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Abstract. In this paper, we introduce two Galerkin formulations of the Method of Fun-
damental Solutions (MFS). In contrast to the collocation formulation of the MFS, the
proposed Galerkin formulations involve the evaluation of integrals over the bound-
ary of the domain under consideration. On the other hand, these formulations lead
to some desirable properties of the stiffness matrix such as symmetry in certain cases.
Several numerical examples are considered by these methods and their various fea-
tures compared.
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1 Introduction

The method of fundamental solutions (MFS) was introduced as a numerical method in
the late seventies in a paper by Mathon and Johnston [18], followed shortly afterwards by
applications to potential problems in papers by Fairweather and Johnston [6, 14]. Since
then it has been applied to a wide range of problems in engineering science [2, 5, 7, 8,
21]. In the MFS, the approximate solution is taken as a linear superposition of singular
solutions (fundamental solutions or Green’s functions) of the differential operator for
the problem of interest. As such, the approximate solution will satisfy the governing
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differential equation for the problem provided all singular points are located outside the
domain of interest. In the traditional MFS approach, the coefficients in the MFS expansion

are determined through either a linear or non-linear least-squares formulation using col-
location. The linear approach utilizes source locations exterior to the domain of interest
which are fixed a priori. In contrast, the nonlinear approach determines the source lo-
cations (also required to be exterior to the domain of interest) as part of the solution.
Collocation points are selected on the physical boundary where the boundary conditions
for the MFS approximations are minimized. It should be mentioned that the theoretical
aspects of a Galerkin MFS for the solution of exterior Helmholtz problems were studied
in [16] and a Galerkin-type MFS for harmonic problems was proposed in [9] but, to the
best of our knowledge, there has been no follow-up since.

One problem with the strong approximate solution obtained by collocation methods
is that one usually expects significant error to occur between the collocation points. One
way to circumvent this issue is by employing a Galerkin approach where the boundary
residuals are minimized in an average sense over the entire boundary instead of just at
the collocation points. Galerkin approaches may also be employed in boundary element
formulations (and other formulations) to also obtain symmetric coefficient matrices [17,
22].

The MFS has its origins in Trefftz’s methods [15,23] which were originally developed
as an alternative approach to Ritz’s method for approximating the solution of partial dif-
ferential equations. The primary difference between the two methods is that Trefftz’s
methods rely on the use of nonsingular basis functions which form a complete set of
solutions to the differential equation, while the MFS utilizes singular fundamental solu-
tions. It is worth noting that the approach of superposing singular solutions has been
used for some time, see, for example, the application of singular source superposition
described in [10] for problems in elastostatics. Trefftz methods can be developed from an
indirect boundary integral equation [11] and the resulting minimization problem for the
source strengths can be formulated for numerical computation either via a collocation
approach or a Galerkin method [12]. A weighted residual approach leading to a Trefftz
boundary element approach has also been discussed [19, 20] where both collocation and
Galerkin methods were used for the numerical solution of the problems considered. In-
terestingly, in [19] the authors found that both the collocation and Galerkin approaches
yielded about the same degree of accuracy in the computations. It is also argued that
the Galerkin approach is more economical since the resulting linear system is smaller
than the one obtained with collocation. On the other hand, the Galerkin method requires
numerical integration where collocation does not.

Our paper is organized as follows. After presenting the general formulation for the
MFS in Section 2, we next detail the usual collocation formulation in Section 3 where
implementation is also discussed. In sections 4 and 5 we present two alternative formu-
lations for the Galerkin MFS and discuss implementation details. Symmetric coefficient
matrices can be obtained from the Galerkin formulations presented and details concern-
ing this symmetry are addressed in the Appendix. We finally discuss the Dirichlet prob-
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lem for a circular domain in Section 6 with numerical results using both the collocation
and Galerkin formulations given in Section 7.

2 The method of fundamental solutions

We consider Laplace’s equation in R2

∆u=0 in Ω, (2.1a)

subject to Dirichlet boundary conditions

u=u on ∂Ω1, (2.1b)

and Neumann boundary conditions

∂u

∂n
=q on ∂Ω2, (2.1c)

where the boundary of the domain is ∂Ω=∂Ω1
⋃

∂Ω2 with ∂Ω1
⋂

∂Ω2=∅. In (2.1c), ∂/∂n
denotes differentiation along the outward unit normal vector n to the boundary ∂Ω2.

