
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 4, No. 3, pp. 675-702

Commun. Comput. Phys.
September 2008

Plasma Edge Kinetic-MHD Modeling in Tokamaks

Using Kepler Workflow for Code Coupling, Data

Management and Visualization

J. Cummings1,∗, A. Pankin2, N. Podhorszki3, G. Park4, S. Ku4,
R. Barreto5, S. Klasky5, C. S. Chang4, H. Strauss4, L. Sugiyama6,
P. Snyder7, D. Pearlstein8, B. Ludäscher3, G. Bateman2, A. Kritz2 and
the CPES Team9

1 California Institute of Technology, Pasadena, CA 91125.
2 Lehigh University, Bethlehem, PA 18015.
3 University of California at Davis, Davis, CA 95616.
4 Courant Institute of Mathematical Sciences, New York University, NY 10012.
5 Oak Ridge National Laboratory, Oak Ridge, TN 37830.
6 Massachusetts Institute of Technology, Cambridge, MA 02139.
7 General Atomics, San Diego, CA 92186.
8 Lawrence Livermore National Laboratory, Livermore, CA 94550.
9 SciDAC FSP Center for Plasma Edge Simulation.

Received 2 November 2007; Accepted (in revised version) 28 January 2008

Available online 21 April 2008

Abstract. A new predictive computer simulation tool targeting the development of
the H-mode pedestal at the plasma edge in tokamaks and the triggering and dynamics
of edge localized modes (ELMs) is presented in this report. This tool brings together, in
a coordinated and effective manner, several first-principles physics simulation codes,
stability analysis packages, and data processing and visualization tools. A Kepler
workflow is used in order to carry out an edge plasma simulation that loosely couples
the kinetic code, XGC0, with an ideal MHD linear stability analysis code, ELITE, and
an extended MHD initial value code such as M3D or NIMROD. XGC0 includes the
neoclassical ion-electron-neutral dynamics needed to simulate pedestal growth near
the separatrix. The Kepler workflow processes the XGC0 simulation results into sim-
ple images that can be selected and displayed via the Dashboard, a monitoring tool
implemented in AJAX allowing the scientist to track computational resources, exam-
ine running and archived jobs, and view key physics data, all within a standard Web

∗Corresponding author. Email addresses: cummings@cacr.caltech.edu (J. Cummings), pankin@lehigh.edu
(A. Pankin), pnorbert@cs.ucdavis.edu (N. Podhorszki), gypark@courant.nyu.edu (G. Park), sku@cims.
nyu.edu (S. Ku), barreto@ornl.gov (R. Barreto), sklasky@ornl.gov (S. Klasky), cschang@cims.nyu.edu
(C. S. Chang), strauss@courant.nyu.edu (H. Strauss), sugiyama@psfc.mit.edu (L. Sugiyama), snyder@
fusion.gat.com (P. Snyder), ldp@llnl.gov (D. Pearlstein), ludaesch@ucdavis.edu (B. Ludäscher),
bateman@lehigh.edu (G. Bateman), kritz@lehigh.edu (A. Kritz)

http://www.global-sci.com/ 675 c©2008 Global-Science Press



676 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

browser. The XGC0 simulation is monitored for the conditions needed to trigger an
ELM crash by periodically assessing the edge plasma pressure and current density
profiles using the ELITE code. If an ELM crash is triggered, the Kepler workflow
launches the M3D code on a moderate-size Opteron cluster to simulate the nonlin-
ear ELM crash and to compute the relaxation of plasma profiles after the crash. This
process is monitored through periodic outputs of plasma fluid quantities that are au-
tomatically visualized with AVS/Express and may be displayed on the Dashboard.
Finally, the Kepler workflow archives all data outputs and processed images using
HPSS, as well as provenance information about the software and hardware used to
create the simulation. The complete process of preparing, executing and monitoring
a coupled-code simulation of the edge pressure pedestal buildup and the ELM cycle
using the Kepler scientific workflow system is described in this paper.

PACS: 52.65.-y, 52.65.Kj, 52.65.Tt, 52.65.Ww

Key words: Plasma simulation, magnetohydrodynamic and fluid equation, gyrofluid and gyroki-
netic simulations, hybrid methods.

1 Introduction

In a tokamak fusion reactor, if the hot edge plasma, which has a density and temperature
around 1×1020 m−3 and 5 keV, respectively, is allowed to touch the material wall in an
uncontrolled way, it can sputter the wall material into the plasma, which may degrade
or extinguish the fusion burn and may shorten the wall lifetime to an unacceptable level.
In an attempt to control this problem, all the modern tokamaks, including the planned
ITER (International Thermonuclear Experimental Reactor), have been designed to divert
the escaping edge plasma to a specific location called the “divertor chamber” by means
of a magnetic field produced by external coils. The wall plates in the divertor chamber
are then expected to be periodically replaced in a tokamak reactor.

The magnetic field lines inside the tokamak chamber are divided into two groups: one
forming nested closed surfaces in the main chamber without touching the material wall,
and the other leading to the divertor chamber. The boundary separating these two groups
is the magnetic separatrix surface. The region outside the separatrix surface containing
diverted field lines is called the “scrape-off” region, and the region inside the separatrix
containing nested magnetic surfaces is called the “core” region. The plasma in the core
region is hot and dense, while the plasma in the scrape-off region is cold and diluted
(except just in front of the divertor plates).

Tokamak plasma transport is normally anomalous and is thought to be associated
with small-scale plasma turbulence. When the heating power to the core plasma is above
some threshold, it has been observed experimentally that there forms a thin plasma layer
just inside the separatrix surface in which the plasma is almost free of turbulence; the
cross-field transport rate is reduced to the neoclassical level [1] (neoclassical transport is
a collisionally driven transport in an inhomogeneous magnetic field). This layer is called



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 677

the “H-mode” layer, where H-mode is an abbreviation for “high-confinement mode.” A
tokamak plasma without an H-mode layer is called “L-mode” (low-confinement mode),
in which the plasma transport is anomalous and dominated by small-scale turbulence.
Since the cross-field transport rate in the thin H-mode layer is much lower than the am-
bient transport rate, the local plasma gradient becomes very steep, fed by the particle
source from ionization of incoming neutral particles from the wall and the heat source
provided by the outward flow from the core region. As a result, the plasma forms a dis-
tinct pedestal extending from the scrape-off region a short distance into the core, with
most of the gradient existing in the H-mode layer. This pedestal raises the fusion proba-
bility dramatically by raising the central plasma temperature and density.

Under normal conditions, the rise of the pedestal triggers magnetohydrodynamic in-
stabilities known as edge localized modes (ELMs), which both constrain the pedestal
pressure (limiting the fusion power in the core) and eject heat and particles onto material
surfaces (reducing the wall lifetime of a fusion reactor). The onset of ELMs is known to
be dependent upon the physical properties of the edge pedestal. Neither the pedestal
growth properties nor the ELM crash physics is sufficiently known at the present time
for a predictive capability. Success of next-generation burning plasma experiments such
as ITER is heavily dependent upon achieving H-mode operation and obtaining an edge
pedestal of sufficient height without triggering large-scale ELMs. The physical under-
standing and prediction capability of the edge plasma pedestal and the accompanying
ELMs are therefore at the highest priority in fusion plasma research.

Understanding the pedestal structure requires a first-principles, full distribution func-
tion, kinetic simulation due to the steep pressure gradient, low collisionality, unconven-
tional particle orbits, and non-Maxwellian ions. A fluid code cannot properly describe
these edge-specific features. The kinetic code should include neoclassical ion-electron-
neutral dynamics, as well as the self-consistent electromagnetic perturbations and turbu-
lence. This is a difficult, long-term effort, requiring intense collaboration between physi-
cists, applied mathematicians, and computer scientists, working on high-performance
computing platforms. Such work is the focus of the Center for Plasma Edge Simulation
(CPES), a SciDAC (Scientific Discovery through Advanced Computing) project that is
jointly funded by the U.S. DOE Office of Fusion Energy Sciences and Office of Advanced
Scientific Computing Research.

The kinetic code XGC0, which computes plasma equilibrium evolution in the pres-
ence of neoclassical ion-electron-neutral dynamics, is presently in operation in the CPES
project. This code is capable of simulating pedestal growth across the separatrix from
neutral ionization for the first time. The ion neoclassical transport in XGC0 can be en-
hanced to include turbulent transport using a phenomenological model. For a complete
kinetic simulation of edge turbulence and transport properties, the gyrokinetic edge code
XGC1 is under development. The electrostatic turbulence capability of XGC1 is now
undergoing rigorous verification; developments will then focus on the drift time scale,
electromagnetic turbulence and transport across the separatrix. Once the code is com-
plete, XGC1 will be coupled to XGC0 to replace the phenomenological turbulent trans-



678 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

port model. Both XGC0 and XGC1 grew out of the original XGC ion guiding center
code [2].

