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Abstract. This paper presents a new version of the upwind compact finite difference
scheme for solving the incompressible Navier-Stokes equations in generalized curvi-
linear coordinates. The artificial compressibility approach is used, which transforms
the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux differ-
ence splitting can be applied. The convective terms are approximated by a third-order
upwind compact scheme implemented with flux difference splitting, and the viscous
terms are approximated by a fourth-order central compact scheme. The solution al-
gorithm used is the Beam-Warming approximate factorization scheme. Numerical so-
lutions to benchmark problems of the steady plane Couette-Poiseuille flow, the lid-
driven cavity flow, and the constricting channel flow with varying geometry are pre-
sented. The computed results are found in good agreement with established analytical
and numerical results. The third-order accuracy of the scheme is verified on uniform
rectangular meshes.
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1 Introduction

The incompressible Navier-Stokes (N-S) equations are fundamental equations in fluid
mechanics. Accurate numerical solution to these equations plays an important role in
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many applications. In the development of appropriate computational approaches to
tackle challenging areas like direct numerical and large-eddy simulation of turbulence,
high-order methods are preferable over standard second-order formulations. In the cat-
egory of high-order methods, the compact difference scheme represents an attractive
choice because it uses smaller stencils and gives better resolution at high wave-numbers
than non-compact schemes of the same order [1–4].

The compact schemes can generally be classified into two categories: central and up-
wind. Central compact schemes are non-dissipative, and using central compact schemes
on non-staggered meshes for convection terms might cause numerical oscillations even
for flows without discontinuities. Reducing or removing such oscillations requires the
use of artificial dissipation or filtering [5]. On the other hand, upwind compact schemes
with dissipative properties are more stable. Fu and Ma [6, 7], and among others [8–10]
have developed some upwind compact schemes. Using these schemes for convective
terms can provide grid-scale linkage for each variable to avoid odd-even decoupling,
and in principle can prevent non-physical oscillations in smooth regions.

We note that one advantage of the upwind compact scheme by Fu and Ma [6, 7] lies
in that, the implicit part involves only two points rather than more points as most other
upwind compact schemes do [10]. This will reduce the computational cost.

Upwind compact schemes for conservation laws require appropriate split fluxes be-
ing used. Flux vector splitting is most widely used. But fewer attempts have been made
to use flux difference splitting (FDS) [11] in conjunction with upwind compact schemes.
In fact, FDS is suitable for more general situations and is less dissipative than other gen-
eral splitting like Lax-Friedrichs splitting. It is applicable to incompressible flows when
the artificial compressibility (AC) approach is adopted. The equations for steady incom-
pressible viscous flows with the AC formulation are (see [12])

∂p

∂τ
+β∇·u=0, (1.1a)

∂u

∂τ
+u·∇u+∇p−

1

Re
∇2u=0, (1.1b)

where β is the artificial compressibility parameter and τ is a pseudo-time (or iteration
parameter). Since the inviscid version of the above equations are hyperbolic, upwind
differences can be applied. Corresponding solution methods can be time marching ones
borrowed from compressible solvers. As the solution converges, the time derivative of
pressure approaches zero and the incompressibility is satisfied.

One of the disadvantages of the AC approach is the selection of the artificial com-
pressibility parameter β. The optimum β for achieving fastest convergence is problem
dependent. Through trial runs on coarse meshes, the optimum β can be found, and
subsequent steady-state problems can be solved efficiently. But the AC approach is nei-
ther efficient nor accurate for time-dependent problems if sub-iteration is not converged
quickly and fully. In spite of the drawbacks, numerous studies which utilized the AC ap-
proach for solving steady-state and time-dependent incompressible flow problems were
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conducted in the past three decades, see, Kwak and Rogers [13, 14], and others [15–17].
In this paper, we extend a class of high-order upwind compact difference schemes

[6, 7] to numerical solutions of the incompressible N-S equations with the AC approach.
The peculiarity of the present extension is that the explicit part of the upwind compact
scheme is computed based on FDS. Because Rogers et al. [13, 14] already used FDS in
conventional third-order upwind schemes, the present scheme can be viewed as a com-
pact scheme version. The accuracy of the present scheme was verified through several
two-dimensional benchmark problems.

This paper is organized as follows. In the next section, the governing equations and
their formulation for the artificial compressibility approach in curvilinear coordinates are
given. Section 3 describes the space discretization including the upwind compact scheme
to approximate the convective terms and solution method to the discretized equations.
Numerical results for several 2D test problems are presented in Sections 4 and 5. Section
6 concludes this paper.