In the MFS we approximate the solution of Eq. (2.1a) by, see e.g., [7, 8],

uN(P)=
N

∑
j=1

cjG(P,Qj), P∈Ω, (2.2)

where the {Qj}N
j=1 ∈ D are singularities located in R2\Ω, which are assumed fixed and

prescribed and {cj}N
j=1 are unknown coefficients to be determined. In (2.2), G(P,Q) is a

fundamental solution of the Laplace operator or Green’s function, given by

G(P,Q)=− 1

2π
log|P−Q|. (2.3)

We next explore various ways of determining the coefficients {cj}N
j=1 in (2.2).

3 Collocation formulation

In the collocation formulation of the MFS, the value of uN(P) (or its normal derivative) is
prescribed at the boundary points {Pi}M

i=1 where the boundary value of u (or it’s normal
derivative) is known. The resulting system of equations is linear in the case of the sin-
gularities Qj are prescribed a priori, or nonlinear if the Qj are also unknown [18]. In this
study we shall apply the linear case, which leads to

uN(Pi)=u(Pi), i=1,··· ,M1, (3.1a)

∂uN

∂n
(Pi)=q(Pi), i=M1+1,··· ,M. (3.1b)
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Upon solution the values of the coefficients {cj}N
j=1 appearing in (2.2) are known. Collo-

cation techniques could lead to residual errors between the collocation points that may
not be acceptable.

3.1 Implementation

System (3.1) may be re-written in the form

Ac
c=b

c, (3.2)

where Ac∈RM×N is defined by

Ac
i,j=







G(Pi,Qj), i=1,··· ,M1,

∂G

∂n
(Pi,Qj), i=M1+1,··· ,M,

j=1,··· ,N, (3.3)

b∈RM×1 is defined by

bc
i =

{

u(Pi), i=1,··· ,M1,
q(Pi), i=M1+1,··· ,M,

(3.4)

and c=[c1,c2,··· ,cN ]
T. If M>N system (3.2) is overdetermined and its solution is obtained

using a linear least-squares solver whereas when M=N the system is square and may be
solved using Gaussian elimination. In this study we shall only consider the case M=N.

4 First Galerkin formulation

Alternatively, one could employ a Galerkin method where the boundary residual is min-
imized in an average sense over the entire boundary [22]. With reference to boundary
value problem (2.1), we define the residual R as

R(P)=







uN(P)−u(P), P∈∂Ω1,

∂uN

∂n
(P)−r(P), P∈∂Ω2.

(4.1)

In general, a boundary Galerkin statement of the general weighted residuals problem is
∫

∂Ω
ΨkRds=0, k=1,··· ,N, (4.2)

where the Ψk are weight functions taken to be identical to the basis functions appearing
in the chosen form of the approximate solution. In the case of the MFS, the residual we
seek to minimize is

R(P)=























N

∑
j=1

cjG(P,Qj)−u(P), P∈∂Ω1,

N

∑
j=1

cj
∂G

∂n
(P,Qj)−q(P), P∈∂Ω2.

(4.3)
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With reference to Eq. (2.1a), the weighting functions are taken as fundamental solutions,
so the Galerkin statement becomes

∫

∂Ω
G(P,Qk)R(P)ds=0, k=1,··· ,N, (4.4)

or

∫

∂Ω1

G(P,Qk)
( N

∑
j=1

cjG(P,Qj)−u(P)
)

ds+
∫

∂Ω2

G(P,Qk)
( N

∑
j=1

cj
∂G

∂n
(P,Qj)−q(P)

)

ds

=0, P∈∂Ω, k=1,··· ,N. (4.5)

With such a Galerkin approach we lose the integration-free advantage of the collocation
formulation of the MFS, yet we gain with respect to the behavior of the boundary resid-
ual. We also note that the integrations needed to evaluate Eq. (4.4) are non-singular since
the source point location Qj /∈Ω, so standard quadrature methods should be sufficient.
We also note that for fixed source locations Qj, Eq. (4.4) yields N equations in the N
unknown source strengths cj.