Inclusion of the high-frequency MHD phenomena into the XGC1 gyrokinetic frame-
work is a longer term goal. In the interim while XGC1 establishes this MHD capability,
simulations of ELM crashes on the MHD time scale are being carried out using the nonlin-
ear MHD code M3D [3], coupling it to the kinetic code XGC0 to incorporate kinetic infor-
mation. M3D is an advanced, resistive MHD code funded by a SciDAC project (CEMM,
the Center for Extended Magnetohydrodynamic Modeling), with its capability extended
to include two-fluid effects (i.e., Extended MHD). M3D can model the diverted magnetic
separatrix geometry. The vacuum region is simulated as a cold plasma with high resistiv-
ity. M3D is parallelized for use on a moderate number of processors. NIMROD is another
nonlinear extended MHD code in the CEMM project with similar features. The NIMROD
code may also be coupled to XGC0 for cross verification. The pedestal growth in XGC0 is
monitored for ELM instability by a linear ideal MHD code ELITE [4, 5]. ELITE has been
validated against many experimental data sets for the large-scale Type I ELM instability
onset.

A coupled simulation containing a kinetic model of edge pedestal build up and an
extended MHD model of ELM behavior is a necessary component in the understanding
of the pedestal-ELM cycle physics. Such a comprehensive model of this physics will yield
the predicted pedestal height, which is related to the core confinement, and the expected
wall load, which is related to material lifetime. In this report, we describe our efforts to
perform this type of coupled simulation for the first time, using a novel approach that
employs scientific workflows and a dashboard monitoring tool to automate and simplify
the process.

2 Code components for coupled kinetic-MHD edge simulation

Simulation of the full ELM cycle requires the cooperation of several types of physics
models, operating in a loosely coupled manner. Edge transport physics, including neo-
classical effects, ion orbit loss, neutral recycling at the boundaries, heating from the core
plasma, turbulent transport, and self-consistent electromagnetic fields, require a fully ki-
netic plasma model such as a particle-in-cell code. A Grad-Shafranov solver is needed
to update periodically the magnetic equilibrium in which the kinetic plasma model op-
erates. Detection of potentially unstable edge localized modes is provided by an ideal
MHD linear stability analysis code. If an ELM is driven unstable, a fully nonlinear MHD
initial value code can be used to simulate the evolution of the ELM and its modification
of the edge plasma profiles. As the ELM crash completes and dissipates, the new plasma
equilibrium that is established would be taken as the starting point for the next ELM
cycle. A brief description is presented here for each of the simulation models that have
been employed in the coupled simulations of the ELM cycle being presented here.



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 679

2.1 XGC0

A particle-in-cell, guiding center code working in a five-dimensional phase space (three
in physical space and two in velocity space), XGC0 has specifically been developed for the
study of plasma edge dynamics [2]. XGC0 can handle neoclassical transport of both ions
and electrons self-consistently with radial electric field physics and Monte Carlo neutral
atom penetration physics. Charged particle motion in XGC0 is governed by the well-
known Hamiltonian guiding center equations of motion [6], and XGC0 calculates radial
electric field dynamics self-consistently using the neoclassical current balance equation.
In XGC0, the effect of the parallel current on the radial electric field dynamics in the
scrape-off region is accounted for by using the logical sheath method [7], which removes
the fastest electrons periodically to satisfy plasma quasineutrality.

XGC0 can be operated with or without electrons; in the case without electrons, the
electrostatic potential profile in the scrape-off region is externally prescribed. Simulation
of both ions and electrons can be used to compute radial E-field in the scrape-off region
and self-consistent bootstrap current evolution, which is caused in part by the electron
particle banana orbits, and thus requires following electron orbits accurately in the pres-
ence of Coulomb collision effects. The typical XGC0 simulation with electrons uses a
reduced ion-electron mass ratio (such as 400) along with a subcycling technique.

There are two types of particle collisions in XGC0: Coulomb collisions and plasma-
neutral collision processes such as ionization, charge exchange, and elastic collisions.
Collisions in XGC0 are implemented using a Monte-Carlo method; thus, particle veloci-
ties are randomly changed periodically according to the collision process, new electron-
ion pairs are created through neutral ionization, and plasma temperature is reduced
through inward diffusion of neutrals and ion-neutral charge exchange. The Monte-
Carlo Coulomb collision model in XGC0 employs linear collisions with a background
Maxwellian distribution [8] in the frame of the rotating plasma. For ion-ion collisions, a
scheme conserving plasma momentum and energy is used [9].

For an initialization of the plasma particles, a shifted Maxwellian distribution is used
with given density, temperature, and toroidal rotation profiles. The profiles can be mod-
eled by an analytic equation, such as the modified hyperbolic tangent form, or by exper-
imental data contained in a specific data format such as g-eqdsk. The electrons and ions
are followed until the edge plasma reaches either neoclassical steady state or the ELM
instability boundary. Because plasma particles and their energy are gradually lost to the
wall boundary, particle and heat sources are needed for reaching steady state, and these
roles are played by neutral recycling and a plasma heating model, respectively. Although
the XGC0 code is used primarily for the study of the edge ion-electron neoclassical trans-
port, a simple phenomenological turbulent diffusion model, based on the random walk
superposed on the Lagrangian motion, is also included to simulate the effect of turbulent
diffusion on the pedestal dynamics.

Both XGC0 and the gyrokinetic edge turbulence code XGC1 have shown good scal-
ability with number of processors. The greatest number of processors used by XGC1 to



680 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

date is 16,384 for a production run. For test runs, XGC1 typically uses about 4,000 pro-
cessors, while an XGC0 run without electrons may use as few as 128 processors. The best
computing speed of XGC1 achieved to date on the Cray XT3/XT4 at Oak Ridge National
Laboratory (ORNL) is 440 Mflops per processor core, which corresponds to about 9% of
the theoretical peak processing speed.

2.2 TEQ

Each XGC0 simulation starts typically with an experimental EFIT equilibrium. As the
plasma profiles advance in the XGC0 code, it generally becomes necessary to compute
a new equilibrium. In particular, during the transition from low- to high-confinement
regimes (L-H transition), the plasma shaping parameters such as triangularity and elon-
gation and the separatrix location typically change. In tokamak experiments, the plasma
shaping and separatrix location are controlled by coil feedback loops. In order to repro-
duce accurately experimental conditions, the XGC0 code needs to resolve the evolving
equilibrium in time. New equilibrium profiles are also needed by all MHD codes that are
part of the CPES kinetic-MHD coupling framework.

The TEQ equilibrium solver [10] is an NTCC module [11] that was originally devel-
oped as a part of the Corsica transport code [12]. The module can be used to compute
both prescribed-boundary and free-boundary equilibria. Prescribed-boundary equilib-
rium solvers are often referred to as inverse equilibrium solvers, and free-boundary equi-
librium solvers are often referred as to direct equilibrium solvers. For the TEQ inverse
equilibrium solver, the solution for the magnetic configuration is given in terms of the
major radius R and vertical position Z, as a function of the magnetic flux stream function
ψ(which is the poloidal magnetic flux divided by 2π) and a poloidal angle-like variable
θ. This inverse representation is applicable only to the core plasma in which magnetic
surfaces are simply nested closed contours. For the TEQ direct equilibrium solver, so-
lution for the magnetic configuration is represented in the form ψ = ψ(R,Z). Magnetic
surfaces are determined by tracing out contours of constant ψ. The TEQ module contains
initialization information for virtually any existing tokamak, and it includes “dead-start”
procedures to generate initialization information for new tokamaks.

The TEQ equilibrium solver has been recently benchmarked against other equilib-
rium solvers [13]. It has been demonstrated that the TEQ direct equilibrium solver pro-
vides a robust solution with small residuals at the plasma edge, which particularly suits
the needs of edge plasma simulations. In addition, the TEQ code is capable of generating
the eqdsk files that are recognized by the ideal MHD stability code ELITE and the ex-
tended MHD codes M3D and NIMROD. The TEQ direct and inverse equilibrium solvers
are implemented in the XGC0 code. The direct equilibrium solver yields g-eqdsk files
used by the NIMROD code, and the inverse equilibrium solver yields t-eqdsk files used
by the ELITE code. In the CPES framework, the TEQ direct equilibrium solution provides
boundary conditions (e.g., separatrix location) for the TEQ inverse equilibrium solver.
The TEQ module has been tested for several DIII-D discharges. Fig. 1 shows the mag-
netic flux surfaces, coil locations, and TEQ grid for DIII-D discharge 113317.



