dimensional
example is considered, apparently, for the first time. Finally, comments and conclusions
are presented in Section 5.

2 Mathematical formulation

We consider a simply-connected bounded domain Ω⊂R
d, d≥2, with piecewise smooth

boundary ∂Ω and assume that this boundary is composed of three disjoint parts Γ1, Γ2

and Γ3. On each part Γi,i=1,2,3 boundary conditions of the first (Dirichlet), second (Neu-
mann) and third (Robin) kind, respectively, hold. The mathematical problem governing
steady-state heat conduction is given by, see [3],

∇·(k(T)∇T)=0 in Ω, (2.1)

subject to the boundary conditions

T = f on Γ1, (2.2a)

−k(T)
∂T

∂n
= g on Γ2, (2.2b)

k(T)
∂T

∂n
+h

[

T−Tf

]

+C0R
[

T4−T4
s

]

=q on Γ3, (2.2c)

where T is the temperature solution, k is the thermal conductivity, n is the unit outward
normal vector to the boundary ∂Ω, f is a prescribed temperature on the boundary Γ1, g
is a prescribed heat flux on the boundary Γ2 and q is a given function on the boundary Γ3

which is usually taken to be zero. Also, h is the convective heat transfer coefficient, Tf is
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the temperature of fluid exchanging heat with Γ3, C0=5.667×10−8W/m2K4 is the Stefan-
Boltzman constant, R is the radiation interchange factor (emissivity) between the bound-
ary Γ3 and the environment, having a temperature Ts, and, for simplicity, no heat sources
are assumed present. In boundary condition (2.2c), the nonlinearity occurs mainly due
to heat radiation although the method of solution can also allow nonlinearities occur-
ring from the temperature dependent heat transfer coefficient h or from the temperature
dependent radiation interchange factor R.

The nonlinear governing partial differential equation (2.1) can be easily transformed
into the Laplace equation by employing the classical Kirchhoff transformation defined
as, see, e.g., Özişik [22],

Ψ=ψ(T) :=
∫ T

0

k(ξ)

k0
dξ, (2.3)

where k(T)= k0(1+m(T)), k0 is a positive constant and m(T)>−1 is a known function.
This expression for k(T) is useful in order to highlight the deviation of k(T) from a uni-
form (constant) thermal conductivity k0. Since k > 0, the inverse transformation to (2.3)
exists and is given by

T =ψ−1(Ψ). (2.4)

Efficient techniques for performing Kirchhoff’s transformation (2.3) and its inverse
(2.4) may be found in Azevedo and Wrobel [2]. It follows from (2.3) that

k(T)∇T = k0∇Ψ.

Then problem (2.1)-(2.2) transforms into the equivalent form

∇2Ψ=0 in Ω, (2.5)

subject to the boundary conditions

Ψ=ψ( f ) on Γ1, (2.6a)

−k0
∂Ψ

∂n
= g on Γ2, (2.6b)

k0
∂Ψ

∂n
+h[ψ−1(Ψ)−Tf ]+C0R[ψ−1(Ψ)4−T4

s ]=q on Γ3. (2.6c)

In the above boundary value problem the only nonlinear equation is the one corre-
sponding to the boundary condition on Γ3. It can be shown that under certain assump-
tions on f , g, q, k and h, problem (2.5)-(2.6) has a unique solution, see Ruotsalainen and
Wendland [23]. Once Ψ is found, T is readily determined from (2.4), via (2.3).
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3 The method of fundamental solutions (MFS)

In the MFS (see, for example [5, 20]), the approximation for the solution Ψ(x) of the
boundary value problem (2.5)-(2.6) has the form

ΨN (c;x)=
N
∑
j=1

cj Gd(ξ j;x), x∈Ω=Ω∪∂Ω, (3.1)

where N is the number of unknown singularities (sources), ξ j 6∈Ω,
(

cj

)N
j=1

are unknown

real coefficients and Gd is a fundamental solution of the Laplace equation, given by

Gd(ξ j;x)=











− 1

2π
log |ξ j−x |, d=2,

1

4π

1

|ξ j−x | , d=3,
(3.2)

where ξ j =(ξ
(j)
1 ,··· ,ξ(j)

d ) and x=(x1,··· ,xd).