4.1 Implementation

System (4.4) may be re-written in the form

Ag1 c=b
g1 , (4.6)

where Ag1 ∈RN×N is defined by

A
g1

k,j=
∫

∂Ω1

G(P,Qk)G(P,Qj)ds+
∫

∂Ω2

G(P,Qk)
∂G

∂n
(P,Qj)ds, k, j=1,··· ,N, (4.7)

and b
g1 ∈RN×1 is defined by

b
g1

k =
∫

∂Ω1

G(P,Qk)u(P)ds+
∫

∂Ω2

G(P,Qk)q(P)ds, k=1,··· ,N. (4.8)

In the case of the pure Dirichlet problem, that is when ∂Ω2 =∅ in (2.1), it can be shown
that the matrix Ag1 is symmetric and positive definite (see Theorem A.1 of Appendix)
and hence the system (4.6) has a unique solution. In the evaluation of the elements in
(4.7) and (5.5) we may write

A
g1

k,j =
N1

∑
i=1

∫

∂Ω
(i)
1

G(P,Qk)G(P,Qj)ds+
N2

∑
i=1

∫

∂Ω
(i)
2

G(P,Qk)
∂G

∂n
(P,Qj)ds (4.9a)

and

b
g1

k =
N1

∑
i=1

∫

∂Ω
(i)
1

G(P,Qk)u(P)ds+
N2

∑
i=1

∫

∂Ω
(i)
2

G(P,Qk)q(P)ds, k, j=1,··· ,N, (4.9b)
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where N=N1+N2,

∂Ωℓ=
Nℓ
⋃

i=1

∂Ω
(i)
ℓ

and ∂Ω
(i)
ℓ

⋂

∂Ω
(j)
ℓ
=∅ if i 6= j, for ℓ=1,2. (4.10)

We shall assume that each of the {∂Ω
(i)
ℓ
}Nℓ

i=1, ℓ=1,2, is a straight line segment related to
the boundary points {Pi}N

i=1 by

∂Ω
(i)
ℓ
=PiPi+1, i=1,··· ,N, with the convention that PN+1=P1. (4.11)

We next consider the evaluation of the integrals

i
1 A

g1

k,j=
∫

∂Ω
(i)
1

G(P,Qk)G(P,Qj)ds, i
1b

g1

k =
∫

∂Ω
(i)
1

G(P,Qk)u(P)ds, i=1,··· ,N1, (4.12)

and

i
2 A

g1

k,j=
∫

∂Ω
(i)
2

G(P,Qk)
∂G

∂n
(P,Qj)ds, i

2b
g1

k =
∫

∂Ω
(i)
2

G(P,Qk)q(P)ds, i=1,··· ,N2, (4.13)

for k, j=1,··· ,N.
We first consider the evaluation of the integrals i

ℓ
A

g1

k,j, ℓ=1,2. Let the coordinates of the

end-points of the line segment ∂Ω
(i)
ℓ

be (x1,y1) and (x2,y2), the coordinates of the source
point Qk be (xQk

,yQk
) and the coordinates of the source point Qj be (xQ j

,yQ j
). Then

i
1 A

g1

k,j=
∫

∂Ω
(i)
1

G(P,Qk)G(P,Qj)ds

=

√

(x1−x2)2+(y1−y2)2

8π2

∫ 1

−1
logrk(ξ)logrj(ξ)dξ, (4.14a)

i
2 A

g1

k,j=
∫

∂Ω
(i)
1

G(P,Qk)
∂G

∂n
(P,Qj)ds

=

√

(x1−x2)2+(y1−y2)2

8π2

∫ 1

−1
logrk(ξ)

(xξ−xQ j
)n1+(yξ−yQ j

)n2

rj(ξ)2
dξ, (4.14b)

where

rk(ξ)=
√

(xQk
−xξ)2+(yQk

−yξ)2, rj(ξ)=
√

(xQ j
−xξ)2+(yQ j

−yξ)2,

and

xξ =
(x2−x1)ξ+(x2+x1)

2
, yξ =

(y2−y1)ξ+(y2+y1)

2
.