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 681

Figure 1: Magnetic flux surfaces and computational grid for a DIII-D equilibrium that is used in CPES studies.
The shape of the wall is shown just outside the separatrix in the left panel.

2.3 ELITE

The sharp pressure gradient and resulting large bootstrap current in the edge transport
barrier or “pedestal” region of the plasma provide free energy, which can drive mag-
netohydrodynamic modes unstable. The most unstable MHD modes can be predomi-
nantly pressure-driven ballooning modes, current-driven kink/peeling modes, or, most
commonly, coupled peeling-ballooning modes driven by both pressure gradient and cur-
rent. The “peeling-ballooning” theory of ELMs was first developed in the local high-n
(toroidal mode number) limit [14], and later extended to incorporate intermediate-n and
non-locality [4, 5]. A highly efficient 2D numerical code, ELITE [4, 5], has been devel-
oped to study these non-local, finite-n instabilities. ELITE has been successfully bench-
marked against the MISHKA, GATO, DCON, CASTOR, MARS, MARG2D, and BAL-
MSC codes [5,15,16] and has been used in comparisons with a number of tokamak exper-
iments including DIII-D [5,15,17–23], MAST [24], Alcator C-Mod [25], and JT-60U [26,27].
In general, standard “Type I” ELMs are observed when the peeling-ballooning stability
constraint is exceeded, and that the most unstable modes are typically n∼4−30 peeling-
ballooning modes.

ELITE employs a high-n expansion, taken to sufficiently high order so as to allow ac-
curate calculations for n≥4. It also takes advantage of the radial localization of poloidal
modes to achieve very high numerical efficiency. ELITE calculates growth rates and
mode structure, allowing it to be used both with a diamagnetic stabilization criterion
(here we use γ>ω∗pi/2) and in comparisons with observed ELM structure [19]. ELITE’s
efficiency and robustness render it a useful tool for integrated studies of ELM onset such
as those conducted here. ELITE consists of a suite of three Fortran 90 executables, nor-
mally run via a set of scripts. While ELITE itself is a serial code, the natural parallelism



682 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

Figure 2: Growth rates as a function of toroidal mode number computed with the NIMROD and ELITE codes
for the DIII-D discharge 113317.

across toroidal mode number, which is a good quantum number in a linear calculation,
allows ELITE to be invoked as a set of distributed processes, simultaneously evaluating
stability for a range of n values on a single equilibrium to find the ELM onset time.

2.4 NIMROD

The extended 3D MHD NIMROD code [28–33] advances the well known set of extended
MHD equations as a function of space and time. This set includes continuity equations
for mass and momentum, the temperature evolution equation, and Maxwell’s equations
in the presence of finite resistivity, Hall current, electron pressure gradients and finite
Larmor radii (FLR) effects. The gyro-viscous stress tensor and Hall current effects tend
to stabilize high mode numbers [34, 35]. The stabilization of the high-n modes, which
have a relatively fine spatial scale, should make the corresponding nonlinear compu-
tation easier. However, the two-fluid effects cause the modes to rotate with a poloidal
drift frequency comparable to the diamagnetic frequency, and this mode rotation makes
it more difficult to advance the equations in time.

Numerous verification studies have been carried out in which NIMROD results have
been compared with the results of other MHD codes as well as analytic scalings [32]. In
order to assure that the growth rates and peeling-ballooning stability thresholds found
with the ELITE code qualitatively agree with the stability threshold found with the NIM-
ROD code, the two MHD codes have been benchmarked against each other for a sample
equilibrium from the CPES kinetic-MHD coupling studies. The equilibrium that is based
on the DIII-D discharge 113317 is selected for the comparison. The growth rates as a
function of toroidal mode number computed with the NIMROD and ELITE codes are
shown in Fig. 2. The growth rates computed by NIMROD are approximately two times
higher than the growth rates computed with the ELITE code, and the peeling-ballooning
threshold computed with NIMROD is lower. The differences in results can be explained



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 683

by differences in the resistivity profiles in ELITE and NIMROD. The ELITE code is an
ideal MHD code with zero resistivity in the plasma core and infinite resistivity in the
vacuum region. For linear NIMROD runs, the resistivity in the “vacuum” region is up to
1×106 larger than in the core plasma, approaching the ideal limit. For the free-boundary
simulations, the resistivity has the Spitzer temperature dependence T3/2. For the DIII-D
simulations shown here, the temperature ratio between the core and edge is approxi-
mately 500, which yields a resistivity ratio of approximately 105. For the lower resistivi-
ties in the plasma region and higher resistivities in the vacuum region, NIMROD yields
results that are in better agreement with the ELITE results. Despite the differences in the
growth rates, the eigenfunctions computed with NIMROD and ELITE agree reasonably
well [34, 36]. This makes it possible to use the NIMROD code for nonlinear evolution
studies of ELM crashes and to use the ELITE code, which is better validated against the
experimental data, for the linear peeling-ballooning stability analysis of plasma profiles
computed with the XGC0 kinetic code.

2.5 M3D

The M3D code [3] solves the extended MHD equations [37]. It is based on discretization
with linear finite elements [38] in poloidal planes, with either pseudospectral or finite dif-
ference representation in the toroidal direction. It has been implemented in two packages
with different parallelizations: M3D-OMP uses OpenMP and runs on shared memory
computers, while M3D-MPP runs on distributed memory computers.

M3D-MPP employs domain decomposition within and among the poloidal planes
and uses MPI and distributed matrix solvers from the PETSc library [39]. In this appli-
cation of the M3D code to ELM simulations, M3D-OMP is essentially used as a serial
preprocessor for M3D-MPP. M3D-OMP is used to read an eqdsk file of equilibrium profile
data, generate an unstructured FE mesh that is aligned with closed magnetic flux sur-
faces, and interpolate the primary M3D variables (poloidal magnetic flux ψ, pressure p,
toroidal current, mass density ρ, and toroidal magnetic field) to the mesh. M3D-OMP
then writes this data to a file that is used to initialize M3D-MPP. M3D-OMP can also read
in the plasma profiles generated by the XGC0 kinetic code and produce a new eqdsk file.

M3D has been extensively benchmarked. Originally it used a different spatial dis-
cretization, with radial finite differences and spectral representations in the poloidal and
toroidal directions. That version of M3D was benchmarked against PEST and compared
with theory for a number of different problems. The present FEM version uses essentially
the same top-level physics code, but provides more geometric flexibility as well as non-
linear robustness. It has been benchmarked against the original spectral implementation
and against the MARS and NOVA-K codes for internal MHD modes, with and without
fast particles [40]. Recently a linear ELM benchmarking test that includes the vacuum
region was carried out, comparing M3D and NIMROD with ELITE and GATO, which
in turn have been extensively benchmarked. Growth rates (see Fig. 3) and mode struc-
tures agree reasonably well. Some level of disagreement is expected, since ELITE and



684 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

Figure 3: Linear ELM growth rate as a function of mode number n. Solid curve is M3D results, points marked
with × are from GATO, and points marked with * are from ELITE.

GATO are ideal MHD stability codes, while M3D is a resistive MHD nonlinear code. The
vacuum region outside the separatrix is modeled in M3D as a highly resistive, low den-
sity region. Similarly, the M3D plasma is moderately resistive, much like the real edge
plasma. Both of these assumptions about the plasma resistivity will affect the results.

To permit the long-time simulations required for ELM relaxation, M3D was modified
slightly with a semi-implicit treatment of advection, in order to ensure that the density
and temperature remain positive. The vacuum region model strongly affects the ELM
relaxation. Extra dissipation can be added near the wall boundary to provide a sink for
density and temperature. The M3D grid for ELM simulations usually includes a central
hole in the core plasma because the central region is not affected by the ELM. It has been
found that shrinking the central hole is helpful in nonlinear simulations, allowing a more
complete relaxation of the plasma temperature profile. Future ELM simulations using
M3D may be done without a central hole in the grid, using a relatively coarse FE mesh in
this central region instead.

3 Code coupling scenarios for an ELM cycle simulation

Given the simulation codes described above, there are many ways to couple them and
provide a complete ELM cycle simulation. Several different combinations of these and
other similar physics models have been explored, examining such factors as ease of in-
tegration and performance of individual code components on our preferred computing
platform. Through this process, the relative ease of integrating and managing such code
components has been demonstrated using the Kepler framework for automated work-
flows. Here two basic code coupling scenarios that were successfully employed for a
comprehensive simulation of the ELM crash will be highlighted.