2 Governing equations

Starting from the 2D non-dimensional incompressible N-S equations in general curvi-
linear coordinates (ξ,η) with the artificial compressibility term (assuming a stationary
coordinates, ξ = ξ(x,y), η = η(x,y), such that the Jacobian of transformation and other
metrics are time independent, see [14])

∂Q̂

∂τ
+

∂(Ê−Êv)

∂ξ
+

∂(F̂−F̂v)

∂η
=0, (2.1)

where

Q̂=
Q

J
=

1

J





p
u
v



, Ê=
1

J
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,

U = ξxu+ξyv, V =ηxu+ηyv,

U and V are the contra-variant velocity components in curvilinear coordinate directions,
ξ and η, respectively, Ê and F̂ are the inviscid fluxes, Êv and F̂v are the viscous fluxes, Re
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is the Reynolds number and the Jacobian determinant of transformation is defined as

J =

∣

∣

∣

∣

∂(ξ,η)

∂(x,y)
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=
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.

Other metrics are
ξx

J
=yη ,

ξy

J
=−xη ,

ηx

J
=−yξ ,

ηy

J
= xξ .

The inviscid flux for both Cartesian and curvilinear coordinates, and for any direction,
can be uniformly written as

Êk = k̂xE+ k̂yF= k̂x





βu
u2+p

vu



+ k̂y





βv
uv

v2+p



=





βΘ

uΘ+ k̂x p

vΘ+ k̂y p



. (2.2)

The Jacobian matrix of this flux vector is

Ak =
∂Êk

∂Q
=





0 k̂xβ k̂yβ

k̂x k̂xu+Θ k̂yu

k̂y k̂xv k̂yv+Θ



, (2.3)

where Θ= k̂xu+ k̂yv, (k̂x, k̂y)=(kx,ky)/J, k= ξ,η.

Notice that k̂x = 1, k̂y = 0, and k̂x = 0, k̂y = 1 give E and F in Cartesian coordinates
respectively. A similarity transformation for the Jacobian matrix is

Ak =TkΛkT−1
k , (2.4)

with eigenvalue matrix Λk =diag(Θ,Θ+c,Θ−c), where c is the scaled artificial speed of
sound given by

c=
√

Θ2+β(k̂2
x + k̂2

y).

The right and left eigenvector matrices are

Tk =





0 −c̃(Θ̃− c̃) c̃(Θ̃+ c̃)
k̃y u− k̃x(Θ̃− c̃) u− k̃x(Θ̃+ c̃)

−k̃x v− k̃y(Θ̃− c̃) v− k̃y(Θ̃+ c̃)



, (2.5a)

T−1
k =

1

c̃2





k̃xv− k̃yu vΘ̃+ k̃yβ −(uΘ̃+ k̃xβ)
1
2

1
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1
2

1
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, (2.5b)

where
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3 Numerical scheme

3.1 Spatial differences

An upwind compact scheme is used to discretize the convective terms. Because of the
hyperbolic nature, the convective terms in Eq. (2.1) can be split into positive and negative
parts:

∂ξ Ê=
(

Êξ

)+
+

(

Êξ

)−
, (3.1)

which approximate the derivatives of positively traveling and negatively traveling waves,
respectively. These derivatives can be obtained by using the third-order upwind compact
scheme developed by Fu and Ma [6, 7]:

2

3

(

Êξ

)+

i
+

1

3

(

Êξ

)+

i−1
=

5▽i Ê
++△iÊ

+

6∆ξ
+O(∆ξ3), (3.2a)

2

3

(

Êξ

)−

i
+

1

3

(

Êξ

)−

i+1
=

▽iÊ
−+5△i Ê

−

6∆ξ
+O(∆ξ3), (3.2b)

where △i f = fi+1− fi and ▽i f = fi− fi−1. Eq. (3.2a) is explicitly marched forward and
Eq. (3.2b) is marched backward to get all the derivatives once the right-hand side (RHS)
and the boundary derivatives are given. Instead of computing the RHS from point-wise
Ê±

i values as did in [6,7], we compute the RHS by FDS. Since each RHS term of Eqs. (3.2a)-
(3.2b) can be viewed as the difference of split fluxes between neighboring points, it can
be computed from FDS [11, 14]:

Ê±
i+1−Ê±

i ≡△Ê±
i+ 1

2

=A±(Q)(Qi+1−Qi), (3.3)

where △Ê±
i+1/2 is the flux difference across positive or negative traveling waves. The split

Jacobian matrix A± is evaluated using some intermediate value Q which is a function
of the surrounding points, Qi and Qi+1. The Roe properties [11] which are necessary
for a conservative scheme, are satisfied if Q is taken as the arithmetic average of the
surrounding points for incompressible flows [14]

Q=
1

2
(Qi+1+Qi).

