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Abstract. The theory of domain decomposition is described and used to divide the
variable domain of a diatomic molecule into separate regions which are solved inde-
pendently. This approach makes it possible to use fast Krylov methods in the broad
interior of the region while using explicit methods such as Gaussian elimination on the
boundaries. As is demonstrated by solving a number of model problems, these meth-
ods enable one to obtain solutions of the relevant partial differential equations and
eigenvalue equations accurate to six significant figures with a small amount of com-
putational time. Since the numerical approach described in this article decomposes
the variable space into separate regions where the equations are solved independently,
our approach is very well-suited to parallel computing and offers the long term possi-
bility of studying complex molecules by dividing them into smaller fragments that are
calculated separately.
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1 Introduction

The solution of the multiconfiguration Hartree-Fock equations (MCHF) provide an ap-
proximate description of atoms and molecules and serve as the starting point of more
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accurate calculations. Accurate numerical solutions of the MCHF equations for atoms
have been reported by Charlotte Froese Fisher [1,2]. Numerical solutions of the Hartree-
Fock equations for diatomic molecules have been reported by E.A. McCullough Jr [3] and
by Laaksonen and his collaborators [4,5]. More recently, we have reported numerical cal-
culations using the spline collocation method which makes it possible to treat continuum
as well as bound states [6,7]. While most researchers in theoretical chemistry would ac-
knowledge that numerical methods can be very accurate, numerical calculations do not
presently have the same range and flexibility as basis set work and are still not widely
used.

The recent appearance of domain decomposition theories makes it possible to divide
the variable domain into separate regions where molecular equations are solved inde-
pendently. For diatomic molecules, the domain decomposition approach enables one to
use fast Krylov methods in the broad interior of the physical region while using explicit
methods such as Gaussian elimination on the boundaries. Such an approach has the capa-
bility of producing numerical results much more accurately and much more quickly than
is currently possible. More generally, domain decomposition methods make it possible to
calculate the properties of complex molecules by dividing them into smaller fragments.

Applications of the domain decomposition technique have been published for a num-
ber of years within the framework of the finite element method [8]. More recently, a do-
main decomposition theory for orthogonal spline collocation has been developed [9]. The
calculations reported in this paper take advantage of the spline collocation formulation
of the theory.

To begin solving the Hartree-Fock equations one typically makes an initial estimate
of the wave functions and uses these wave functions to calculate the contributions of
each pair of orbitals to the potential energy terms in the Hartree-Fock equations. The
contributions due to the direct- and exchange-parts of the Coulomb interactions can be
found by solving Poisson-like equations. The Hartree-Fock equations themselves are
eigenvalue equations that may be solved to obtain new orbitals, and the entire process
continued until self-consistency is achieved.

This article, which is denoted by the Roman letter I, will describe methods for solving
the partial differential equations and eigenvalue equations that arise in the Hartree-Fock
theory of diatomic molecules. The model problems we will solve in this article involve
a single electron. A subsequent article denoted by the Roman letter II will discuss the
solution of Poison-like equations and applies this theory to atoms and molecules having
several electrons.

In Section 2 of this article, we shall show how the Hartee-Fock equations for diatomic
molecules can be cast into self-adjoint forms that can be solved using Krylov methods.
The self-adjoint equations all have the common property that they are singular on the
boundary of the physical region. Section 3 shows how molecular wave functions can be
represented by Hermite splines. Much of this material on splines has appeared before
[6,7] but is include here for completeness. The domain decomposition theory described
in Section 4 enables one to divide the entire region into separate domains in which the
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Hartree-Fock equations can be solved independently. The material in this section, which
is entirely new, makes it possible for us to use the preconditioned conjugate gradient
method in the broad interior of the physical region while using a banded Gaussian solver
on the boundary. As we shall demonstrate by solving a number of model problems, these
methods enable one to obtain wave functions accurate to six significant figures with a
modest amount of computational time. Section 5 of this article shows how the domain
decomposition theory may be used to solve eigenvalue problems.

2 Self-adjoint forms of the Hartree-Fock equations

The Hartree-Fock equation for a diatomic molecule in atomic units can be written
[

−1

2
∇2 − Za

ra
− Zb

rb
+ ∑

b

(2Jb−Kb)

]

ψ(r)=ǫψ(r), (2.1)

where ra and rb denote the distances of the electron from the two nuclei. The Coulomb
interaction among the electrons is described by the direct and exchange functions Jb and
Kb, which are defined by the equations

Jbψa(r1)=
∫

ψ∗
b (r2)

1

r12
ψb(r2)dV2 ·ψa(r1), (2.2)

Kbψa(r1)=
∫

ψ∗
b (r2)

1

r12
ψa(r2)dV2 ·ψb(r1). (2.3)

The positions of the nuclei and the electron are illustrated in Fig. 1. The distance between
the two nuclei is denoted by R, and, as before, ra and rb denote the distances of the
electron from the nuclei.

r a r b

a b
R

Figure 1: Positions of the nuclei and electron.

Diatomic molecules are usually described in spheroidal coordinates

ξ =(ra +rb)/R, where 1≤ ξ <∞,
η =(ra−rb)/R, where −1≤η≤1,
φ=φ, where 0≤φ≤2π,

(2.4)

in which the Laplacian operator assumes the form

∇2 =
4

R2(ξ2−η2)

[

∂

∂ξ
(ξ2−1)

∂

∂ξ
+

∂

∂η
(1−η2)

∂

∂η
+

(

1

ξ2−1
+

1

1−η2

)

∂2

∂φ2

]

, (2.5)
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and the potential energy of the electron in the field of the two nuclei is

Za

ra
+

Zb

rb
=

2

R2(ξ2−η2)
[R(Za+Zb)ξ−R(Za−Zb)η]. (2.6)

This last equation may be written more compactly if one uses the special symbols, Z and
∆, to represent the sum and difference of the two nuclear charges. The potential energy
due to the two nuclei then becomes

Za

ra
+

Zb

rb
=

2

R2(ξ2−η2)
(RZξ−R∆η), (2.7)

where Z=Za+Zb and ∆=Za−Zb. If one assumes that the single-electron wave function
is of the general form

ψ(ξ,η,φ)=
eimφ

(2π)1/2
u(ξ,η), (2.8)

the Hartree-Fock equations (2.1) can be written

− ∂

∂ξ
(ξ2−1)

∂u

∂ξ
− ∂

∂η
(1−η2)

∂u

∂η
+

(

m2

ξ2−1
+

m2

1−η2

)

u

+

[

−RZξ+R∆η+
R2

2
(ξ2−η2)∑

b

(2Jb−Kb)

]

u=
R2

2
(ξ2−η2)ǫu, (2.9)

where Z=Za+Zb and ∆=Za−Zb.
One can ensure that the grid points are clustered near the nuclei where the wave

functions oscillate most rapidly by making a variable substitution. Following Laaksonen
and his collaborators [5], we make the transformations

η =cosν for 0≤ν≤π,

ξ =coshµ for 0≤µ≤∞.
(2.10)