Scenario 1 involves the coupling of four code components, as illustrated in Fig. 4:
XGC0, M3D-OMP, ELITE, and M3D-MPP. The XGC0 kinetic code is initialized with ana-



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 685

XGC-0 kinetic

code simulates

pedestal growth

ELITE code

checks ELM

M3D-MPP code

evolves profile

and ELM crash

Profile Data

«

Pedestal

buildup

stage

Pedestal

crash

stage

Simulation
host tasks

Processing
host tasks

Equil Data

M3D-OMP

equil solve

EFIT Data

Eqdsk

Peqdsk

Diagnostic
imaging

Stable?
Y

N

M3D-OMP

mesh gen

Mesh File

NetCDF, BP

IDL

HDF5

Post-crash

equil data

XGC-0 kinetic

code simulates

pedestal growth

ELITE code

checks ELM

M3D-MPP code

evolves profile

and ELM crash

Profile Data

«

Pedestal

buildup

stage

Pedestal

crash

stage

Simulation
host tasks

Processing
host tasks

Equil Data

M3D-OMP

equil solve

EFIT Data

Eqdsk

Peqdsk

Diagnostic
imaging

Stable?Stable?
Y

N

M3D-OMP

mesh gen

Mesh File

NetCDF, BP

IDL

HDF5

Post-crash

equil data

Figure 4: Schematic of a sample kinetic-MHD code coupling scenario.

Figure 5: CPES data flow uses magnetic flux surfaces for ITER equilibrium that are used in MHD studies.

lytic profiles for the edge plasma density and temperature and magnetic equilibrium data
given in the form of a g-eqdsk file generated by the EFIT program [41] for a particular
set of observations from a tokamak plasma experiment of interest. XGC0 simulates neo-
classical transport in the presence of a self-consistent radial electric field and computes
the plasma bootstrap current. A simple model for a source of neutrals at the wall bound-
ary and an anomalous diffusive transport are included. The simulation host for XGC0
is typically the Cray XT3/XT4 supercomputer at ORNL named jaguar, although in these
particular coupled simulations the computing resources required are not truly massive.



686 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

(More resources are needed when running XGC0 in conjunction with the related code
XGC1, which simulates turbulent transport in the plasma edge.) At prescribed inter-
vals, XGC0 outputs an m3d.in file containing radial profiles of the edge plasma density,
temperature, and parallel current. This file is transferred to a processing host, which is
usually the Infiniband cluster of dual Opteron nodes at ORNL named ewok, where it is
read by the code M3D-OMP and used to produce an updated, high-resolution magnetic
equilibrium eqdsk file. (We have also demonstrated the code coupling described here
using an alternate simulation host such as the IBM SP-4 at NERSC named seaborg or an
alternate processing host such as a local computing cluster.)

The updated magnetic equilibrium data is transferred back to XGC0 on the simulation
host and read in to maintain self-consistency. Additionally, the eqdsk file is passed to the
ELITE code for linear MHD stability analysis. The ELITE code also reads in edge plasma
density data in the form of a p-eqdsk file, which is produced directly by the XGC0 code
and must be transferred to the processing host. ELITE is launched using a script that runs
each of the three components of the analysis, scans the output files for possible errors or
problems, graphs some of the basic outputs such as the linear eigenmode, and checks
whether ELITE has found the mode to be unstable or not. Each run of ELITE checks
linear stability for a particular toroidal mode number n, so one can perform multiple,
concurrent runs of ELITE to examine a range of typical intermediate n values for ELM
instabilities.

If the ELITE code finds a mode with a linear growth rate that is above the typical
threshold for ELM instability (usually taken to be one half of the ion diamagnetic drift
frequency), then the kinetic XGC0 code is halted on the simulation host and the parallel
M3D-MPP code is launched to perform a simulation of the nonlinear evolution of the
ELM. The M3D-MPP code is usually run on the processing cluster because the nodes are
normally available immediately and the resource needs are not so large, but this code
could be launched on the simulation host instead. M3D-MPP requires an omp.out file
produced by the M3D-OMP code that contains the initial plasma fluid quantities on the
finite element mesh used by the MHD solver. Consequently, M3D-OMP must be run
one more time, with input parameters that request production of the mesh file. Then the
M3D-MPP code is launched using the batch system, and the diagnostic variable outputs
are plotted as the ELM grows and expels particles and heat towards the boundary, allow-
ing the plasma to relax and evolve towards a new equilibrium. Once the plasma profiles
reach a quasi steady state in the M3D-MPP simulation, a new eqdsk file is produced and
the cycle is complete. At this point, the M3D-MPP code can be halted and a new kinetic
XGC0 simulation can be launched using the final equilibrium data from the previous
ELM cycle.

The second code coupling scenario takes advantage of TEQ direct and inverse equi-
librium solvers implemented in the XGC0 code. The TEQ module produces two eqdsk
files at specific times that are controlled through the XGC0 input file parameters. The
first file is a t-eqdsk file that contains the fixed-boundary equilibrium solution. This file
is directly recognized by the ELITE code. The inverse equilibrium solution generated



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 687

by TEQ has high poloidal resolution, which is a critical factor for the ELITE code. The
second file generated by the TEQ module in XGC0 is a g-eqdsk file. This file contains
the free-boundary equilibrium solution. It is used only if the ELITE code indicates that
triggering conditions for an ELM crash are satisfied. In this case, the g-eqdsk file is used
together with appropriate namelists in the fluxgrid.in and nimrod.in files by a NIMROD
preprocessing utility called nimset. The nimset utility generates a new NIMROD grid
and stores these equilibrium fields and initial perturbations on this grid in a binary file
named dump.00000. This binary file together with namelists from nimrod.in is used by the
NIMROD code, which runs typically on an IBM p575 POWER 5 system named bassi at
NERSC. The details of Scenario 2 that include use of the TEQ and NIMROD codes are
illustrated in Fig. 5.

4 Kepler framework for workflow automation

The kinetic-MHD coupling using the ORNL and other HPC resources poses multiple
challenges for us. There are several simulation codes that should be executed on different
resources in a coordinated and repetitive manner, delivering data from one to another in
several stages, with the number of iterations depending on the status of the simulation.
Certainly, manual control is impossible due to the large number of iterations. A com-
pletely script-based solution would fail because we have to get access to resources that
are protected by One-Time Passwords (OTP) several times during one run. Additionally,
we have different “tasks” to perform concurrently: processing NetCDF and other binary
file output of XGC0, computing the new equilibrium in each coupling step, checking the
linear MHD stability with ELITE, and executing M3D-MPP and NIMROD at the same
time. This requires a parallel programming environment, for which scripting languages
are cumbersome. Moreover, the tasks above are themselves long processing pipelines,
applying several processing steps (transfer, conversion, image generation, etc.) for a
stream of data items. Exploiting the performance improvement coming from pipeline
parallel processing is necessary for us to be able to monitor the simulations and drive the
coupling in a timely fashion.

We have chosen to use Kepler [42] due to its support of advanced computational
models such as pipeline-parallel execution (discussed below). We prefer Kepler over
other scientific workflow systems because the majority of them are grid-oriented (allow-
ing only the creation of workflows where each component is realized as a job) or web-
based (where a component is realized as a web service call). The resources at hand are not
part of any grid or web-based software infrastructure. Even if they were, in a grid infras-
tructure there is no access to a job’s output on the fly unless all output is put into external
storage elements (a difficult requirement for a project with so many existing simulation
codes). The quick access and fast processing of data and the fast turnaround in the execu-
tion of the many operations are essential for the kinetic-MHD coupling’s timing require-
ments and are not achievable by using grid-based job submission. Another advantage



688 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

over many alternative systems is that Kepler development is community-driven. Thus,
different projects and teams such as CPES and SDM (Scientific Data Management) that
use Kepler can collaborate to share development tasks and system improvements.

Another requirement of this code coupling task was that the workflow execution
should not be constrained to the workflow system’s graphical user interface. In the fu-
ture, CPES workflows will be launched from the project dashboard (described in Section
5); meanwhile, they are executed from the command line or launched by a script. Kepler
allows workflows to be executed from the command line, reading parameters from a text
file, and thus is ideal for launching workflows either from scripts or web-based tools.

Kepler is an open-source scientific workflow system developed in the collaboration
of several projects in different scientific and technology areas. The examples presented
in [42] highlight the different application areas of scientific workflows. Roughly speak-
ing, we can distinguish between several broad classes of workflows. There are knowl-
edge discovery workflows that combine custom algorithms and analysis tools to elucidate
new information from existing data. A workflow can be an automation of an otherwise
manual procedure, or the re-engineering of a custom-built tool for a more generic, ex-
tensible and changing environment of resources and tools, thus forming the basis of a
general “toolkit” for an application area. Other workflows are created to employ high-
performance computing resources in a coordinated manner to achieve computationally
intensive tasks.