Note that in (4.14a) we have used that

ds

dξ
=

√

(dxξ

dξ

)2
+
(dyξ

dξ

)2
.
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Similarly, the integrals b
gi
ℓ

k , ℓ=1,2 are evaluated by the formulæ

i
1b

g1

k =
∫

∂Ω
(i)
1

G(P,Qk)u(P)ds

=−
√

(x1−x2)2+(y1−y2)2

4π

∫ 1

−1
logrk(ξ)u(x(ξ),y(ξ))dξ (4.15)

and

i
2b

g1

k =
∫

∂Ω
(i)
2

G(P,Qk)q(P)ds

=−
√

(x1−x2)2+(y1−y2)2

4π

∫ 1

−1
logrk(ξ)q(x(ξ),y(ξ))dξ. (4.16)

Each of these integrals may be approximated by means of Gauss-Legendre quadrature,
that is

∫ 1

−1
F(ξ)dξ=

L

∑
l=1

wlF(ξl), (4.17)

where the ξl and wl are the nodes and weights, respectively, of the L-point Gauss-Legendre
quadrature which may be found in the literature (see e.g., [1]). In this study we shall be
using the four-point Gauss-Legendre quadrature.

5 Second Galerkin formulation

Alternatively, instead of the Galerkin statement (4.4) one could employ the following
statement [3]

∫

∂Ω1

∂G

∂n
(P,Qk)R(P)ds−

∫

∂Ω2

G(P,Qk)R(P)ds=0, k=1,··· ,N, (5.1)

or

∫

∂Ω1

∂G

∂n
(P,Qk)

( N

∑
j=1

cjG(P,Qj)−u(P)
)

ds−
∫

∂Ω2

G(P,Qk)
( N

∑
j=1

cj
∂G

∂n
(P,Qj)−q(P)

)

ds

=0, P∈∂Ω, k=1,··· ,N. (5.2)

The advantage of this formulation is the fact that it yields symmetric matrices for the
mixed boundary conditions (2.1b)-(2.1b) as is demonstrated in the Appendix (Theo-
rem A.2).
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5.1 Implementation

System (5.2) may be re-written in the form

Ag2 c=b
g2 , (5.3)

where Ag2 ∈RN×N is defined by

A
g2

k,j=
∫

∂Ω1

∂G

∂n
(P,Qk)G(P,Qj)ds−

∫

∂Ω2

G(P,Qk)
∂G

∂n
(P,Qj)ds, k, j=1,··· ,N, (5.4)

and b
g2 ∈RN×1 is defined by

b
g2

k =
∫

∂Ω1

∂G

∂n
(P,Qk)u(P)ds−

∫

∂Ω2

G(P,Qk)q(P)ds, k=1,··· ,N. (5.5)

Dividing the boundary into segments as described by (4.10)-(4.11), we write

A
g2

k,j=
N1

∑
i=1

∫

∂Ω
(i)
1

∂G

∂n
(P,Qk)G(P,Qj)ds−

N2

∑
i=1

∫

∂Ω
(i)
2

G(P,Qk)
∂G

∂n
(P,Qj)ds, (5.6a)

b
g2

k =
N1

∑
i=1

∫

∂Ω
(i)
1

∂G

∂n
(P,Qk)u(P)ds−

N2

∑
i=1

∫

∂Ω
(i)
2

G(P,Qk)q(P)ds, k, j=1,··· ,N, (5.6b)

which means that we now need to evaluate the integrals

i
1A

g2

k,j=
∫

∂Ω
(i)
1

∂G

∂n
(P,Qk)G(P,Qj)ds, i

1b
g2

k =
∫

∂Ω
(i)
1

∂G

∂n
(P,Qk)u(P)ds, i=1,··· ,N1, (5.7)

and

i
2A

g2

k,j =
∫

∂Ω
(i)
2

G(P,Qk)
∂G

∂n
(P,Qj)ds, i

2b
g2

k =
∫

∂Ω
(i)
2

G(P,Qk)q(P)ds, i=1,··· ,N2, (5.8)

for k, j=1,··· ,N. We note that the integrals (5.8) are the same as the corresponding inte-
grals in (4.13). The integrals (5.7) are evaluated by using the Gauss-Legendre quadrature
formula (4.17) as described in Section 4.1.