The Hartree-Fock equation then becomes

[

− ∂2

∂ν2
−

(cosν

sinν

) ∂

∂ν
− ∂2

∂µ2
−

(

coshµ

sinhµ

)

∂

∂µ

]

u+

(

m2

ξ2−1
+

m2

1−η2

)

u

+

[

−RZξ+R∆η+
R2

2
(ξ2−η2)∑

b

(2Jb−Kb)

]

u=
R2

2
(ξ2−η2)ǫu. (2.11)

and the wave function u satisfies homogeneous Neumann boundary conditions with re-
spect to the new variables

∂u

∂ν
=

∂u

∂η

∂η

∂ν
=−sinν

∂u

∂η
=0 for ν=0 or ν=π, (2.12)
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∂u

∂µ
=

∂u

∂ξ

∂ξ

∂µ
=sinhµ

∂u

∂ξ
=0 for µ=0. (2.13)

While the operator on the left-hand side of Eq. (2.11) is not self-adjoint, the operator can
be made self-adjoint by multiplying the equation by the function sinνsinhµ to obtain

−sinνsinhµ
∂2u

∂ν2
−cosνsinhµ

∂u

∂ν
−sinνsinhµ

∂2u

∂µ2
−sinνcoshµ

∂u

∂µ

+sinνsinhµ

(

m2

ξ2−1
+

m2

1−η2

)

u+sinνsinhµ[−RZξ+R∆η

+
R2

2
(ξ2−η2)∑

b

(2Jb−Kb)

]

u=sinνsinhµ
R2

2
(ξ2−η2)ǫu. (2.14)

Since the coefficient of each first derivative in the above equation is equal to the derivative
of the corresponding second derivative and since the function u satisfies homogeneous
Neumann boundary equations, the differential operator on the left-hand side of Eq. (2.14)
is self-adjoint.

The function coshµ appearing in the second transformation equation (2.10) has an
exponential dependence for long distances and is hence well-suited for bound solutions.
For free-electron states, a square root transformation of the coordinates is more appropri-
ate. We thus define the transformation equations,

η =cosν for 0≤ν≤π,

ξ =µ2+1 for 0≤µ≤∞.
(2.15)

This transformation is suitable for free-electrons since the distance between adjacent grid
points does not become too large far from the nuclei.

The Hartree-Fock equation obtained using the coordinate transformation (2.15) is

[

− ∂2

∂ν2
−

(cosν

sinν

) ∂

∂ν
− 1

4
(µ2+2)

∂2

∂µ2
− 1

4µ
(3µ2+2)

∂

∂µ

]

u+

(

m2

ξ2−1
+

m2

1−η2

)

u

+

[

−RZξ+R∆η+
R2

2
(ξ2−η2)∑

b

(2Jb−Kb)

]

u=
R2

2
(ξ2−η2)ǫu. (2.16)

The differential operator on the left-hand side of this last equation can be made self-
adjoint by multiplying the equation by µsinν.

The various forms of the Hartree-Fock equations we have considered thus far all have
solutions that satisfy homogeneous Neumann boundary conditions. A Dirichlet form of
the theory can be obtained by making the dependent variable transformation

v(ν,µ)=sinνsinhµu(ν,µ), (2.17)



964 J. C. Morrison et al / Commun. Comput. Phys., 5 (2009), pp. 959-985

which forces the new function v to be zero on the boundary. The independent variable
transformation (2.10) together with the dependent variable transformation (2.17) lead to
the Hartree-Fock equations

[

− ∂2

∂ν2
+

(cosν

sinν

) ∂

∂ν
− ∂2

∂µ2
+

(

coshµ

sinhµ

)

∂

∂µ

]

v+

(

m2

ξ2−1
+

m2

1−η2

)

v

+

[

−sin−2ν−sinh−2µ−RZξ+R∆η+
R2

2
(ξ2−η2)∑

b

(2Jb−Kb)

]

v

=
R2

2
(ξ2−η2)ǫv, (2.18)

which can be made self-adjoint by multiplying by the factor sin−1νsinh−1µ.
We have shown previously [7] that the coordinate transformation (2.10) together with

the variable substitution,

v(ν,µ)=sin1/2 νsinh1/2 µu(ν,µ), (2.19)

leads to the self-adjoint equation

− ∂2v

∂ν2
− ∂2v

∂µ2
+

(

m2

ξ2−1
+

m2

1−η2

)

v+

[

(η2−2)

4(1−η2)
+

(ξ2−2)

4(ξ2−1)

−RZξ+R∆η+
R2

2
(ξ2−η2)∑

b

(2Jb−Kb)

]

v=
R2

2
(ξ2−η2)ǫv. (2.20)

Each of the self-adjoint equations we have obtained in this section lead to difficulties on
the boundary of the physical region. The coefficients of the derivatives in Eqs. (2.14) go
to zero on the boundaries. Consequently, the differential operator on the left-hand side of
the equation is not positive definite, and the efficient preconditioned conjugate gradient
method may not be used to solve the linear system of equations that arise when the
differential operator is discretized. The coefficients of the derivatives in the self-adjoint
form of Eq. (2.18) and the first derivatives of the function v defined by Eq. (2.19) become
infinite on the boundary.

All of the difficulties we have mentioned can be overcome by using the domain de-
composition theory described in Section 4. The equations in the boundary region can be
solved by an explicit method that does not depend upon the matrix being positive defi-
nite, and the preconditioned conjugate gradient method can be used in the broad interior
of the physical regions where the coefficients of the derivatives of the partial differential
equation are bounded away from zero.

3 Splines and differential equations

For solving partial differential equations, we shall use a continuous differentiable basis
of fourth-order Hermite splines. To define the spline basis for a single variable x in the
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range, a≤ x≤ b, we define a partition of the interval, xi = a+ih where h is the step size
and i=0,1,··· ,N. The points xi are called nodes.

The basis functions vi(x) and si(x) for 1≤ i≤N−1 are defined by the equations

vi(x)=























1

h3
(x−xi−1)

2[h+2(xi−x)], xi−1≤ x≤ xi,

1

h3
(xi+1−x)2[h+2(x−xi)], xi ≤ x≤ xi+1,

0, otherwise,

(3.1)

si(x)=























1

h3
(x−xi−1)

2(x−xi), xi−1≤ x≤ xi,

1

h3
(xi+1−x)2(x−xi), xi≤ x≤ xi+1,

0, otherwise.

(3.2)

The values of these functions and their first derivatives at the nodal points follow imme-
diately from Eqs. (3.1) and (3.2)

vi(xj)=δij, v′i(xj)=0, si(xj)=0, s′i(xj)=δij
1

h
, (3.3)

where δij is the Kronecker delta function. These conditions are sufficient to determine the
polynomials within each interval.