This can be verified from Eqs. (2.2) and (2.3) if the metrics are frozen. To close the scheme,
a second-order boundary scheme is used:

(

Eξ

)+

i
=

3△E+
i+ 1

2

−△E+
i+ 3

2

2∆ξ
+O(∆ξ2) at the left boundary point; (3.4a)

(

Eξ

)−
i

=
3△E−

i− 1
2

−△E−
i− 3

2

2∆ξ
+O(∆ξ2) at the right boundary point. (3.4b)
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The viscous terms contain second derivatives of velocity components and first deriva-
tives of velocity components and of metric coefficients. For simplicity and consistency
with a third-order upwind compact scheme, second derivatives are approximated with a
fourth-order central compact scheme supplemented by a conventional second-order cen-
tral scheme near boundaries. First derivatives are computed with compact fourth-order
central and biased schemes at inner points and boundary points, respectively. Analytical
metrics are used whenever possible.

3.2 Solution scheme

Applying backward difference to the pseudo-time derivative, we obtain

1

J

∆Qm

∆τ
+

[

∂(Ê−Êv)

∂ξ
+

∂(F̂−F̂v)

∂η

]m+1

=0, (3.5)

where ∆Qm =Qm+1−Qm, m refers to pseudo-time level.
Terms at m+1 level are linearized w.r.t. m level by using Taylor expansion, i.e.,

Êm+1≈ Êm+

(

∂Ê

∂Q

)m

(Qm+1−Qm)= Êm+Am
∆Qm, (3.6a)

Êm+1
v ≈ Êm

v +

(

∂Êv

∂Q

)m

(Qm+1−Qm)= Êm
v +Am

v ∆Qm. (3.6b)

Thus we obtain the so-called delta form (solution for incremental variables ∆Q)

{

I+∆τ J

[

∂(A−Av)

∂ξ
+

∂(B−Bv)

∂η

]}m

∆Qm

=−∆τ J

(

∂Ê

∂ξ
+

∂F̂

∂η
−

∂Êv

∂ξ
−

∂F̂v

∂η

)m

=−Rm. (3.7)

For factorization purpose, we will only retain the orthogonal parts of the viscous Jacobian
matrices Av and Bv. The orthogonal parts of the viscous Jacobian matrices are

A′
v =

(

1

ReJ
▽ξ ·▽ξ

)

Im
∂

∂ξ
=γ1Im

∂

∂ξ
, (3.8a)

B′
v =

(

1

ReJ
▽η ·▽η

)

Im
∂

∂η
=γ2Im

∂

∂η
, (3.8b)

where Im =diag (0,1,1). The Beam-Warming approximate factorization (AF) scheme [18]
applied to Eq. (3.7) can be symbolically written as

£ξ£η ·∆Qm =−Rm. (3.9)
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To obtain block tri-diagonal equations, the convective terms in LHS of Eq. (3.9) are dis-
cretized by 1st-order upwind difference and viscous terms by 2nd-order central differ-
ence, e.g.,

△ξ f =
fi+1− fi

∆ξ
, ▽ξ f =

fi− fi−1

∆ξ
,

δξγ1δξ f =
γ1i+1/2

( fi+1− fi)−γ1i−1/2
( fi− fi−1)

∆ξ2
.

Note that the third-order upwind compact scheme and the fourth-order central scheme
are still used for the RHS of Eq. (3.9). Thus we obtain the AF scheme in the form

[

I+∆τ J
(

▽ξA++△ξA−−δξγ1Imδξ

)]

×
[

I+∆τ J
(

▽ηB++△ηB−−δηγ2Imδη

)]

∆Qm =−Rm, (3.10)

which requires solving block-tridiagonal equations.

To simplify further, the split Jacobian matrices of the flux vectors in the LHS are ap-
proximately constructed by

A±=
1

2
[A±ρ(A)I] , (3.11)

where

ρ(A)=κmax [|λ(A)|],

with λ(A) being the eigenvalues of the matrix A, and κ a constant that is greater than or
equal to unity (κ =1 was used throughout this study).