6 Dirichlet problems in circular domains

There are considerable simplifications and savings in the three proposed approaches
when the domain Ω is a disk and we consider the Dirichlet problem (2.1a)-(2.1b). It is
well-documented that in this case, the collocation approach yields coefficient matrices Ac

in system (3.2) which are circulant [4,21]. In particular, if Ω is the disk Ω={x∈R2 :|x|<̺},
we choose the collocation points {Pi}N

i=1 such that

Pi=̺
(

cos
2(i−1)π

N
,sin

2(i−1)π

N

)

, i=1,··· ,N,
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and the singularities {Qj}N
j=1 such that

Qj=R
(

cos
2(j−1+α)π

N
,sin

2(j−1+α)π

N

)

, j=1,··· ,N,

where R>̺ and the positions of the sources differ by an angle 2πα/N from the positions
of the boundary points and 0≤α<1. In this case, the matrix Ac in (3.2) is circulant while
the matrix Ag1 in (4.6) defined in the Dirichlet case by

A
g1

k,j =
∫

∂Ω
G(P,Qk)G(P,Qj)ds (6.1)

is both circulant and symmetric. In the second Galerkin approach we define the outward
unit normal vector ni for each segment ∂Ω(i) by

ni=
(

cos
(2i−1)π

N
,sin

(2i−1)π

N

)

, i=1,··· ,N.

With this definition, the matrix Ag2 in (5.3) defined in the Dirichlet case by

A
g2

k,j=
∫

∂Ω

∂G

∂n
(P,Qk)G(P,Qj)ds (6.2)

is circulant. A proof that the matrices defined by (6.1) and (6.2) are circulant is given in
the Appendix (Theorem 3). Thus, in each of the three cases we have a system of the form

Ac=b, (6.3)

where A is circulant. If we define the matrix U∈CN×N by

U=
1√
N

(

e−2πi(k−1)(ℓ−1)/N
)N

k,ℓ=1
,

we premultiply system (6.3) by U to obtain

UAU∗Uc=Ub or Dĉ= b̂,

where b̂ = Ub, ĉ = Uc and the matrix D = UAU∗ is diagonal. The elements of ĉ =
[ĉ1, ĉ2,··· , ĉN ] can be easily calculated from ĉi = b̂i/Dii, i = 1,··· ,N and then c can be re-
covered from c=U∗ĉ. Note that the operations b̂=Ub, D=UAU∗ and c=U∗ĉ are carried
out efficiently using fast Fourier transforms (for details, see [21]).

7 Numerical results

7.1 Example 1

We first consider the solution of the Dirichlet boundary value problem (2.1a)-(2.1b) on
the square Ω = (−1,1)×(−1,1) using both the collocation and Galerkin formulations.
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(d) N=128

Figure 1: Example 1: Maximum absolute errors versus distance of pseudo-boundary from boundary.

The boundary ∂Ω of Ω is subdivided into N/4 equal subintervals on each side of the
square. These subintervals {∂Ωi}N

i=1 are defined by the uniformly distributed bound-
ary points {Pi}N

i=1 in the collocation formulation via (4.11). The sources are placed on a
pseudo-boundary similar to ∂Ω and are distributed uniformly on it. The exact solution
of the problem is u(x,y) = excosy and the maximum absolute error in the approxima-
tion uN for the three formulations is calculated over 404 points on ∂Ω (101 equally dis-
tributed points on each side). In Fig. 1 we present the maximum absolute error for each
formulation versus the distance d of the pseudo-boundary from the boundary for differ-
ent numbers of degrees of freedom. From this figure we observe that for relatively few
degrees of freedom the first Galerkin formulation yields more accurate results than the
collocation formulation. The second Galerkin formulation yields poor results. However,
as the number of degrees of freedom increases the accuracy of collocation is considerably
higher than that of the first Galerkin formulation. This can be explained by the fact that
the conditioning of the Galerkin coefficient matrices Ag1 and Ag2 is much poorer than the
conditioning of the corresponding collocation matrices Ac. This can be clearly seen in
Fig. 2 where we present plots of the 2-norm condition numbers of the matrices Ag1 ,Ag2

and Ac versus the distance d for various numbers of degrees of freedom.
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Figure 2: Example 1: Condition numbers versus distance of pseudo-boundary from boundary.