The basis functions for the first and last intervals require special definitions

v0(x)=







1

h3
(x−x0)

2[h+2(x−x0)], x0≤ x≤ x1,

0, otherwise,
(3.4)

s0(x)=







1

h3
(x1−x)2(x−x0), x0≤ x≤ x1,

0, otherwise,
(3.5)

vN(x)=







1

h3
(x−xN−1)

2[h+2(xN−x)], xN−1≤ x≤ xN ,

0, otherwise,
(3.6)

sN(x)=







1

h3
(x−xN−1)

2(x−xN), xN−1≤ x≤ xN ,

0, otherwise.
(3.7)

At x0=a, v0 is equal to one and the derivative of s0 is equal to 1/h, while vN is equal to one
and the derivative of sN is equal to 1/h at xN =b. The functions vi and si for 1≤ i≤N−1,
and the special functions v0, s0, vN and sN are illustrated in Fig. 2.

In this article, we shall describe the orthogonal spline collocation method for solving
boundary value problems. The collocation method is most easily illustrated by solving
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xi –1 xi xi +1

x0
x1 xN – 1 xN

v0

s0

vN

sN
vi

si

Figure 2: These three graphs show v0, s0, vN , sN and vi,si, 1≤ i≤N−1 (bottom).

an ordinary differential equation for a function of a single variable. The solution of an or-
dinary differential equation can be expressed as a linear combination of Hermite splines

u(x)=
N

∑
i=0

[αivi(x)+βisi(x)]. (3.8)

For the Gauss quadrature points, ξi1 and ξi2, within the i-th interval, four functions of the
basis, vi−1, si−1, vi and si, have nonzero values. These functions are illustrated in Fig. 3.
The Gauss points for cubic polynomials are given by the formulas

ξi1 = xi−1+
3−

√
3

6
h, ξi2 = xi−1+

3+
√

3

6
h. (3.9)

Using (3.8), the solution can be evaluated at the Gauss points. We have

u(ξi1)=b11αi−1+b12βi−1+b13αi+b14βi, (3.10)

u(ξi2)=b21αi−1+b22βi−1+b23αi+b24βi. (3.11)

The coefficient matrix bij can be evaluated using Eqs. (3.1) and (3.2) and Eqs. (3.4)-(3.7).
Eqs. (3.10) and (3.11) can be written in matrix form as

[

u(ξi1)
u(ξi2)

]

=

[

b11 b12 b13 b14

b21 b22 b23 b24

]









αi−1

βi−1

αi

βi









. (3.12)
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Treating each of the subintervals in a similar manner, the vector uG consisting of the
values of the approximate solution at the Gauss points can be written as the product of a
matrix times a vector

uG =Bu, (3.13)

where

u=[α0,β0,α1,β1,··· ,αN ,βN ]T , (3.14)

uG =[u(ξ11),u(ξ12),u(ξ21),u(ξ22),··· ,u(ξN1),u(ξN2)]
T, (3.15)

and B is a rectangular matrix having 2N+2 columns and 2N rows. B has the structure

B=















B1

B2

. . .

BN−1

BN















. (3.16)

Two adjacent blocks Bi and Bi+1 overlap in two columns.

ξ ξx i – 1 xi

v i

i – 1v

is

si – 1

i 2i 1

Figure 3: Four of the splines are nonzero at the Gauss points within the interval [xi−1,xi].

The first and second derivatives of the approximate solution can be represented by
matrices with the same block structure. We express the vector u′

G consisting of the values
of the first derivative of the solution at the Gauss points as

u′
G =Cu, (3.17)

where u is given by Eq. (3.14) and

u′
G =[u′(ξ11),u′(ξ12),u′(ξ21),u′(ξ22),··· ,u′(ξN1),u′(ξN2)]

T . (3.18)
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The negative of the second derivative of the function at the Gauss points can be written

−u′′
G =Au. (3.19)

As for the matrix B, matrices C and A have N+2 columns and 2N rows, and the Hamil-
tonian of the system will have this property. The matrices may be converted into square
matrices by adding a single row to the top and bottom of these matrices. These addi-
tional rows may be chosen to impose the boundary conditions. In the case of homoge-
nous Dirichlet or Neumann boundary conditions, the boundary conditions can also be
imposed by removing from the matrices B, C, and A the columns corresponding to the
zero value of the functions or its derivatives. The matrices then have the same number of
rows and columns.

We now use the spline representation of functions and their derivatives to show how
a two-point boundary value problem may be discretized. In the interval (a,b), suppose
that the function u satisfies the ordinary differential equation

Lu= f (x), (3.20)

with

Lu=−p(x)
d2u

dx2
+r(x)

du

dx
+q(x)u, (3.21)

and the boundary conditions

µ1u(a)+ν1u′(a)=d1, µ2u(b)+ν2u′(b)=d2. (3.22)

The requirement that the differential equation (3.20) be satisfied at the Gauss points
within each interval leads to the system of linear equations

Lu= f, (3.23)

where as before u is given by Eq. (3.14) and

f=[d1, f (ξ11), f (ξ12), f (ξ21),··· , f (ξN1), f (ξN2),d2]
T . (3.24)

The matrix L is

L=















L0

L1

. . .

LN

LN+1















. (3.25)

Here the 1×2 matrices L0 and LN+1 arise from the conditions (3.22) at the left and right
endpoints, respectively, with

L0 =[µ1,ν1/h1], LN+1 =[µ2,ν2/hN ]. (3.26)
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For 1≤ i≤N, the 2×4 matrices Li may be written

Li =Di(p)Ai+Di(r)Ci+Di(q)Bi, (3.27)

where

Di(g)=

[

g(ξi1) 0
0 g(ξi2)

]

. (3.28)

The linear set of equations (3.23) can be solved for the values of the function u(x) at the
Gauss points.

In the following sections, we shall use the spline collocation method to solve partial
differential equations that arise in the theory of diatomic molecules. To give some insight
into how the spline discretization procedure can be used to solve two-dimensional partial
differential equations, we conclude this section by considering the problem of solving the
following equation

−a(x,y)
∂2u

∂x2
−ad(x,y)

∂u

∂x
−b(x,y)

∂2u

∂y2
−bd(x,y)

∂u

∂y
+c(x,y)u= f (x,y). (3.29)

We define a partitioning of the two coordinate axes x and y

a= x0 < x1 < x2 ···< xM =b, (3.30)

c=y0 <y1 <y2 ···<yN =d. (3.31)

Functions of x and y may be approximated using a basis which consists of products
of the members of the Hermite basis considered previously. This approximation has the
form

u(x,y)=
N

∑
i=0

N

∑
j=0

[αijvi(x)vj(y)+βijvi(x)sj(y)+γijsi(x)vj(y)+δijsi(x)sj(y)]. (3.32)

In the rectangular region a≤ x ≤ b and c≤ y≤ d, we shall denote the collocation points
(ξx

i ,ξ
y
j ) with i = 1,2,··· ,2M and j = 1,2,··· ,2N. The values of a function and its partial

derivatives at the collocation points may be obtained using tensor products of the matri-
ces Ax, Bx, and Cx with the matrices Ay, By and Cy. Here the subscripts x and y indicate
that the corresponding matrices are the discrete representation of operations involving
the x- and y-coordinates respectively. With this notation, the vector uG consisting of the
values of the function u(x,y) at the collocation points can be written

uG =(Bx⊗By)u, (3.33)

where

u=[α00,β00,α01,β01,··· ,α0N ,β0N ,γ00,δ00,··· ,γ0N,δ0N,

α10,β10,··· ,γ1N,δ1N ,··· ,αM0,βM0,··· ,γMN,δMN]T , (3.34)

uG =[u(ξx
1 ,ξ

y
1),u(ξx

1 ,ξ
y
2),··· ,u(ξx

M,ξ
y
N)]T , (3.35)
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Ω1 Γ Ω2

Figure 4: Region divided into 2 subregions by interface Γ.