Kepler is based on Ptolemy II [43], a modeling tool for heterogeneous, concurrent
systems. One advantage of PtolemyII lies in a modeling and design paradigm called
actor-oriented modeling [44]. Within this paradigm, a workflow is viewed as a composi-
tion of independent components called actors. Communication between actors happens
through interfaces called ports by sending data encapsulated in tokens. In addition to
these ports, actors have parameters that configure and customize their behavior. Given
an interconnection of actors, however, there are many possible execution semantics that
one could assign to the diagram. For example, actors might have their own thread of con-
trol, or their execution might be triggered by the availability of new inputs in a sequential
order. A key property of PtolemyII is that the execution semantics is specified by a sep-
arate object called a director. The director defines how actors are executed and how they
communicate with one another. Consequently, the execution model is less an emergent
side-effect of the various interconnected actors and their (possibly ad-hoc) orchestration,
and more a prescribed concurrent semantics as one might find in a well-defined con-
current programming language. The execution model defined by the director is called a
model of computation. Patterns of concurrent interaction are factored out into the design of
the directors, rather than being individually constructed by the designer of the workflow.

There are several models of computation realized in directors. The PN (Process Net-
work) director is based on Kahn process networks [45] and allows actors to run con-
currently in their own threads. In principle, write (or send) operations never block (the
queue sizes are adjusted automatically if necessary). In contrast, actors block on read (or
receive) operations (i.e., when an actor has not received all required input tokens). The



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 689

SDF (Synchronous Data-Flow) director performs static analysis on a workflow that guar-
antees absence of deadlocks, determines required buffer sizes, and optimizes the static
and sequential scheduling of actor execution, but it poses certain restrictions on the possi-
ble process networks in order to be able to do that. Specifically, the token production and
consumption rate of an actor must be known before runtime to allow SDF scheduling.
In contrast, the DDF (Dynamic Data-Flow) director can be used for sequential (single-
threaded) execution of a process network where the actors dynamically change the pat-
tern of input consumption and output generation, thus allowing for data-dependent
routing (e.g., conditional branches) and iterations (e.g., while loops). Other directors
have been constructed for modeling Discrete Event (DE) systems, Continuous-Time (CT)
models, Communicating Sequential Processes (CSP), and Finite State Machines (FSM) to
mention just a few. Workflows can be nested in other workflows within a hierarchical
model, where subcomponents can have an entirely different model of computation. In
the CPES workflows, Process Networks that allow concurrent execution of independent
operations are combined with DDF components that are inherently sequential opera-
tions. To the best of our knowledge, Kepler, through the underlying Ptolemy II directors,
is the only scientific workflow system that allows such flexible combinations of models
of computation.

Figure 6: CPES kinetic-MHD coupling workflow in Kepler realizing the XGC0 + M3D-OMP + ELITE + M3D-
MPP scenario. Each component is itself a hierarchical subworkflow. On the right side of the figure, the HDF5
Processing and the NetCDF Processing steps are shown.

Fig. 6 shows the top level of the Kepler workflow that coordinates the kinetic-MHD
coupling. Among the important elements on the Kepler canvas is the PN Director (upper
left-hand corner) that defines task-parallel execution for independent actors on differ-
ent branches or pipelines and pipeline-parallel processing for actors connected into a
pipeline. The ParameterSet actor reads workflow parameters from a text file, thus pro-



690 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

viding a practical way to deploy a workflow system-wide and allow it to be used with
different settings. The three components on the top show the class/instance concept of
Kepler. They are subworkflows designated as classes, so they can be instantiated sev-
eral times in the workflow graph while using the same code (just like the atomic Java
actors are used). The instances can be parameterized differently, but any change to the
workflow graph of the actor means a global change for all instances.

ProcessFile is the most important actor for the CPES project. It is a generic actor that
executes a command on a remote machine using an (already established) SSH connec-
tion or, alternatively, on the local machine using the Java Runtime environment. The
command is given as a string parameter containing macro definitions to denote the ac-
tual input file and directory, the output file and directory, and the host. The actor can
store the command string on successful execution and can check all future commands
against it, skipping commands if they have already been executed. This “lightweight
checkpointing” feature allows us to stop and restart the workflow any time, without af-
fecting the simulation, and to continue processing the output where we left off. The actor
also passes special tokens that denote the end of the simulation (StopFile) or a failed op-
eration upstream on the pipeline. With appropriate parameterization we can realize all
remote operations of the workflow by using this actor, transferring files from the simu-
lation site to the processing site using scp or bbcp (third-party transfer), and executing
all external codes and scripts on the processing site. Note, for example, that five of the
NetCDF Processing pipeline’s seven components (shown on the right side of Fig. 6) are
simply different instances of the same ProcessFile actor. The transparency of local and re-
mote sites in the workflow allows us to execute the workflow on the data processing site
for production use or on a laptop/desktop for testing, demonstration or tutorials (with
all simulations executed and data stored at ORNL), without ever changing the workflow
itself. Other CPES actors provide SSH session operations, remote file operations (file
copy, directory creation, remote directory listing), archival operations, session logging,
etc. Those actors, along with the restarting capability of workflows and techniques used
to ensure robustness of the workflows, are described in detail in [46].

The workflow screenshot graphically presents the coarse steps of the coupling. XGC0
is not represented, since the simulation is currently submitted independently by the user,
and the workflow is started afterwards. After a number of preparation steps (logins to
all involved machines, creation of directories on the processing site, and copying of input
and configuration files of each code used in the workflow into the appropriate places),
three independent pipelines are started, ready to monitor and react to output from the
XGC0 simulation. These pipelines start processing output of each coupling or diagnostic
procedure as soon as they find it.

Monitoring of XGC0 is realized by two pipelines: NetCDF Processing starts with
watching for 1D diagnostic variables of XGC0 stored in NetCDF files. As each file grows
(they are extended after every diagnostic period), the workflow splits (takes the most re-
cent data entry), transfers and merges the data to mirror XGC0’s output on the processing
site efficiently. Finally, images are generated using xmgrace for all variables in the output



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 691

Figure 7: The coupling pipelines performing the M3D-OMP, ELITE, NIMROD and M3D-MPP steps. The
additional arrows indicate the connections between those steps.

for each diagnostic time step and placed into a predefined directory, which is shown by
the dashboard. The HDF5 Processing pipeline’s role is similar, but there are important
differences. For each diagnostic time step, XGC creates new BP files (a custom binary for-
mat for efficient I/O writing); hence, there are no split and merge steps when transferring
them to the processing site. The BP files are converted to HDF5 using an external code
and then images are created for all 2D slices of the 3D data stored in those files using an
AVS/Express network. For this purpose, the pipeline starts AVS/Express as a job on the
processing site and then uses it as a (private) service by making imaging requests to it.

The M3D-OMP pipeline (top of Fig. 7) realizes the loose cyclic coupling between
XGC0 and M3D-OMP. From XGC0, a small data file m3d.in is transferred to the process-
ing site where M3D-OMP is executed (submitted as a job). The new equilibrium is then
transferred back to the simulation’s directory. The result also triggers the execution of the
ELITE pipeline, which transfers the p-eqdsk data (plasma density profile) from XGC0 and
runs ELITE, again submitted as a job. A wrapping script around ELITE performs all the
tasks: prepare job, submit job and wait for results, check all output files for errors or prob-
lems, generate output plots using IDL, and determine whether the XGC0 simulation has
become MHD unstable. All these subcomponents could also be realized as subworkflows
in Kepler if more detailed control were needed inside the workflow. However, scripts are
still the easiest way to implement these individual tasks involving several system calls
and program executions. The result of the script is a simple “control file” containing the
string stable or unstable, which is checked in the last actor of this subworkflow. If XGC0



692 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

is determined to be MHD unstable, both NIMROD and M3D-MPP are launched, while
the workflow stops XGC0. The NIMROD pipeline is simple because, similar to ELITE,
the majority of the work is performed by an external script that does the following tasks:
prepare a NIMROD job, submit it and wait for it to run, then generate images from its
output using xdraw. The M3D-MPP pipeline, however, is more complex. It can be used
as a stand-alone workflow as well, to execute M3D-MPP and monitor it. The workflow
generates images from its HDF5 output using AVS/Express, so the structure is similar to
the HDF5 Processing pipeline described above. It is worth noting that the AVS/Express
job is submitted directly from the workflow, not from a script. Thus, the workflow has
the power to wait for the AVS/Express job start-up, perform other tasks while the job is
running, and stop the job at the end of the processing. This capability is enabled by a set
of job-related actors in Kepler that support several job managers (PBS, LoadLeveler, SGE,
Condor and “process fork”) and use SSH to connect to remote computing sites.