7.2 Example 2

We next consider the solution of the mixed boundary value problem (2.1a)-(2.1c) on the
square Ω=(−1,1)×(−1,1) using both the collocation and Galerkin formulations. As in
Example 1, the boundary ∂Ω of Ω is subdivided into N/4 equal subintervals on each side
of the square. The boundary segments ∂Ω1 and ∂Ω2 are defined as follows:

∂Ω1=
{

(x,y) :−1≤ x≤1, y=−1
}

and

∂Ω2=
{

(x,y) : x=1,−1≤y≤1
}

∪
{

(x,y) :−1≤ x≤1, y=1
}

∪
{

(x,y) : x=−1,−1≤y≤1
}

.

The boundary conditions are taken to correspond to the exact solution u(x,y)= excosy.
The the maximum absolute error in the approximation uN for the two formulations is
calculated over 404 points on ∂Ω (101 equally distributed points on each side). In Fig. 3
we present the maximum absolute error for each formulation versus the distance d of
the pseudo-boundary from the boundary for different numbers of degrees of freedom.
From this figure we can observe that both Galerkin formulations perform in a similar
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Figure 3: Example 2: Maximum absolute errors versus distance of pseudo-boundary from boundary.

way and both are inferior to collocation as N increases. In Fig. 4 we present plots of
the 2-norm condition numbers of the matrices Ag1 ,Ag2 and Ac versus the distance d for
various numbers of degrees of freedom, where it can be observed that the behaviour of
the condition numbers is similar to the corresponding condition numbers in Example 1.

7.3 Example 3

We next consider the solution of the Dirichlet boundary value problem (2.1a)-(2.1b) on
the unit disk using both the collocation and Galerkin formulations. We use the efficient
implementation described in Section 6 in both cases. The exact solution of the prob-
lem is u(x,y)=ex cosy and the maximum absolute error in the approximation uN for the
three formulations is calculated over 401 uniformly distributed points on ∂Ω. In Fig. 5
we present the maximum absolute error for each formulation versus the distance d of
the pseudo-boundary from the boundary for different numbers of degrees of freedom.
From this figure we observe that in this problem, the accuracy of collocation is consider-
ably higher than that of the first Galerkin formulation. The second Galerkin formulation
performs less well that the other two formulations. In Fig. 6 we present the maximum



J. R. Berger and A. Karageorghis / Adv. Appl. Math. Mech., 5 (2013), pp. 423-441 435

0 0.2 0.4 0.6 0.8 1
10

1

10
2

10
3

10
4

10
5

10
6

d

C
on

di
tio

n 
nu

m
be

r

Condition number vs distance

 

 
Collocation
Galerkin A
Galerkin B

(a) N=16

0 0.2 0.4 0.6 0.8 1
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

d

C
on

di
tio

n 
nu

m
be

r

Condition number vs distance

 

 
Collocation
Galerkin A
Galerkin B

(b) N=32

0 0.2 0.4 0.6 0.8 1
10

0

10
5

10
10

10
15

10
20

d

C
on

di
tio

n 
nu

m
be

r

Condition number vs distance

 

 
Collocation
Galerkin A
Galerkin B
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Figure 4: Example 2: Condition numbers versus distance of pseudo-boundary from boundary.

absolute errors versus the angular parameter α for N=128 for R=1.05,1.1 and 1.15. It ap-
pears that in the collocation approach the error is minimized as α approaches 1/4, which
is consistent with previous observations [21]. In contrast, the first Galerkin formulation
appears to be unaffected by the rotation, while the second Galerkin formulation has its
worst results as α approaches 1/4.

8 Concluding remarks

We have presented two formulations of a Galerkin approach to solving Laplace prob-
lems with the method of fundamental solutions (MFS). In theory this approach should
improve the distribution of error along the boundary when compared to the traditional
collocation approach for the MFS. After formulating the Galerkin approach, we presented
three test problems to illustrate the applicability of the method. In the first, a Dirich-
let problem on a square was investigated, and for relatively few degrees of freedom the
first Galerkin formulation yielded more accurate results than the collocation formulation.
However, the second Galerkin formulation yielded poor results. It was noted that as the
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Figure 5: Example 3: Maximum absolute errors versus distance of pseudo-boundary from boundary.