and Bx⊗By is the tensor product of the matrices Bx and By.
The requirement that Eq. (3.29) be satisfied at the Gauss points leads to the matrix

equation

[

[Dx (a(x,y))Ax−Dx (ad(x,y))Cx]⊗By+Bx⊗[Dy (b(x,y))Ay−Dy(bd(x,y))By

]

u

+Dxy(c(x,y))Bx⊗By = fG. (3.36)

With the substitution, v=(Bx⊗By)u, the above equation can be written

L̂v= f, (3.37)

where L̂ is the matrix

L̂=
[

[Dx (a(x,y))Ax−Dx(ad(x,y))Cx]⊗By+Bx⊗[Dy (b(x,y))Ay−Dy(bd(x,y))Cy]

+Dxy(c(x,y))Bx⊗By

]

(Bx⊗By)
−1

=
[

Dx (a(x,y))AxB−1
x −Dx (ad(x,y))CxB−1

x

]

⊗Iy−Ix⊗
[

Dy (b(x,y))AyB−1
y

+Dy(bd(x,y))CyB−1
y

]

+Dxy(c(x,y))Ix⊗Iy. (3.38)

Here Ix and Iy are the identity matrices for the x- and y-partitions. If the operator on the

left-hand side of Eq. (3.29) is self-adjoint, then the matrix L̂ is approximately symmet-
ric [11].

4 Domain decomposition

Our effort here will be to give a brief outline of the domain decomposition theory for
spline collocation [9]. This theory enables one to generate solutions of Schrödinger-like
equations in the entire physical region from the solutions of boundary value problems in
component subregions.

We begin by considering the simple problem of a region divided into two subregions
by a vertical interface. A region of this kind is illustrated in Fig. 4. We denote a partial
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differential equation by

Lu(x,y)= f (x,y) for a≤ x≤b, c≤y≤d, (4.1)

where L is a differential operator and u(x,y) and f (x,y) are functions of two variables. As
shown in Fig. 4, we shall denote the two regions by Ω1 and Ω2 and the interface between
the two regions by Γ. The solutions in these two regions will be denoted by u1(x,y) and
u2(x,y), and the value of x at the interface between the two regions will be denoted by γ.

The domain decomposition method can be applied to the problem of solving partial
differential equations with either Dirichlet or Neumann boundary conditions. Here, we
shall suppose that the solution of Eq. (4.1) satisfies homogeneous Neumann conditions on
the left and right boundaries and on the lower boundary while satisfying a homogeneous
Dirichlet condition along the upper boundary

Dxu(a,y)=0 y∈ (c,d), Dxu(b,y)=0 y∈ (c,d),

Dyu(x,c)=0 x∈ [a,b], u(x,d)=0 x∈ [a,b], (4.2)

where Dx and Dy represent partial derivatives with respect to the x- and y- coordinates.
We shall also suppose that the solution in the two regions satisfy the following continuity
conditions at the interface between the two regions

u1(γ,y)=u2(γ,y), y∈ (c,d), (4.3)

Dxu1(γ,y)=Dxu2(γ,y), y∈ (c,d). (4.4)

To use the domain decomposition method to solve Eq. (4.1) in the entire region with
a≤ x≤ b and c≤ y≤ d, we must find the value of the solution along the interface. Once
u is known on the interface, the functions u1 and u2 in the two regions can be found
independently. We shall denote the value of the solution along the interface by uΓ and
the Gauss points along the interface by G. A number of important theorems have been
proved that are relevant to spline collocation. One useful result is that a spline defined
along the interface is uniquely determined by by its values at the Gauss points [10].

An equation for the solution on the interface can be obtained by resolving the func-
tion u into two functions û and ũ, which satisfy the same conditions as u along the exterior
boundary

u(x,y)= û(x,y)+ũ(x,y). (4.5)

The properties of û and ũ are complementary with û satisfying the same partial differen-
tial equation as u but being equal to zero on the interface between the two regions and ũ
satisfying the homogeneous form of the partial differential equation satisfied by u and is
equal to u on the interface between the two regions. The function û1 satisfies the equation

Lû1(x,y)= f (x,y) for a≤ x≤γ, c≤y≤d, (4.6)



972 J. C. Morrison et al / Commun. Comput. Phys., 5 (2009), pp. 959-985

with boundary conditions

Dxû1(a,y)=0 y∈ (c,d), Dyû1(x,c)=0 x∈ [a,γ],

û1(x,d)=0 x∈ [a,γ], û1(γ,y)=0 y∈ (c,d), (4.7)

while the function û2 satisfies the equation

Lû2(x,y)= f (x,y) for γ≤ x≤b, c≤y≤d, (4.8)

with boundary conditions

Dxû2(b,y)=0 y∈ (c,d), Dyû2(x,c)=0 x∈ [γ,b],

û2(x,d)=0 x∈ [γ,b], û2(γ,y)=0 y∈ (c,d). (4.9)

Since the functions û1 and û2 satisfy boundary conditions that do not depend upon the
nature of the solution along the interface, these functions can immediately be determined
by solving the partial differential equations in the two regions.

The function ũ1 satisfies the equation

Lũ1(x,y)=0 for a≤ x≤γ, c≤y≤d, (4.10)

and the function ũ2 satisfies the equation

Lũ2(x,y)=0 for γ≤ x≤b, c≤y≤d. (4.11)

The conditions satisfied by ũ1 and ũ2 along the exterior boundaries are identical to the
conditions satisfied û1 and û2. On the interface between the two regions ũ1 and ũ2 are
equal to the solution of Eq. (4.1). We have

ũ1(γ,y)=uΓ and ũ2(γ,y)=uΓ, for y∈ (c,d). (4.12)

The functions ũ1 and ũ2 can be determined once the solution along the interface is known.
We can obtain a condition upon the functions ũ1 and ũ2 at the interface by substituting

Eq. (4.5) for the two regions into Eq. (4.4) and rearranging terms to obtain

Dxũ1(γ,y)−Dxũ2(γ,y)=Dxû2(γ,y)−Dx û1(γ,y). (4.13)

To obtain the solution u along the interface, we define an interface operator K by the
equation

Kv(y)=WΓ (4.14)

where the spline function v(y) defined for c≤y≤d satisfies the boundary conditions,

v′(c)=0 and v(d)=0.