5 Dashboard tool for simulation data and resource monitoring

The need for dashboards for monitoring the scientific process and collecting provenance
data has been recognized for many years [47]. Monitoring can be partly the collection of
the provenance and meta-data, but it also may require collection of additional informa-
tion and display of information in a very user-friendly format. A dashboard allows us
to provide run-time tracking, problem determination, computational steering, and other
workflow-related feedback mechanisms to the users of this system.This information may
be useful to provide fault-tolerance information, performance monitoring, and monitor-
ing of the actual data created in the simulation.

As part of the CPES project, we have been creating a scientific dashboard to simplify
the number of tasks our users need to perform to monitor their workflows. We view the
dashboard as a place where a user can learn about DOE computing resources and query
these resources, so that they can determine when their simulations will run and how
much time they have used on these large systems. Users can also access on the dashboard
all of the information that was generated from their current and previous simulations.

Because of their evolutionary and exploratory nature, frequent changes are often an
integral part of a scientific workflow lifecycle for the CPES suite of codes. Therefore, is
critical to record provenance information (e.g., the lineage of data and processes) in a
way that is consistent, persistent, and easily retrievable and auditable. Related to this is
the ability to steer the workflows and the associated computational tasks through use of
run-time dashboards, analytics and process feedback loops. The CPES dashboard system
allows the display of all of the meta-data that is generated either by the workflow or by
the user’s interaction with the dashboard itself. Part of this system includes methods to
annotate the information on the dashboard and save this in a database.

In order for the system to be useable by the computational scientists who are our tar-
geted users, we wanted to use Web2 technologies [48]. Here data is the driving force of



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 693

the technologies delivered to the user. Web2 technologies generally refer to web-based
services and communities that have a strong reliance on data access and aim to facilitate
collaboration and the sharing of data while adhering to the concept of lightweight pro-
gramming models. Beyond these basic goals of Web2 technologies, we want to provide
a system that uses the most common web browsers (e.g., Firefox, Internet Explorer) and
has a low memory overhead. We also want a system that would work fast, which implies
that we need asynchronous movement of information from our back-end system to the
dashboard. We choose not to use Java because we feel that the momentum in industry
is moving towards Asynchronous Java and XML (AJAX) [49], and Flash [50] for fast de-
livery of content-rich information. Another aspect of choosing these technologies of Java
is the ease-of-programming with AJAX and Flash. Initial development and hardening of
our dashboard took less than one person-year of development with the help of the CPES
and SDM teams.

Another very important aspect of the dashboard is to provide a secure environment in
which users can access their data and create electronic notes for all of the data associated
with their simulations. Initially when a user logs onto our system, they must log in with
a One-Time Password. Since the users must be able to submit jobs from the system, we
need to use a technique that issues an X509 certificate based on the OTP. This certificate
allows users to submit jobs, query the Cray supercomputer at ORNL, and access data
from the system. We are currently running the system without certificates, so that we
don’t have access to these feedback mechanisms. We plan to put these mechanisms in
place in the future, and to provide additional mechanisms for accessing data on these
systems.

Back-end architecture

The ORNL Dashboard is mainly using PHP at the back end. Information is pushed into
the MySQL database at ORNL using shell scripts and python scripts, and then later re-
trieved via PHP to be displayed using AJAX or Flash on the client side.

1. Python scripts. Some of these scripts are running as cron jobs at the back end, push-
ing frequently updated information such as the status of the machine queues into
the database. This is the simple case of machine monitoring, where the informa-
tion is always available and current as long as the dashboard back-end machine
(ewok) is up and running. In the case of simulation monitoring, the first step is to
run the script pushing the “cheat sheet” for a specific run into the database. The
same script that starts the simulation workflow also calls a python routine that in-
serts metadata about this simulation into a MySQL table (i.e., the “cheat sheet”).
From that point on, the Dashboard knows where to look for data associated with a
particular username, machine name, and job ID listed in the machine queues. The
additional python scripts are called from PHP to pre-process information such as
the table of variables minima and maxima for the run. This file contains data per-
taining to all time steps, but only information for one time step is displayed at a
time.



694 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

2. Database. As previously mentioned, the database tables may be filled by cron jobs
running on ewok or by the initial script that starts the workflow or by PHP scripts
directly from the Dashboard. Hence the current information stored in the database
is of the following types:

(a) System information – These tables contain the machine queues for seven DOE
machines; i.e., username, job ID, job status, start time, number of processors
used, etc. The individual usage on each machine is also stored here.

(b) Simulation meta-data – The simulation “cheat sheet” is unique to a username,
a machine name, and a job id. Each job has a single entry or cheat sheet ID
in the database. This ID is linked to a series of crucial details about the run
including the simulation name, the path to the simulation data, and the path
to archived data in the High Performance Storage System at ORNL.

(c) User tables – This information is stored while users are using the Dashboard to
create user sessions, and it allows a level of customization of the Dashboard. In
machine monitoring mode, the user can save quick annotations to their runs.
For simulation monitoring, these database tables store information such as
details about the Flash graphics viewer: number and name of variables loaded
in each space (or desktop), etc.

(d) Administrator tables – Additionally, data is entered and updated manually by
super users who determine access permissions on data stored in the database.
For instance, users are allowed to see other users’ runs as long as their user-
names are stored in the collaborators table in the database.

Naturally, several of the previously mentioned sections of the database continue to
be developed over time, but the only supplementary information currently missing from
the database is the provenance information (especially the data provenance).

Machine monitoring

The Dashboard homepage displays a detailed view of the status of the various machines
at the user’s request. In this mode, the technology used is AJAX and PHP. The link at
the top center of this page displays images in an AJAX tooltip that indicate whether a
machine is up or down (see Fig. 8). The AJAX tabs and tables below the link contain
more detailed information. They hold the machine queues arranged by active (running),
eligible (queued), or blocked (on hold) jobs. This page also gives information on machine
usage and availability. The user has the possibility to query machines (currently only
ewok) for estimated start time before submitting a job. The Dashboard also offers the
option to directly log into a machine using the web-based terminal AjaxTerm [51]. Finally,
the two additional tabs in the machine monitoring display the result of a query to retrieve
the user’s running and previous jobs, as well as those of his or her collaborators.

As more machines become available to users, the machine monitoring page will be
updated to include them. Permissions may need to be set to establish which machines
users are allowed to see. Some scientists that use the Dashboard don’t have accounts



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 695

Figure 8: Machine Monitoring Page – The first six tabs display DOE machine queue command outputs. The
bottom two tabs parse the runs to extract the user’s job and the jobs of his or her collaborators. The green
arrows indicate that the machines are up.

Figure 9: Simulation Monitoring Page – The variables to the left can be dropped into the graphics tiles. The
user can view graphs, movies, or text files, in addition to the table of variables minima and maxima at the
bottom of the page.



696 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

on all the supported systems. Even in the case where a user has an account on every
machine displayed on the main page, this information could become overwhelming and
unnecessary. A mechanism can be provided to display and rearrange only computers of
special interest to the user.

Simulation monitoring

The simulation page is mainly based on Flash and PHP. The basic idea is to load a tree
view of the variables for a specific run and visualize the evolution of the associated data
through time. The Graphical User Interface for this mode includes four spaces (desktops),
each including up to 16 graphics frames. Users can visualize images or movies by drag-
ging and dropping variables from the tree-view to these tiles (see Fig. 9). Other types of
data include variables local and global minima and maxima, ASCII files associated with
special variables, etc. The list will expand and change with different simulations.

The Dashboard will include provenance information in the near future. Provenance
is the history of the data, execution and conditions applied to a workflow run [47]. This
relevant information should be displayed in a user-friendly format on the Dashboard.
Considering that provenance includes process, system, workflow and simulation data
provenance, some information might be more important for the developer than for the
user, and the Dashboard should be aware of these differences. Another important piece
not yet included in the current Dashboard is a data-delivery system from the simulation
directory or from HPSS to the user’s machine or to a user-specified remote computer. A
third focus being developed along with provenance and data delivery is user annotations
of images and movies. These annotations will be stored in the database and linked to the
applicable simulation data, so that they can later be jointly queried. To take the annota-
tions further, the Dashboard should include an e-book (electronic notebook). This option
will provide the user with a way to insert notes and images in an expanding document
associated with a particular simulation name. As these different pieces are added to the
Dashboard, its user friendliness and performance should continually improve.