The coordinates of the singularities may be either preassigned or let free and deter-
mined as part of the solution [6]. In this study, we adopt the former option where the
singularities are fixed. Therefore, in Eq. (3.1) there are N unknowns, namely, the N coef-
ficients cj. These can be determined by imposing the boundary conditions (2.6a)-(2.6c) at

M≥N distinct collocation points (xi)
M
i=1 on the boundary ∂Ω. Denoting the boundary

points on each of the three parts of the boundary by (xi)
M1
i=1 ∈ Γ1, (xi)

M2
i=M1+1 ∈ Γ2 and

(xi)
M
i=M2+1∈Γ3, we minimize the nonlinear least-squares objective function

S(c) : =
M1

∑
i=1

[ΨN (c;xi)−ψ( f (xi))]
2+

M2

∑
i=M1+1

[

−k0
∂ΨN
∂n

(c;xi)−g(xi)

]2

+
M
∑

i=M2+1

{

k0
∂ΨN
∂n

(c;xi)+h(xi)[ψ
−1(ΨN (c;xi))−Tf (xi)]

+C0R(xi)
[

ψ−1(ΨN (c;xi))
4−T4

s (xi)
]

−q(xi)
}2

. (3.3)

The minimization of (3.3) is carried out using the MINPACK [8] routines lmdif and
lmder. The routine lmdif minimizes the sum of the squares of M nonlinear functions
in N variables by a modification of the Levenberg-Marquardt algorithm. In it, the user
must provide a subroutine which calculates the functions while the Jacobian matrix is
calculated internally by a forward-difference approximation. In lmder the user must
also provide the Jacobian matrix. More precisely, if we write the functional (3.3) in

the simplified form S(c) = ∑
M
i=1 [Hi(c)]2, then we need to provide the Jacobian matrix

Jij =∂Hi/∂cj, i=1,··· ,M, j=1,··· ,N .
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In the examples considered in this study we experimented with the ratio of boundary
points M and sources N . It was observed that the use of more boundary points than
sources did not improve the accuracy of the MFS approximations substantially. Also,
it was also observed, after extensive experimentation, that lmder reached a prescribed
accuracy more rapidly than lmdif.

When using lmder we provided the Jacobian matrix J given as follows: For j =
1,2,··· ,N ,

Jij =







































Gd(ξ j;xi), i=1,··· ,M1,

−k0
∂Gd

∂n(x)
(ξ j;xi), i=M1+1,··· ,M2,

k0
∂Gd

∂n(x)
(ξ j;xi)+

Gd(ξ j;xi)

ψ′(ψ−1(ΨN(c;xi)))

×
[

h(xi)+4C0R(xi)ψ−1(ΨN(c;xi))
3
]

, i=M2+1,··· ,M.

(3.4)

A crucial question in the implementation of the MFS is the positioning of the pseudo-
boundary on which the sources are to be placed. One way of dealing with this problem is
to, as mentioned earlier in this section, let the singularities free to be determined as part
of the solution [6]. This approach can, however, prove to be costly and has the serious
drawback that, as the problem is highly nonlinear, there might be several minima in the
non-linear least-squares minimization process to which the routine might converge. In
this work, we fixed the singularities on a pseudo-boundary similar to boundary of the
original domain (as recommended in [11]) and at a distance ε from it. In order to obtain
an optimal ε we adopted an approach proposed in [27], in which the problem was solved,
for each N , for various values of εℓ=ε0+ℓδ, ℓ=0,1,··· ,L. For each εℓ , the maximum error
in the boundary conditions at a selected set of uniformly spaced points on the boundary
(different from the boundary collocation points) was calculated. A good estimate for the
optimal ε is to select the one for which the maximum error in the boundary conditions is
minimized.

At present, there is no theoretical justification that sustains the above nonlinear mini-
mization procedure in terms of convergence. However, this may be attempted in a future
study by relating to the convergence and stability MFS numerical analysis provided in,
for e.g., [5, 16–21, 26, 28].