The function WΓ is defined by the equation

WΓ(ξ)=DxV1(γ,ξ)−DxV2(γ,ξ), for ξ∈G. (4.15)
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Here ξ is a member of the set of Gauss points along the interface. The function V1 satisfies
the equation

LV1(x,y)=0 for a≤ x≤γ, c≤y≤d (4.16)

with boundary conditions

DxV1(a,y)=0 y∈ (c,d), DyV1(x,c)=0 x∈ [a,γ],

V1(x,d)=0 x∈ [a,γ], V1(γ,y)=v(y) y∈ (c,d), (4.17)

and the function V2 satisfies the equation

LV2(x,y)=0 for γ≤ x≤b, c≤y≤d (4.18)

with boundary conditions

DxV2(b,y)=0 y∈ (c,d), DyV2(x,c)=0 x∈ [γ,b],

V2(x,d)=0 x∈ [γ,b], V2(γ,y)=v(y) y∈ (c,d). (4.19)

For a particular spline function v(y) defined defined for c≤y≤d, the boundary con-
ditions for the functions V1(x,y) and V2(x,y) are well defined and the function WΓ(ξ)
is given by Eq. (4.15). If the function v(y) is equal to the function uΓ, which is the
value of the solution of Eq. (4.1) along the interface, then the boundary conditions for
the functions V1(x,y) and V2(x,y) are identical to the boundary conditions for the func-
tions ũ1(x,y) and ũ2(x,y). The function V1(x,y) is then equal to ũ1(x,y) and the func-
tion V2(x,y) is equal to ũ2(x,y). Using Eqs. (4.15) and (4.13), one can then see that right-
hand side of the interface equation (4.14) is equal to the right-hand side of Eq. (4.13). The
interface equation may thus be written

KuΓ =Dxû2(γ,y)−Dxû1(γ,y), (4.20)

and we may define Algorithm 4.1 for solving the partial differential equation (4.1) with
boundary conditions (4.2).

Algorithm 4.1:

Step 1. Using û1 and û2 obtained by solving Eqs. (4.6) - (4.9), compute the right-hand side of
Eq. (4.20).
Step 2. Solve Eq. (4.20) to find the solution of Eq. (4.1) along the interface.
Step 3. Solve Eqs. (4.10) and (4.11) to obtain the functions ũ1 and ũ2 and add these functions to û1

and û2 to obtain the solution u in regions Ω1 and Ω2.

The interface equation (4.20) can most easily be solved using iterative methods. For
the partial differential equations with variable coefficients that arise in the Hartree-Fock
theory for diatomic molecules, the interface matrix is generally not symmetric. The in-
terface equations can then be solved most efficiently using the pre-conditioned GMRES
method.
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5 A model problem

The domain decomposition methods we have described can be tested by using the states
of a single-electron molecular ion. Self-adjoint equations for these states can be obtained
by setting the direct and exchange terms equal to zero in Eqs. (2.14) and (2.20). For the
hydrogen molecular ion H+

2 , the parameter Z which occurs in these equations has the
value Za+Zb =2, while the parameter ∆ has the value Za−Zb =0. A more useful model
problem is provided by the singly ionized helium ion He+ whose wave functions can be
expressed analytically. For He+, Za can be taken to be two and Zb can be taken to be zero.
Then,

Z=Za+Zb =2, ∆=Za−Zb =2.

Using spheroidal coordinates defined by Eq. (2.4) and the coordinate transforma-
tion (2.10), the wave function for the ground state of a He+ ion centered at a can be
written

u(ν,µ)=

(

Z3

π

)1/2

exp

[

−1

2
RZa(cosν+coshµ)

]

. (5.1)

This wave function satisfies homogeneous Neumann boundary conditions on the vertical
sides and on the lower boundary while satisfying a homogeneous Dirichlet boundary
condition on the upper boundary. The orbital equation for the state (5.1) can be obtained
by setting Ja, Ka, and m equal to zero in Eq. (2.14) to obtain

−sinνsinhµ
∂2u

∂ν2
−cosνsinhµ

∂u

∂ν
−sinνsinhµ

∂2u

∂µ2
−sinνcoshµ

∂u

∂µ

+sinνsinhµ(−RZξ+R∆η)u=ǫsinνsinhµ
R2

2
(ξ2−η2)u, (5.2)

where Z=∆=2 and ǫ=−Z2/2.

Coefficients in the above equation go zero on the left boundary when ν=0, on the right
boundary when ν=π, and on the lower boundary when µ=0. As a result, the differential
operator on the left-hand of Eq. (5.2) is not positive definite; however, the operator will
be positive definite in a subregion that does not include the exterior boundaries. Fig. 5
shows a partition of the entire region into nine parts. The operator on the left-hand side
of Eq. (5.2) is both self-adjoint and positive definite in the the interior region which is
denoted by Ω22 in the figure. The accuracy of the domain decomposition theory we have
described can be tested by evaluating the right-hand side of Eq. (5.2) at the collocation
points and comparing the solution of the equation with the analytical solution (5.1). The
maximum errors obtained in each of the nine regions using a grid of 144 points in each
direction are shown in Table 1.
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Ω11 Ω21 Ω31

Ω12 Ω22 Ω32

Ω13 Ω23 Ω33

Γ11

Γ13

Γ15

Γ21

Γ23

Γ25

Γ12 Γ22 Γ32

Γ14 Γ24 Γ34

Figure 5: Region divided into nine subregions by interior boundaries. The subregions are denoted by Ωij and
the interfaces denoted by Γij.

Table 1: The maximum error for each of the nine regions shown together with the convergence rate. A
convergence rate of four would mean that the maximum error decreased by a factor of 24 =16 if the step-size
decreased by a factor of two.

Grid pts n×n u ux uy uxy

Ω11 3.3×10−7 1.9×10−7 2.6×10−7 9.7×10−8

Convergence rate 4.42 4.17 4.50 7.36

Ω21 6.5×10−7 4.6×10−7 5.1×10−7 3.7×10−7

Convergence rate 3.86 4.58 3.91 5.57

Ω31 1.5×10−6 4.5×10−7 1.2×10−6 3.9×10−7

Convergence rate 3.44 4.60 3.71 3.50

Ω12 1.9×10−7 9.3×10−8 3.2×10−7 1.0×10−7

Convergence rate 4.51 4.15 4.45 7.26

Ω22 2.2×10−7 4.5×10−7 4.1×10−7 7.9×10−7

Convergence rate 4.48 4.51 4.18 6.21

Ω32 2.5×10−7 4.4×10−7 1.0×10−6 7.8×10−7

Convergence rate 4.54 4.56 3.65 4.47

Ω13 5.3×10−8 1.8×10−8 2.6×10−7 7.6×10−8

Convergence rate 4.25 2.93 4.28 2.78

Ω23 4.6×10−8 8.3×10−8 2.3×10−7 4.4×10−7

Convergence rate 4.41 4.61 4.43 4.61

Ω33 7.3×10−8 8.3×10−8 3.8×10−7 4.4×10−7

Convergence rate 4.47 4.64 4.50 4.62
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6 The eigenvalue problem

To implement the Hartree-Fock theory for diatomic molecules, one must solve partial
differential equations and eigenvalue problems. The Hartree-Fock equations themselves
are eigenvalue equations that can be solved with Lanczos or Arnoldi methods in which an
operator acts successively upon a function representing a single-electron state. A modern
description of iterative methods for solving eigenvalue problems can be found in the
books by Trefethen and Bau [11] and by Bai et al. [12].