6 Application of Kepler workflow to coupled code simulation of

ELM cycle

Let us now bring together the preceding discussion of the required physics code com-
ponents and computer science tools and technologies by examining the application of
a Kepler scientific workflow and use of the ORNL Dashboard tool to simulate H-mode
pedestal growth and the onset of ELM instability. For this particular example, we focus
on the first code coupling scenario described in Section 3 of this paper and illustrated in
Fig. 4. An EFIT equilibrium data file for DIII-D shot number 096333 from time 0.337 msec
is selected as the starting point for our XGC0 kinetic code, along with model profiles for
the initial edge plasma density and temperature. The XGC0 code is configured to run
with 320,000 ion particles distributed across 128 processing cores on the Cray XT3/XT4



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 697

jaguar at ORNL. The simulation end time is chosen to be roughly 100 ion toroidal tran-
sit periods; in the coupled simulation scenario, however, the kinetic code will be halted
whenever linear instability of ELMs is detected. A particular set of XGC0 input file pa-
rameters determine whether the code runs in a coupled mode, and, if so, how often
coupling data is to be written out. (It should be noted that there is a practical limit on
how frequently code coupling data can actually be exchanged, due to the finite amount
of time required to perform ELM linear stability analysis.) In this instance, a coupled
simulation is chosen with the m3d.in plasma profile data and peqdsk density data being
output once every 500 time steps (equal to roughly one ion transit period), along with
standard XGC0 diagnostic variables such as the plasma density and temperature profiles
and the self-consistent radial electric field. An equivalent uncoupled XGC0 simulation
would require about 75 minutes of wall clock time to complete.

This XGC0 production run is launched on jaguar in the conventional manner using
a PBS job script. Job submission can be done either in a standard terminal window or
via the Dashboard using AjaxTerm. (It is planned for the near future to have Kepler
workflows that include XGC0 job submission as one of the specified tasks.) The Dash-
board environment offers the user a very convenient means of examining the distributed
computing resources that are available prior to starting a simulation, as well as moni-
toring the job queue to determine when execution begins. At any time after XGC0 job
submission, the Kepler coupling workflow is launched (once again on the simulation
host machine jaguar) using a shell script that takes two arguments: a shot ID number
that acts as a unique label for this run, and the job ID number associated with the XGC0
job that has been submitted. The workflow actually runs on the processing host ewok,
so a login with OTP is required in this case. By convention, all of the CPES workflows
create a run-specific simulation output directory labeled by the shot ID number within
the “workflow” directory of a user’s workspace on the processing host, so the user must
ensure that such a “workflow” directory exists prior to the first workflow run. The cou-
pling workflow here has a graphical representation similar to that displayed in Fig. 6.
Each workflow has its own configuration file that specifies details about which comput-
ing hosts and directories are used, how often certain tasks are performed, which utility
commands are invoked, and so forth. (These parameters should remain mostly constant
from one run to the next, so that the configuration files are rarely edited.)

Once the Kepler coupling workflow is running, it creates a hierarchy of output di-
rectories on the processing host for the different stages/components of the coupled sim-
ulation and then begins looking for diagnostic or coupling data to process. The user
can monitor this activity in real time, either by looking in the output directory hierar-
chy on the processing host or, more conveniently, by using the Dashboard to examine
the running job on the simulation host as described in Section 5. (Note that the Kepler
workflow running on ewok is not itself visible on the Dashboard because it is not run via
the job queue; nevertheless, the outputs of tasks driven by the workflow are associated
with the XGC0 job and can be monitored on the Dashboard.) XGC0 diagnostic variables
that are plotted on the Dashboard will have their plots updated automatically as new



698 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

(a) (b)

(c) (d)

(a) (b)

(c) (d)
Figure 10: Evolution of perturbed ion density, from initial profile (a) until just prior to ELM onset (d).

data is written out by XGC0 and then processed by the relevant pipeline in the Kepler
workflow. The Dashboard can be placed in “VCR” mode, in which it will record all such
updates and create a Flash animation file containing the history of all variables displayed
on the Dashboard. For the sample coupled simulation we are studying here, a sequence
of plots of the perturbed ion density shows the natural buildup of the edge pedestal due
to the interplay of neutral penetration from the wall boundary and ion orbit loss near the
separatrix in the presence of a self-consistent radial electric field (Fig. 10).

As the XGC0 run proceeds, a series of m3d NNN.in and peqdsk.NNN files are written
out, where NNN here represents the coupling period number. The Kepler workflow looks
for the most recent such files and transfers them to ewok for processing. (Note that this
procedure results in a non-deterministic set of coupling times being analyzed. We are
currently working on an approach that will allow one to specify within the workflow
precisely which coupling times are to be processed.) M3D-OMP is run on the m3d.in
file to produce an updated eqdsk file, which is transferred back to XGC0 but also given
to ELITE along with the peqdsk file for linear stability analysis. Output variables from
this analysis such as the normalized pressure gradient and plasma current are plotted
automatically using IDL scripts and made available to the Dashboard.

The most crucial output data from ELITE is the computed linear growth rate of the



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 699

Figure 11: Density in M3D nonlinear MHD simulation.

eigenmode, which is compared with a threshold value (based on local theory) of one-half
the ion diamagnetic drift frequency to determine the moment of ELM instability. For this
example run, the n=8 mode tends to have the strongest linear growth rate and reaches the
instability threshold first. The XGC0 simulation is configured to output coupling data 100
times during the entire run, which in this case is about once every 45 seconds. However,
the time required for the M3D-OMP run to update the eqdsk file followed by the ELITE
run to check stability turns out to be about 8 minutes on a single ewok processing core.
Thus, the coupled system as configured can update the equilibrium and test for stability
only every 10th or 11th coupling period. In this case, four series of M3D-OMP and ELITE
runs were performed by the Kepler workflow before a linear growth rate exceeding the
instability threshold was reported for coupling data set number 40.

At this point, the XGC0 job is terminated by the workflow, and a single-step linear
run of M3D-OMP is executed in order to produce the omp.out mesh file needed by the
parallel M3D-MPP code. Once this preliminary step is complete, the workflow submits a
job script to the batch queue on ewok (or alternatively on jaguar or seaborg, for example) to
run the nonlinear ELM simulation. In this example, a 128-process M3D-MPP job was run
with 16 separate poloidal planes and approximately 8,000 elements in each plane of the
M3D mesh. The code performed 10,000 time steps (equivalent to more than 100 Alfvén
periods of simulated time) in about 100 minutes of wall clock time. As it turns out, this
was enough time for the ELM to grow and saturate (see Fig. 11), but longer runs show
that a simulation several times longer is needed for complete nonlinear saturation and
dissipation of the mode energy to occur. Our goal is for the nonlinear simulation to reach
a quasi steady-state in which the magnetic geometry near the separatrix has healed and
the edge plasma profiles cease to evolve. This can be challenging with a resistive MHD
initial value code like M3D because the nonlinear ELM crash can generate large density



700 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

and heat releases from the plasma that take a long time to dissipate. The resistive MHD
model is inexact in the vacuum region, and there is no “absorbing” boundary condition
at the outer wall (although you can mock this behavior by adjusting heat dissipation
characteristics in the input parameters). Furthermore, the ELM crash generates fine-scale
structures in the perturbed density that can cause numerical difficulties related to grid
resolution in certain cases. Nevertheless, we have been able to address these challenges
and produce stable nonlinear ELM simulations that eventually reach a steady state. We
are currently working to create an automated means of detecting the attainment of quasi
steady-state in the M3D-MPP nonlinear ELM simulation, so that a final equilibrium can
be produced and used to begin a new ELM cycle.

7 Conclusion and discussion

A coupled simulation has been successfully demonstrated involving advanced kinetic
and MHD code components that are utilized in a coordinated fashion to model the edge
pedestal buildup of an H-mode plasma and the subsequent ELM crash that can occur
when extremely sharp gradients develop. This system loosely couples the kinetic edge
code XGC0 with a variety of MHD equilibrium solvers and analysis packages, including
TEQ, ELITE, M3D, and NIMROD. A set of scientific workflows developed in the Kepler
framework are used to orchestrate the actions of the coupled simulation, launching code
components as needed and performing the requisite data transfers between codes and
analysis of simulation outputs. A web-based dashboard tool developed at ORNL is used
to check for computational resources and monitor the coupled simulation results in real
time.

This coupled simulation will be used to facilitate the exploration of the peeling- bal-
looning mode instability boundary in (j,α) parameter space, where j represents the nor-
malized plasma current density in the edge region and α is the normalized pressure
gradient. As the physics studies proceed, improvements will continue to be made to
the computational tools that have been developed. Further refinements to the coupling
workflows are needed, for example, to allow for prescribing in advance which coupling
data sets are to be analyzed, which is needed to guarantee reproducibility of the coupled
simulation. Straightforward modifications should make it possible for concurrent runs of
ELITE to be used to scan multiple n values at once for linear stability, or to launch simul-
taneously nonlinear ELM simulations from the same initial profiles with the M3D-MPP
and NIMROD codes and perform cross-verification of the models. Continued develop-
ments of the ORNL Dashboard tool will include an e-book feature for annotating current
and previously archived simulation results and an interface with the MDS+ database for-
mat that is used to store experimental data from many present-day tokamak devices. The
latter feature should greatly ease the process of configuring simulations of specific experi-
mental shots and conditions, as well as performing code validation against observational
data.