0 0.25 0.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

 R=1.05

E
rr

or

α
0 0.25 0.5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 R=1.1

α
0 0.25 0.5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

 R=1.15

α

 

 
Collocation
Galerkin A
Galerkin B

Figure 6: Example 3: Maximum absolute errors versus α.

number of degrees of freedom was increased, the accuracy of collocation approach be-
came considerably higher than that of the first Galerkin formulation. This was explained



J. R. Berger and A. Karageorghis / Adv. Appl. Math. Mech., 5 (2013), pp. 423-441 437

by the fact that the conditioning of the Galerkin coefficient matrices is much poorer than
the conditioning of the corresponding collocation matrices. The second example prob-
lem investigated was a mixed boundary value problem on the square. We noted that
both Galerkin formulations performed in a similar way, yet both were inferior to colloca-
tion as the number of degrees of freedom was increased. The final example considered
was a Dirichlet problem on a disk, where it was observed that the accuracy of the col-
location approach was considerably higher than that of the first Galerkin formulation,
and the second Galerkin formulation performed less well that either collocation or the
first Galerkin formulation. In light of these example problems, we conclude that, overall,
the collocation approach can yield more accurate numerical approximations provided a
sufficiently large number of degrees of freedom is used.

Appendix

Theorem A.1. In the case of the pure Dirichlet boundary value problem (2.1a)-(2.1b), in the first
Galerkin formulation, the matrix Ag1 in (4.6) is symmetric and positive definite.

Proof. Clearly the matrix Ag1 in (4.7) is symmetric since A
g1

k,j = A
g1

j,k, k, j=1,··· ,N. In addi-

tion, if

uN(P)=
N

∑
j=1

cjG(P,Qj),

then, following the arguments of, for example [13, Section 1.2],

c
T Ag1 c=

N

∑
k=1

N

∑
j=1

ckcj

∫

∂Ω
G(P,Qk)G(P,Qj)ds

=
∫

∂Ω

{ N

∑
k=1

N

∑
j=1

ckcjG(P,Qk)G(P,Qj)
}

ds

=
∫

∂Ω

{[ N

∑
k=1

ckG(P,Qk)
][ N

∑
j=1

cjG(P,Qj)
]}

ds

=
∫

∂Ω
[uN(P)]2ds≥0. (A.1)

In (A.1) we have the equality only if
∫

∂Ω
[uN(P)]2ds=0, that is only if uN =0 on ∂Ω⇐⇒

uN ≡0 in Ω⇐⇒ c=0. We have thus shown that for c 6=0, cT Ag1 c>0, which concludes
the proof.

Theorem A.2. In the case of the mixed boundary value problem (2.1), in the second Galerkin
formulation, the matrix Ag2 in (5.3) is symmetric.
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Proof. We have that the elements of the matrix Ag2 are given by (5.4). Following the
corresponding formulation in [3], we know from Green’s identity that

∫

Ω
G(P,Qk)∆G(P,Qj)dω−

∫

Ω
G(P,Qj)∆G(P,Qk)dω

=
∫

∂Ω
G(P,Qk)

∂G

∂n
(P,Qj)ds−

∫

∂Ω
G(P,Qj)

∂G

∂n
(P,Qk)ds, k, j=1,··· ,N. (A.2)

Moreover, since the functions G(P,Qk), k=1,··· ,N, are harmonic, (A.2) yields

∫

∂Ω
G(P,Qk)

∂G

∂n
(P,Qj)ds−

∫

∂Ω
G(P,Qj)

∂G

∂n
(P,Qk)ds=0 (A.3)

or
∫

∂Ω1

G(P,Qk)
∂G

∂n
(P,Qj)ds+

∫

∂Ω2

G(P,Qk)
∂G

∂n
(P,Qj)ds

−
∫

∂Ω1

G(P,Qj)
∂G

∂n
(P,Qk)ds−

∫

∂Ω2

G(P,Qj)
∂G

∂n
(P,Qk)ds=0 (A.4)

or
∫

∂Ω1

G(P,Qk)
∂G

∂n
(P,Qj)ds−

∫

∂Ω2

G(P,Qj)
∂G

∂n
(P,Qk)ds

=
∫

∂Ω1

G(P,Qj)
∂G

∂n
(P,Qk)ds−

∫

∂Ω2

G(P,Qk)
∂G

∂n
(P,Qj), (A.5)

which from (5.4) gives that A
g2

j,k=B
g
k,j, k, j=1,··· ,N, hence the symmetry of the matrix Ag2 .