Standard eigenvalue problems are of the general form

Lu=ǫu, (6.1)

where L is a differential operator, u is a function of the spatial coordinates, and ǫ is an
eigenvalue. The operator L is typically represented by a large sparse matrix, L, and the
wave functions are represented by column vectors, u. The Lanczos and the Arnoldi meth-
ods can be used effectively to find eigenvalues in the outer part of the spectrum. They can,
in particular, find a well-separated maximum eigenvalue and the eigenvector associated
with that eigenvalue. To find the eigenvectors associated with lower-lying eigenvalues,
one can first subtract a term Iσu from each side of the eigenvalue equation to obtain

(L−σI)u=(ǫ−σ)u, (6.2)

where I is the identity matrix and the constant σ is typically chosen to be slightly less that
the eigenvalue of interest. If σ is not an eigenvalue, one can invert the above equation to
obtain

(L−σI)−1 u=(ǫ−σ)−1 u. (6.3)

The equation for the eigenvalue ǫ of L is thus converted into the eigenvalue problem for
a well-separated maximum eigenvalue of (L−σI)−1.

The matrix vector products,

(L−σI)−1 x=z, (6.4)

which occur in the algorithm for obtaining the eigenvalue are evaluated by solving the
linear system

(L−σI)z=x, (6.5)

and not by computing the inverse of the matrix. Using inverted forms of the Lanczos or
Arnoldi methods thus has the consequence that one must solve a set of linear equations
to evaluate the product of the inverted matrix times a vector. The domain decomposi-
tion theory described in previous sections provides an efficient means of evaluating the
matrix-vector products that occur in Lanczos and Arnoldi algorithms for the eigenvalues
and eigenvectors of the Hartree-Fock theory.

The basic strategy we shall use for obtaining the eigenvalues of a matrix is to build an
orthogonal basis of vectors by solving a sequence of linear systems of the above form. In



J. C. Morrison et al / Commun. Comput. Phys., 5 (2009), pp. 959-985 977

this basis the large eigenvalue problem will be represented by a small eigenvalue prob-
lem. Some of the eigenvalues of this small problem will be good approximations to some
of the eigenvalues of the large problem.

Algorithm 6.1 is a formulation of the Arnoldi iteration applied to an unsymmetric ma-
trix A, which in our work corresponds to the matrix (L−σI)−1 of the inverted eigenvalue
problem.

Algorithm 6.1: Arnoldi Algorithm

b=arbitrary, q1 =b/‖b‖
for n=1,2,3,··· do

v=Aqn A enters here
for j=1,··· ,n do

hjn =qT
j v T denotes transpose

v=v−hjnqj

end

hn+1,n =‖v‖
qn+1 =v/hn+1,n

end

Algorithm 6.1, which is a modified Gram-Schmidt procedure, generates an orthonor-
mal basis of vectors, q1, q2, ··· . In this basis A is represented by an upper Hessenberg
matrix constructed from the hjk-elements.

For a particular value of n, the matrix Qn may be defined as the m×n matrix whose
columns are the first n basis vectors, and Qn+1 may be defined as the m×(n+1) matrix
whose columns are the first n+1 basis vectors. We have

Qn =[q1,··· ,qn] and Qn+1 =[q1,··· ,qn,qn+1]. (6.6)

Similarly, we may use the coefficients hjn generated by the Arnoldi iterations to define
matrices Hn and H̃n

Hn =











h11 h12 ··· h1n

h21 h22 h2n

. . .
. . .

...
hn,n−1 hnn











, H̃n =















h11 h12 ··· h1n

h21 h22 h2n

. . .
. . .

...
hn,n−1 hnn

hn+1,n















. (6.7)

The only difference between the matrices, Hn and H̃n, is the last row of H̃n. Denoting by
en

T the unit row vector [0,··· ,0,1] with a one in the n-th place, the relation between the
two matrices may then be written

H̃n =

[

Hn

eT
n hn+1,n

]

. (6.8)
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The matrices Qn, Qn+1, and H̃n may be shown to satisfy the equation

AQn =Qn+1H̃n. (6.9)

Using Eqs. (6.6) and (6.8), this last equation can be written

AQn =[Qn,qn+1]

[

Hn

eT
n hn+1,n

]

=QnHn+qn+1eT
n hn+1,n. (6.10)

Suppose now that s is a normalized eigenvector, with corresponding eigenvalue ν, of Hn

Hns=νs. (6.11)

Multiplying Eq. (6.10) from the right-hand side by the eigenvector s and taking the first
term on the right-hand side of the resulting equation over to the left-hand side, we obtain

AQns−νQns=qn+1snhn+1,n. (6.12)

The norm of the vectors on the left-and right-hand sides of the above equation may now
be set equal to each other. Using the fact that the basis vector qn+1 is normalized, we get

||AQns−νQns||= |sn |hn+1,n. (6.13)

The residual error of the transformed eigenvector Qns is thus equal to |sn|hn+1,n, where
hn+1,n is the last coefficient produced by the Arnoldi iteration scheme and |sn| is the abso-
lute value of the last component of the eigenvector s. Good approximations are usually
characterized by small |sn|. The reason is that the approximate eigenvector, Qns, is a
linear combination of the vectors in Qn. If the first n−1 vectors in Qn produce a good
approximation only the tiny adjustment, qnsn is needed to make the approximation even
better.

The integer m giving the number of rows of the collocation matrix A is typically equal
to about twenty thousand for the Hartree-Fock theory of diatomic molecules, while the
integer n corresponding to the number of Arnoldi iterations is typically equal to five. For
all of the cases we have considered, the Arnoldi iteration scheme converges very rapidly
giving a small matrix whose eigenvalues and eigenvectors can be easily obtained using
standard LAPACK routines.

The effectiveness of the Lanczos and Arnoldi schemes for finding the eigenvalues
and eigenvectors of the Hartree-Fock equations can be studied by considering the simple
model problem described in the previous section. Using the spline collocation method to
discretize the orbital equation (5.2) for the He+ ion, we obtain

Lu=(ǫ−σ)D

(

R2

2
(ξ2−η2)

)

(Bν⊗Bµ)u, (6.14)
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where the matrix L is

L=
[

D(sinνsinhµ)Aν−D(cosνsinhµ)Cν]⊗Bµ+Bν⊗[D(sinνsinhµ)Aµ

−D(sinνcoshµ))Bµ

]

+D(sinνsinhµ(−RZξ+R∆η)Bν⊗Bµ. (6.15)

The matrices of the form D( f ν,µ) in these last equations are diagonal matrices with the
values of the corresponding function f (ν,µ) at the Gauss points along the diagonal.