J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702 701

Acknowledgments

This work is part of the ongoing research activities within the SciDAC Fusion Simulation
Prototype (FSP) Center for Plasma Edge Simulation, which is supported by the Office
of Fusion Energy Sciences and the Office of Advanced Scientific Computing Research
within the U.S. Department of Energy. We are grateful to the National Center for Com-
putational Science at Oak Ridge National Laboratory and the National Energy Research
Supercomputer Center at Lawrence Berkeley National Laboratory for access to and sup-
port of their computing resources. Finally, we would like to thank the members of the
M3D, ELITE, TEQ, and NIMROD development teams for providing code access and their
expertise in utilizing each of these code components effectively.

References

[1] R. J. Groebner, K. H. Burrell and R. P. Seraydarian, Phys. Rev. Lett. 64, 3015 (1990).
[2] C. S. Chang and S. Ku, Phys. Plasma 11, 5626 (2004).
[3] W. Park, E. V. Belova, G. Y. Fu, X. Tang, H. R. Strauss and L. E. Sugiyama, Phys. Plasmas 6,

1796 (1999).
[4] H. R. Wilson, P. B. Snyder, G. T. A. Huysmans and R. L. Miller, Phys. Plasmas 9, 1277 (2002).
[5] P. B. Snyder, H. R. Wilson et al., Phys. Plasmas 9, 2037 (2002).
[6] R. G. Littlejohn, J. Plasma Phys. 20, 111 (1983).
[7] R. J. Procassini, C. K. Birdsall and B. I. Cohen, Nucl. Fusion 30, 2329 (1990).
[8] A. H. Boozer and G. Kuo-Petravic, Phys. Fluids 24, 851 (1981).
[9] W. X. Wang, N. Nakajima, M. Okamoto and S. Murakami, Plasma Phys. Control. Fusion 41,

1091 (1999).
[10] L.L. LoDestro and L. D. Pearlstein, Phys. Plasmas 1, 90 (1994).
[11] A. H. Kritz, G. Bateman, J. Kinsey et al., Comput. Phys. Commun. 164, 108 (2004).
[12] J. A. Crotinger, L. LoDestro, L. D. Pearlstein, A. Tarditi, T. A. Casper and E. B. Hooper,

CORSICA: A Comprehensive Simulation of Toroidal Magnetic-Fusion Devices, Technical
Report UCRL-ID-126284 (Lawrence Livermore National Laboratory, April 1997).

[13] R. Andre, D. McCune, J. Menard, D. Pearlstein, L. Lodestro and J. Carlsson, “New MHD
Equilibrium Solver Options in TRANSP”, APS Meeting Abstracts, page 1129P (October
2006).

[14] J. W. Connor, R. J. Hastie, H. R. Wilson and R. L. Miller, Phys. Plasmas 5, 2687 (1998).
[15] P. B. Snyder, H. R. Wilson et al., Nucl. Fusion 44, 320 (2004).
[16] P. B. Snyder, K. H. Burrell, H. R. Wilson et al., Nucl. Fusion 47, 961 (2007).
[17] A. W. Leonard, T. H. Osborne et al., Phys. Plasmas 10, 1765 (2003).
[18] T. W. Petrie et al., Nucl. Fusion 43, 910 (2003).
[19] P. B. Snyder, H. R Wilson and X. Q. Xu, Phys. Plasmas 12, 056115 (2005).
[20] W. P. West et al., Nucl. Fusion 45, 1708 (2005).
[21] K. H. Burrell et al., Phys. Plasmas 12, 056121 (2005).
[22] M. R. Wade et al., Phys. Rev. Lett. 94, 2250011 (2005).
[23] T. Evans et al., Nature Physics 2, 414 (2006).
[24] A. Kirk et al., Plasma Phys. Control. Fusion 46, 551 (2004).
[25] D. A. Mossessian, P. Snyder, A. Hubbard et al., Phys. Plasmas 10, 1720 (2003).
[26] L. L. Lao, Y. Kamada, T. Okawa et al., Nucl. Fusion 41, 295 (2001).



702 J. Cummings et al. / Commun. Comput. Phys., 4 (2008), pp. 675-702

[27] N. Oyama et al., Nucl. Fusion 45, 871 (2005).
[28] C. R. Sovinec, A. H. Glasser, T. A. Gianakon, D. C. Barnes, R. A. Nebel, S. E. Kruger, D. D.

Schnack, S. J. Plimpton, A. Tarditi, M. S. Chu and the NIMROD Team, J. Comput. Phys. 195,
355 (2004).

[29] D. D. Schnack, D. C. Barnes, D. P. Brennan, C. C. Hegna, E. Held, C. C. Kim, S. E. Kruger, A.
Y. Pankin and C. R. Sovinec, Phys. Plasmas 13, 058103 (2006).

[30] S. E. Kruger, D. D. Schnack and C. R. Sovinec, Phys. Plasmas 12, 056113 (2005).
[31] E. D. Held, J. D. Callen, C. C. Hegna, C. R. Sovinec, T. A. Gianakon and S. E. Kruger, Phys.

Plasmas 11, 2419 (2004).
[32] C. R. Sovinec, T. A. Gianakon, E. D. Held, S. E. Kruger, D. D. Schnack and the NIMROD

Team, Phys. Plasmas 10, 1727 (2003).
[33] A. H. Glasser, C. R. Sovinec, R. A. Nebel, T. A. Gianakon, S. J. Plimpton, M. S. Chu, D. D.

Schnack and the NIMROD Team, Plasma Phys. Control. Fusion 41, A747 (1999).
[34] A. Y. Pankin, G. Bateman, D. P. Brennan, A. H. Kritz et al., Plasma. Phys. Control. Fusion 49,

S63 (2007).
[35] C. R. Sovinec, D. C. Barnes, R. A. Bayliss et al., J. Phys.: Conf. Ser. 78, 012070 (2007).
[36] D. P. Brennan, S. E. Kruger, D. D. Schnack, C. R. Sovinec and A. Y. Pankin, J. Phys.: Conf.

Ser. 46, 63 (2006).
[37] L. E. Sugiyama and W. Park, Phys. Plasmas 7, 4644 (2000).
[38] H. R. Strauss and W. Longcope, J. Comput. Phys. 147, 318 (1998).
[39] Portable extensible toolkit for scientific computation; http://www-unix.mcs.anl.gov/petsc.
[40] G. Y. Fu, W. Park, H. R. Strauss, J. Breslau, J. Chen, S. Jardin and L. Sugiyama, Phys. Plasmas

13, 052517 (2006).
[41] Equilibrium fitting software; http://fusion.gat.com/theory/Efit.
[42] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao and Y.

Zhao, Concurrency and Computation: Practice & Experience 18(10), 1039 (August 2006).
[43] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs and Y.

Xiong, Proceedings of the IEEE 91(1), 127 (January 2003).
[44] E. A. Lee and S. Neuendorffer, Actor-oriented models for codesign: Balancing re-use and

performance, Formal methods and models for system design: a system level perspective,
ISBN 1-4020-8051-4 (2004).

[45] G. Kahn and D. B. MacQueen, Proceedings of the IFIP 77, 993 (1977).
[46] N. Podhorszki, B. Luda̋scher and S. Klasky, “Workflow Automation for Processing Plasma

Fusion Simulation Data”, 2nd Workshop on Workflows in Support of Large-Scale Science
(Monterey, CA, June 2007).

[47] R. I. Balay, M. A. Vouk, H. Perros, “Performance of Network-Based Problem-Solving En-
vironments,” Enabling Technologies for Computational Science Frameworks, Middleware
and Environments, editors Elias N. Houstis, John R. Rice, Efstratios Gallopoulos, and Ran-
dall Bramley, ISBN 0-7923-7809-1 (2000).

[48] Web2 technologies; http://en.wikipedia.org/wiki/Web 2.
[49] B. McLaughlin, Head Rush Ajax (O’Reilly, March 2006), ISBN-10 0596102259.
[50] T. Perkins, Adobe Flash CS3 Professional Hands-On Training (Peachpit Press, September

2007), ISBN-10 0321509838.
[51] Ajax terminal; http://antony.lesuisse.org/qweb/trac/wiki/AjaxTerm.