The theorem is proved.

Theorem A.3. The matrices defined by (6.1) and (6.2) corresponding to the two Galerkin formu-
lations in Section 6 are circulant.

Proof. In order to prove that a matrix A∈RN×N is circulant it suffices to show that

Akl =Ak+j,l+j

and if k+ j > N (respectively l+ j > N) then k+ j is replaced by k+ j−N (respectively by
l+ j−N).

Starting with matrix (6.1) we have that

A
g1

k,l =
∫

∂Ω
G(P,Qk)G(P,Ql)ds=

1

4π2

∫ 2π

0
log|P−Qk|log|P−Ql|̺dϑ. (A.6)

By denoting the angles

ϕℓ=
2(ℓ−1+α)π

N
, ℓ= k,l,k+ j,l+ j,
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we have that

ϕℓ+j= ϕℓ+
2jπ

N

and we can easily see from (A.6) that

A
g1

k,l =
1

16π2

∫ 2π

0
log

[

̺2+R2−2̺Rcos(ϑ−ϕk)
][

̺2+R2−2̺Rcos(ϑ−ϕl)
]

̺dϑ. (A.7)

Similarly,

A
g1

k+j,l+j=
1

16π2

∫ 2π

0
log

[

̺2+R2−2̺Rcos(ϑ−ϕk+j)
][

̺2+R2−2̺Rcos(ϑ−ϕl+j)
]

̺dϑ

=
1

16π2

∫ 2π

0
log

[

̺2+R2−2̺Rcos
(

ϑ−ϕk−
2jπ

N

)][

̺2+R2−2̺Rcos
(

ϑ−ϕl−
2jπ

N

)]

̺dϑ

(

with ϑ̃=ϑ− 2jπ

N

)

=
1

16π2

∫ 2π− 2jπ
N

− 2jπ
N

log
[

̺2+R2−2̺Rcos(ϑ̃−ϕk)
][

̺2+R2−2̺Rcos(ϑ̃−ϕl)
]

̺dϑ̃

=
1

16π2

∫ 0

− 2jπ
N

log
[

̺2+R2−2̺Rcos(ϑ̃−ϕk)
][

̺2+R2−2̺Rcos(ϑ̃−ϕl)
]

̺dϑ̃+A
g1

k,l

− 1

16π2

∫ 2π

2π− 2jπ
N

log
[

̺2+R2−2̺Rcos(ϑ̃−ϕk)
][

̺2+R2−2̺Rcos(ϑ̃−ϕl)
]

̺ dϑ̃. (A.8)

Due to the 2π-periodicity of cosϑ̃ and sinϑ̃, the first and last terms in (A.8) cancel out
yielding the desired result.

For matrix (6.2) we have that

A
g2

k,l =
∫

∂Ω

∂G

∂n
(P,Qk)G(P,Ql)ds

=
1

8π2

∫ 2π

0
log

[

̺2+R2−2̺Rcos(ϑ−ϕl)
]

[ (̺cosϑ−Rcos ϕk)cosϑ+(̺cosϑ−Rsin ϕk)sinϑ

̺2+R2−2̺Rcos(ϑ−ϕk)

]

̺dϑ

=
1

8π2

∫ 2π

0
log

[

̺2+R2−2̺Rcos(ϑ−ϕl)
] (̺−Rcos(ϑ−ϕk))

̺2+R2−2̺Rcos(ϑ−ϕk)
̺dϑ.

Similarly, we have that

A
g2

k+j,l+j=
1

8π2

∫ 2π

0
log

[

̺2+R2−2̺Rcos
(

ϑ−ϕl−
2jπ

N

)]

(

̺−Rcos
(

ϑ−ϕk− 2jπ
N

)

)

̺2+R2−2̺Rcos
(

ϑ−ϕk− 2jπ
N

)

̺dϑ

(and proceeding exactly as in the previous case)

=
1

8π2

∫ 2π− 2jπ
N

− 2jπ
N

log
[

̺2+R2−2̺Rcos(ϑ̃−ϕl)
]

(

̺−Rcos(ϑ̃−ϕk)
)

̺2+R2−2̺Rcos(ϑ̃−ϕk)
̺dϑ̃=A

g2

k,l. (A.9)

This completes the proof of the theorem.
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