Eq. (6.14) defines a generalized eigenvalue problem. The equation can be converted
into a simple eigenvalue problems by making the substitution

v=(Bν⊗Bµ)u. (6.16)

This leads to the equation

L̂v=(ǫ−σ)D

(

R2

2
(ξ2−η2)

)

v, (6.17)

where

L̂=L(Bν⊗Bµ)−1. (6.18)

The substitution w=D(R2(ξ2−η2)/2)1/2v then gives

[

D

(

R2

2
(ξ2−η2)

)−1/2

L̂D

(

R2

2
(ξ2−η2)

)−1/2
]

w=(ǫ−σ)w. (6.19)

We can then invert this last equation to obtain

[

D

(

R2

2
(ξ2−η2)

)1/2

L̂−1D

(

R2

2
(ξ2−η2)

)1/2
]

w=

(

1

ǫ−σ

)

w. (6.20)

While the matrices, A, B, and C, described in Section 3 of this article are not symmet-
ric, the matrix L̂=L(Bν⊗Bµ)−1 is approximately symmetric. This result has been shown
previously [13] and confirmed by explicitly constructing a representative number of rows
and columns of the matrix. The matrix L̂−1 is also approximately symmetric. If the en-
ergy shift σ is sufficiently close to the eigenvalue ǫ, 1/(ǫ−σ) will be a well-separated
maximum eigenvalue, which can be obtained by applying the Lanczos or Arnoldi algo-
rithms to the matrix within brackets on the left-side of Eq. (6.20).

The Lanczos iteration scheme is the Arnoldi specialized to the case where the matrix
is symmetric. The reduced Hn matrix, which is then both symmetric and Hessenberg, is
tridiagonal. This means that in the inner loop of the Arnoldi iteration, the limits 1 to n
can be replaced with the limits n−1 to n. We shall use the customary notation for the
Lanczos method in which the diagonal elements of the reduced matrix Hn are denoted
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by αn and the elements below and above the diagonal of the reduced matrix are denoted
by βn. The Hn matrix then is

Hn =

















α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βn−1

βn−1 αn

















, (6.21)

and the Lanczos Algorithm becomes Algorithm 6.2.

Algorithm 6.2: Lanczos Algorithm

β0 =0, q0 =0, b=arbitrary, q1 =b/‖b‖
for n=1,2,3,··· do

v=Aqn A enters here
αn =qT

n v
v=v−βn−1qn−1−αnqn

βn = ||v||
qn+1 =v/βn

end

For each step, the most computationally demanding operation is the matrix-vector
multiplication, which for the inverse Lanczos and Arnoldi algorithms requires the solu-
tion of a large set of linear equations. Each iteration also includes a scalar product and a
few vector operations. While the Arnoldi iterations scheme explicitly orthogonalizes each
new q-vector with the previous vectors, the Lanczos scheme depends upon the matrix
being symmetric in which case it suffices to orthogonalize with the previous two vectors.
Any lack of asymmetry of the matrix can be expected to lead to a lack of orthogonality of
the Lanczos basis vectors.

The inverse Lanczos method may be used to obtain an approximation of the eigen-
values and eigenvectors of the matrix (L−σI)−1 and hence to an approximation of the
eigenvectors and eigenvalues of the matrix L. For both the Arnoldi and Lanczos iteration
schemes, the accuracy of the eigenvectors can be estimated using Eq. (6.13).

The accuracy of the Lanczos algorithm has been studied by a number of authors.
Ericsson and Ruhe have shown [14] that if ν is an eigenvalue of (L−σI)−1 and ǫ is the
corresponding exact eigenvalue of L

|ǫ−(σ+ν−1)|≤βn|sn|/ν2. (6.22)

The Lanczos algorithm can thus be used to produces an accurate approximation of the
eigenvalues of L. To obtain eigenvectors of the matrix L at a comparable level of accuracy,
though, one must add a little of the next Lanczos iteration to the eigenvector

Qns+(βn sn/ν)qn+1. (6.23)
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We have tested the accuracy of the Lanczos algorithm for obtaining the lowest eigen-
value of the helium He+ ion using a grid of 64 points in each direction. The results are
shown in Table 2. The exact nonrelativistic value of the energy is 2.0 atomic units. For
each iteration n, the energy eigenvalue is shown in the second column of the table, while
the error is shown in the third column. The error was estimated for each iteration by
using Eq. (6.22) and the final eigenvector was obtained using Eq. (6.23). The maximum
difference between the calculated and analytic eigenvector for all of the nine regions was
one part in 10−5.

Table 2: The eigenvalue for each iteration of the Lanczos algorithm shown together with an estimate of the
error obtained using Eq. (6.22).

n ǫ error

1 -1.76101 0.477
2 -1.99988 3.000×10−3

3 -1.99998 5.327×10−5

4 -1.99998 1.714×10−5

5 -1.99998 4.187×10−4

6 -2.00005 6.682×10−5

7 -2.00005 9.635×10−6

When the Lanczos algorithm is applied to a symmetric matrix, round off errors cause
the q-vectors to loose orthogonality as one approaches convergence. This will cause
copies of already converged eigenvalues to appear. There are several ways to cope with
this loss of orthogonality [12]. Our applications of the Lanczos method indicate, though,
that the small unsymmetric part of the operator L̂ causes departure from orthogonality
for a small number of iterations before one has approached convergence. For this reason,
we do not recommend the Lanczos method to find the eigenvalues and eigenvectors for
the problems discussed in this article.

The Arnoldi algorithm, which does not depend upon the matrix L̂ being symmetric,
produces more convincing results. The lowest eigenvalue of the helium He+ ion was
obtained using the Arnoldi algorithm with a grid of 64 points in each direction producing
the results shown in Table 3.

Table 3: The eigenvalue for each iteration of the Arnoldi algorithm shown together with an estimate of the
error obtained using Eq. (6.22).

n ǫ error

1 -1.76101 0.477
2 -1.99987 2.998×10−3

3 -1.99996 5.069×10−5

4 -1.99996 8.622×10−7

As for the Lanczos iterations, the energy eigenvalue is shown in the second column
of the table, while the error is shown in the third column. Unlike the numerical basis
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generated by the Lanczos iterations discussed earlier, the numerical basis produced by
the Arnoldi scheme has a high level of orthogonality. The eigenvalues of the Hessenberg
matrix produces by the Arnoldi iteration scheme were all distinct as they should be. At
the conclusion of the Arnoldi iterations, Eq. (6.23) was still used to calculate the final
eigenvector. This is reasonable since the matrix L̂ is approximately symmetric and it
can be shown that the mathematics is still valid. The maximum difference between the
calculated and analytic eigenfunction for all of the nine regions was one part in 10−5.

7 Discussion

We would now like to discuss briefly our results in the context of other numerical Hartree-
Fock calculations for diatomic molecules. The methods one uses to perform numerical
calculations on diatomic molecules depends upon how one discretizes the Hartree-Fock
equations. The Hartree-Fock equations can be discretized by using finite difference ap-
proximations of the derivatives or by using the spline collocation or Galerkin methods.
The first numerical calculations for diatomic molecules, which were carried out by E. A.
McCullough Jr [3], used a partial wave expansion of the single-electron wave functions,

ψ(ξ,η,φ)=
eimφ

(2π)1/2 ∑
ℓ

Xℓ(ξ)Pℓ(η), (7.1)

where the variables ξ and η are the same as the spheroidal coordinates we have used in
our calculations. Expanding the wave functions in partial waves led to a coupled set of
ordinary differential equation, which were solved using finite difference approximations
of the derivatives. McCullough considered a number of model problems to study the
convergence properties of the expansion over ℓ in Eq. (7.1). He found that 20 to 25 terms
were generally sufficient to obtain the desired level of accuracy. McCulllough developed
an efficient multiconfiguration Hartree-Fock (MCHF) program patterned after the atomic
MCHF program of C. F. Fischer [1].