4 Numerical results and discussion

In this section, we present numerical results obtained from the application of the MFS de-
scribed in the previous section to some two and three-dimensional nonlinear heat transfer
problems.
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4.1 Example 1

We consider an example from Bialecki and Nowak [3] for a nonlinear material, but with
linear convective boundary conditions and no radiation on Γ3, i.e., R =0 in (2.2c). More
precisely, a two-dimensional steady-state temperature field in the unit square Ω=(0,1)×
(0,1) is to be determined. The thermal conductivity is assumed to vary linearly with the
temperature as

k(T)= k0(1+m(T))=1·(1+aT)W/mK, (4.1)

where a≥0 is a prescribed constant. We take, see Fig. 1,

Γ1 ={1}×[0,1], Γ2 ={0}×[0,1]∪(0,1)×{0}, Γ3 =(0,1)×{1}, (4.2)

f =300K, h=10W/mK2, Tf =500K, g=q= R=0. (4.3)

Employing transformation (2.3) yields

Ψ=ψ(T)=T+
aT2

2
, (4.4)

with its inverse (2.4) given by

T =ψ−1(Ψ)=
−1+

√
1+2aΨ

a
, (4.5)

where the negative root is discarded since k(T) = 1+aT has to be positive. Then the
problem (2.5)-(2.6) becomes

∇2Ψ=0 in (0,1)×(0,1), (4.6)

subject to the boundary conditions

Ψ(1,x2)=300(1+150a), x2∈ [0,1], (4.7a)

∂Ψ

∂x1
(0,x2)=0, x2∈ [0,1], (4.7b)

∂Ψ

∂x2
(x1,0)=0, x1∈ (0,1), (4.7c)

∂Ψ

∂x2
(x1,1)+10

[

2Ψ(x1,1)

1+
√

1+2aΨ(x1 ,1)
−500

]

=0, x1∈ (0,1). (4.7d)

We first solve the problem with a = 0. In this case k(T) = 1 and there is no need to
employ transformation (4.4), the problem to be solved being linear and given by

∇2T =0 in (0,1)×(0,1), (4.8)
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subject to the boundary conditions

T(1,x2)=300, x2∈ [0,1], (4.9a)

∂T

∂x1
(0,x2)=0, x2∈ [0,1], (4.9b)

∂T

∂x2
(x1,0)=0, x1∈ (0,1), (4.9c)

∂T

∂x2
(x1,1)+10(T(x1,1)−500)=0, x1∈ (0,1). (4.9d)

We choose M uniformly distributed collocation points on each side of the square and
N uniformly distributed source points on the pseudo-boundary which was taken to be a
square of side 1+2ε, i.e., a square similar to our domain and at a distance ε from it. Thus,
in this case, M=4M and N =4N.

A (0,0) D (1,0)

B (0,1) C (1,1)

Γ
2

Γ
2

Γ
3

Γ
1

Figure 1: Geometry for Example 1.

In Fig. 2, we present the boundary temperature along the perimeter of the square for
problem (4.8)-(4.9), starting from the origin and oriented clockwise in the case a =0 and
obtained using N = M = 32. From the physical point of view, the boundary tempera-
ture distribution has an expected monotonic variation on the insulated parts of the heat
conductor. This figure compares (graphically) well with the corresponding figure from
Bialecki and Nowak [3] obtained using the BEM.

In Fig. 3, we present the boundary temperature for a∈{0.1,0.3,0.5} and obtained using
N = M = 32. The results for a = 0.3 agree well with the corresponding results of Akella
and Katamraju [1].

In Fig. 4 we present the error in the temperature along the side Γ1 for the nonlinear
cases a=0.1,0.3,0.5 using N= M=32. As can be seen the accuracy of these results is very
good and appears to increase with increasing the value of a.
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Figure 2: The boundary temperature along the perimeter of the unit square for the linear case a=0.
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Figure 3: The boundary temperature along the perimeter of the unit square for the nonlinear cases a=0.1,0.3,0.5.
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Figure 4: Error in temperature along the side Γ1 for the nonlinear cases a=0.1,0.3,0.5.
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Figure 5: Maximum boundary errors with N = M for the cases a=0,0.1,0.3,0.5.

8 12 16 20 24
10

−1

10
0

10
1

10
2

 a=0

M
ax

 B
ou

nd
ar

y 
E

rr
or

8 12 16 20 24
10

−1

10
0

10
1

10
2

 a=0.1

8 12 16 20 24
10

−1

10
0

10
1

10
2

 a=0.3

M
ax

 B
ou

nd
ar

y 
E

rr
or

N
8 12 16 20 24

10
−1

10
0

10
1

10
2

 a=0.5

N

Figure 6: Maximum boundary errors with N = M/2 for the cases a=0,0.1,0.3,0.5.
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Figure 7: CPU times with N = M/2 for the case a=0.1.