Another approach for diatomic molecules that does not rely upon a partial wave ex-
pansion of the wave functions was later developed by Laaksonen, Pyykko and Sundholm
[4] and by J. Kobus et al [5]. In this approach, the wave functions were assumed to be of
the general form

ψ(ξ,η,φ)=
eimφ

(2π)1/2
u(ξ,η) (7.2)

and the Hartree-Fock equations were reduced to partial differential equations for the
function u(ξ,η). Using a 9-point central difference approximation for the first and second
derivatives, Laaksonen and his collaborators were able to obtain more accurate results
than the results found previously by McCullough; however, the linear algebra methods
employed by Laaksonen et al were not optimal. Using a form of the Hartree-Fock equa-
tions, which are not self-adjoint, they obtained a discrete form of the differential equa-



J. C. Morrison et al / Commun. Comput. Phys., 5 (2009), pp. 959-985 983

tions with non-symmetric matrices. The associate linear equations were solved with the
successive over-relaxation (SOR) method using typically several hundreds of iterations.

In two previous articles [6,7], we have shown that the Hartree-Fock equation for a
diatomic article can be discretized using the orthogonal spline collocation method. Re-
cently, Bialecki and Dryja have developed a theory of domain decomposition for orthog-
onal spline collocation [9] that enables us to use fast Krylov methods in the broad interior
of the variable domain while using Gaussian elimination near the boundaries. The nu-
merical strategy discussed in the present article depends upon this domain decomposi-
tion theory. The convergence rate of the model calculations reported in this paper are of
fourth order since we have used fourth-order splines. We intend in the future to perform
calculations with higher-order splines to achieve a higher level of accuracy.

A promising new method for solving the Hartree-Fock equations for diatomic mole-
cules has more recently been developed by Artemyev et al [15]. Using the equations,

η =cosu for 0≤ν≤π,

ξ =coshv for 0≤µ≤∞,

to express the spheroidal coordinates ξ and η in terms of new independent variables u
and v, they have develop a spline Galerkin formalism with basis functions

τm
n,ℓ = Bn,k(u)Pℓ,m(cos v),

where Bn,k is the nth B-spline of order k and Pℓ,m(cosv) is an associated Legendre polyno-
mial. Artemyev and his collaborators thus use B-splines for one variable and Legendre
polynomials as McCullough did for the other variable. Artemyev et al have not given
enough details for us to be able to evaluate the linear algebra component of their theory.

One would hope that Artemyev and his collaborators will eventually use a more stan-
dard finite element approach with basis functions having local support in both coordi-
nates directions. Such a spline basis of order order k should yield a convergent rate of hk.
Also, the discretized form of the Hartree-Fock equation should then be symmetric. Using
Legendre polynomials has the effect of making the matrices dense and likely reduces the
numerical accuracy of the calculation. Slowly converging partial wave expansions have
caused many difficulties in atomic and molecular physics.

An important advantage of the theory described by Artemyev and his collaborators is
that they are able to include higher-order correlation effects using the basis generated in
the Hartree-Fock calculation. The inclusion of correlation effects is essential for obtaining
a realistic description of atoms and molecules.

Some idea of the success the mullticonfiguration Hartree-Fock theory is likely to have
for molecules can be obtained by considering the more established area of atomic physics.
For atoms, the multi-configuration Hartree-Fock theory generally does very well in in-
cluding the most strongly interacting configurations but has difficulty including more
weakly interacting configurations. Conversely, many-body perturbation theory easily
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includes weakly coupled configurations but has difficulties including strongly interact-
ing configurations. Some years ago one of the present authors (J.C.M.) and C. F. Fischer
collaborated in calculations in which they combined the multiconfiguration Hartree-Fock
theory and many-body perturbation theory [16]. A multiconfiguration Hartree-Fock cal-
culation was carried out using the most strongly interacting configurations and a set of
pair equations was then solved to include the cumulative effect of more weakly inter-
acting configurations. This is the strategy we intend to employ ourselves for includ-
ing including correlation effects. We intend to develop an efficient multiconfiguration
Hartree-Fock program which can be used to include a number of strongly interacting
configuration, and we then intend to solve pair equations to include the more weakly
interacting configurations. While the pair equation for atoms can be reduced to a two-
variable partial differential equation, the pair equation for diatomic molecules involves
five independent variables. Rather than try to solve partial differential equations with
five variables, we plan to use the method developed by S. Salomonson and P. Oster who
have generated solutions of the pair equation from a numerical basis [17]. This approach
is qualitatively similar to the work of Artemyev et al because it would include the effects
of correlation using a single-electron basis.

8 Conclusion

We have found that by using the spline collocation method together with the newly de-
veloped theory of domain decomposition we can obtain very accurate solutions of the
partial differential equations and eigenvalue equations that arise in the Hatree-Fock the-
ory for diatomic molecules. In a future paper, we will discuss the solution of Poison-like
equations to evaluate the direct- and exchange terms in the Hartree-Fock equations and
apply this theory to atoms and molecules having several electrons.
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[4] L. Laaksonen, P. Pykkö, and D. Sundholm, Comput. Phys. Rep. 4, 313 (1986).
[5] J. Kobus, L. Laaksonen, and D. Sundholm, Comput. Phys. Commun. 98, 346 (1996).
[6] J. C. Morrison, C. Baunach, B. Bialecki and G. Fairweather, J. Phys. B 29, 2375 (1996).
[7] J. C. Morrison, T. Wolf, B. Bialecki and G. Fairweather, Mol. Phys. 98, 1175 (2000).
[8] A. Toselli and O. Widlund, Domain Decomposition Methods - Algorithms and Theory,

Springer Series in Computational Mathematics, 34, Springer Verlag, Berlin, 2005.
[9] B. Bialecki and M. Dryja, SIAM J. Numer. Anal. 41, 1709 (2003).

[10] P. Printer, Splines and Variational Methods, Wiley, New York (1989).
[11] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia (1997).
[12] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, editors, Templates for the

solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, 2000.



J. C. Morrison et al / Commun. Comput. Phys., 5 (2009), pp. 959-985 985

[13] B. Bialecki, SIAM J. Sci. Comput. 15, 668 (1994).
[14] T. Ericcsson and A. Ruhe, Math. Comp. 35, 1251 (1980).
[15] A. N. Artemyev, E. V. Ludena, V. V. Karasiev and A.J. Hernandez, J. Comput. Chem. 25, 368

(2003).
[16] J. C. Morrison and C. F. Fischer, Phys. Rev. A 35, 2429 (1987).
[17] S. Salomonson and P. Oster, Phys. Rev. A 40, 5559 (1989).