In Fig. 5, we present the maximum error in the boundary conditions calculated
at 40 uniformly spaced boundary points, for N = M = 8,16,32 and 64, in the cases
a∈ {0,0.1,0.3,0.5}. As can be observed from these plots, there is an indication of expo-
nential convergence of the error to zero with increasing N. This is in agreement with the
theoretical studies of [15,17], although numerical round-off errors may affect the stability
of the numerical results since the ill-conditioning of the MFS system increases with in-
creasing M(≥N). If such a situation occurs, regularization of the ill-conditioned system
is recommended, see [24]. It is noteworthy that the profiles of the temperature along the
boundary were indistinguishable for values of N≥12. In Fig. 6, we present the maximum
error in the boundary conditions calculated at 40 uniformly spaced boundary points, for
N = M/2 = 8,12,16,20 and 24, in the cases a∈ {0,0.1,0.3,0.5}. It appears that the use of
more boundary points than sources does not improve substantially the accuracy of the
MFS approximation.

In Fig. 7, we present the CPU times, in seconds, required by the routines lmdif and
lmder to reach a prescribed accuracy in the case a = 0.1 as N = M/2 takes the values
8,12,16,20 and 24. These times, which were recorded on an IBM RS6000-F80 machine,
show that the routine lmder leads to substantial savings in CPU time.

4.2 Example 2

We now consider a nonlinear material with the thermal conductivity given by

k(T)= k0(1+aT), k0 =1W/mK, a=0.25K−1, (4.10)

occupying part of a cross-section of an industrial furnace, as depicted in Fig. 8. Linear
convective boundary conditions with a constant heat transfer coefficient h = 40W/m2K,
but with non-zero thermal radiation interchange factor R=0.7, are considered.
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Figure 8: Geometry for Example 2.

We take, see Fig. 8,

Γ1 ={0}×[0,2]∪(0,4)×{0}, Γ2 =(0,1)×{2}∪{4}×[0,1],

Γ3 =(1,4)×{1}∪{1}×[1,2],
(4.11)

and f =320K, Tf =500K, Ts =1000K, g=q=0. Employing transformation (4.4), problem
(2.5)-(2.6) becomes

∇2Ψ=0 in Ω, (4.12)

subject to the boundary conditions

Ψ(0,x2)=Ψ(x1,0)=13120, x1∈ (0,4), x2∈ [0,2], (4.13a)

∂ψ

∂x2
(x1,2)=

∂ψ

∂x1
(4,x2)=0, x1∈ (0,1), x2∈ [0,1], (4.13b)

∂Ψ

∂x2
(x1,1)+p(x1,1)=0, x1∈ (1,4), (4.13c)

∂Ψ

∂x2
(1,x2)+p(1,x2)=0, x2∈ [1,2], (4.13d)

where

p(x1,x2)=160

[

√

1+0.5Ψ(x1,x2)−126

]

+3.967×10−8

[

256
(

−1+
√

1+0.5Ψ(x1,x2)
)4

−1012

]

.

We choose M uniformly distributed collocation points on the sides DE,AF and AB,
2M points on the side BC, 3M points on the side EF, and 4M points on the side CD. On
the pseudo-boundary the sources were distributed in a similar way with N replacing M.
Thus, in this case M=12M and N =12N.
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Figure 9: The boundary temperature along the perimeter of the L-shaped domain in the cases a=0 and a=0.25.

In Fig. 9, we present the boundary temperature along the perimeter of the L−shaped
domain starting from the origin and oriented clockwise in the cases a = 0 and a = 0.25
and obtained using N = M =32. From the physical point of view, the boundary temper-
ature distribution has an expected monotonic variation on the insulated parts of the heat
conductor. This figure compares well with the corresponding figure from Bialecki and
Nowak [3] obtained using the BEM.

In Figs. 10 and 11, we present the profiles of the heat flux for the cases a=0 and a=0.25,
respectively, obtained using N=M=32. These profiles agree well with the corresponding
results of Bialecki and Nowak [3] obtained using the BEM.

Finally, in Fig. 12, we present the maximum error in the boundary conditions calcu-
lated at 60 uniformly spaced boundary points, for N=4,8,16 and 32, in the cases a=0,0.25.
As can be observed from these plots, the rate of convergence of the error diminishes
considerably as we go from a = 0 to a = 0.25. In Fig. 13, we present the corresponding
maximum error in the boundary conditions calculated at 60 uniformly spaced boundary
points, for N = 4,8,16 and 20, in the cases when M = N, M = 2N, M = 3N for a = 0. This
plot indicates that there is little gain in accuracy when M> N.

4.3 Example 3

We finally consider a three dimensional benchmark test example with analytical solution

T(x1,x2,x3)=4(−1+
√

1+x1+x2+x3), (x1,x2,x3)∈ (0,1)3, (4.14)

in a nonlinear material with thermal conductivity given by (4.10). As depicted in Fig. 14,
we take Γ3 =(0,1)×(0,1)×{0}, Γ2 =∅, Γ1 =∂Ω−Γ3, h=Ts =0 and R=4411500.
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Figure 12: Maximum boundary errors with N for the cases a=0,0.25.
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Based on (4.14), boundary conditions (2.2a)-(2.2c) become

T(0,x2,x3)=4(−1+
√

1+x2+x3), T(1,x2,x3)=4(−1+
√

2+x2+x3), (4.15a)

T(x1,0,x3)=4(−1+
√

1+x1+x3), T(x1,1,x3)=4(−1+
√

2+x1+x3), (4.15b)

T(x1,x2,1)=4(−1+
√

2+x1+x3), x1,x2,x3∈ [0,1], (4.15c)

−
(

1+
T(x1,x2,0)

4

)

∂T

∂x3
(x1,x2,0)+T4(x1,x2,0)

=−2+256
(

−1+
√

1+x1+x2

)4
, (x1,x2)∈ (0,1)×(0,1). (4.15d)

Then (2.3) and (2.4) become

Ψ=ψ(T)=T+
T2

8
, T =ψ−1(Ψ)=4(−1+

√
1+Ψ/2). (4.16)
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Figure 14: Geometry for Example 3.
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Figure 15: Maximum boundary error with N.

Based on this transformation, problem (2.5)-(2.6) becomes

∇2Ψ(x1,x2,x3)=0, (x1,x2,x3)∈ (0,1)3, (4.17)

subject to the boundary conditions

Ψ(0,x2,x3)=2(x2+x3), Ψ(1,x2,x3)=2(1+x2+x3), Ψ(x1,0,x3)=2(x1+x3), (4.18a)

Ψ(x1,1,x3)=2(1+x1+x3), Ψ(x1,x2,1)=2(1+x1+x2), x1,x2,x3∈ [0,1], (4.18b)

− ∂Ψ

∂x3
(x1,x2,0)+256(−1+

√

1+Ψ(x1,x2,0)/2)4

=−2+256
(

−1+
√

1+x1+x2

)4
, (x1,x2)∈ (0,1)×(0,1). (4.18c)
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Figure 16: Error in temperature on Γ3.

We choose M×M uniformly distributed collocation points on each of the faces of the
cube and similarly N×N uniformly distributed sources on the pseudo-boundary. Thus,
in this case M=6M2 and N =6N2. The maximum error (i.e., the difference between the
(known) exact and the approximate solution) was calculated on a uniform 0.1×0.1 grid
on each face of the cube and the maximum of these errors was recorded. In Fig. 15 we
present the plot of this maximum boundary error versus N, in the case M=N. In Fig. 16,
we present the error in the temperature on a 0.05×0.05 grid on the face Γ3 for N = M=4
and N = M=8. From these figures it can be seen that as M= N increases, the accuracy of
the MFS numerical solution increases.

5 Conclusions

In this paper, the application of the MFS to nonlinear steady-state heat conduction prob-
lems was investigated. The method recasts the problem as a nonlinear minimization
problem. The coefficients of the Jacobian matrix were calculated analytically resulting
in substantial savings in the computational cost compared to the minimization based
on finite differences. The proposed method was tested on several numerical examples.
The numerical results for the two-dimensional case were found to be in good agreement
with the corresponding BEM results of Bialecki and Nowak [3] showing high accuracy
and stable convergence. However, unlike the BEM, the MFS can easily be extended to
three-dimensional nonlinear steady-state heat conduction problems. Furthermore, al-
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though the numerical examples were presented for simple geometries (square, L-shaped
domain, cube), which are presumably quite adapted to standard FDM, unlike the FDM
and also the FEM, the MFS can easily deal with complex irregular domains since no do-
main discretization is necessary. As a result, the MFS is easy to implement and requires
little data preparation. Moreover, if a heat source is present in Eq. (2.1), then one may
apply a modification of the MFS, as described in Golberg [9]. Future work will involve
the development of the MFS for nonlinear composite materials and comparison with the
corresponding BEM described in Bialecki and Kuhn [4].
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