4 Accuracy test

The modified lid driven cavity flow problem proposed by Shih et al. [19] has an exact
solution for the N-S equations and is selected to study the order of accuracy of the present
upwind compact scheme. The modifications include a lid velocity that varies along the
upper lid of the cavity, i.e., u(x,1)=16

(

x2−2x3+x4
)

, and a space-dependent body force
b(x,y,Re) in the y-direction within the cavity. The fact that u(0,1) = 0 and u(1,1) = 0,
eliminate the singularity that exists at the top two corners of the classical lid driven cavity
problem. The steady state problem was solved over a square domain 0≤ x≤1, 0≤ y≤1
by starting from arbitrary initial conditions (zero pressure and zero velocity) and with
Dirichlet boundary condition for pressure and non-slip boundary condition for velocity
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Figure 1: Streamlines for the modified lid driven cavity flow at Re=1.

on all boundaries. The exact solution of the problem is given in [19, 20], which is

u(x,y)=8
(

x2−2x3+x4
)(

−2y+4y3
)

,

v(x,y)=−8
(

2x−6x2+4x3
)(

−y2+y4
)

,

p(x,y,Re)=
8

Re

[

(

8x3−12x4+
24

5
x5

)

y+
(

2x−6x2+4x3
)(

−2y+4y3
)

]

+64
( x4

2
−2x5+3x6−2x7+

x8

2

)[

−
(

−2y+4y3
)2

+
(

−2+12y2
)(

−y2+y4
)

]

,

b(x,y,Re)=−
8

Re

[

(

8x3−12x4+
24

5
x5

)

+
(

2x−6x2+4x3
)(

−4+24y2
)

+

(−12+24x)
(

−y2+y4
)

]

−64
{

0.5
[

(

x2−2x3+x4
)2(

−4y+8y3−24y5
)

]

−
(

2y3−6y5+4y7
)(

−2x2+8x3−14x4+12x5−4x6
)

}

.

The computed streamlines are compared with the analytical ones for Re=1 in Fig. 1. We
can see both are nearly identical.

Table 1 gives grid refinement results where the order of accuracy is calculated by

O(A)=
log(e2/e1)

ln2
.

Here e1 = |φe−φ f |, e2 = |φe−φc|, φe, φ f and φc stand for exact solution, solution on a fine
grid and solution on a coarse grid with half of the points in each directions, respectively.
This table clearly demonstrates that the order of accuracy for the present scheme is ap-
proximately 3.0.
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Table 1: Grid refinement study for the modified driven cavity flow problem.

Grid Re=1 Re=50 Re=100

− L2 error Order L2 error Order L2 error Order

11×11 1.85×10−3 − 9.46×10−3 − 1.35×10−2 −
21×21 2.32×10−4 3.0 1.21×10−3 2.97 1.70×10−3 2.99

41×41 2.58×10−5 3.17 1.45×10−4 3.06 2.07×10−4 3.04

81×81 2.83×10−6 3.19 1.69×10−5 3.10 2.55×10−5 3.02

161×161 3.17×10−7 3.16 1.94×10−6 3.12 3.15×10−6 3.02

5 Numerical examples

The present numerical method was tested in several benchmark problems for the steady
plane Couette-Poiseuille flow, the classical lid-driven cavity flow and the constricting
channel flow. In the last problem curvilinear meshes were used.

5.1 The plane Couette-Poiseuille flow

The first test problem is the plane Couette-Poiseuille flow (e.g. [21]). The governing equa-
tions and the boundary conditions for the dependent variables u=u(y) in dimensionless
form are:

Π+
d2u

dy2
=0

u(y=0)=0

u(y=1)=1



















, (5.1)

where Π = h2

µUtop

∆p
∆L

(

∆p
∆L =− ∂p

∂x is a constant pressure gradient
)

is a dimensionless num-

ber which can be interpreted as the ratio of the driving pressure gradient to the driving
velocity of the upper plate. The exact solution to (5.1) is u=Π/2(y−y2)+y.

The boundary conditions are as follows. Zero normal pressure gradient and non-slip
velocity are used on the upper and lower plates. Pressure at the exit is prescribed to be
zero and pressure at the inlet is specified a value according to Π, and zero gradient for
velocities is imposed at both the inlet and the outlet. Fig. 2 shows the computed velocity
profile for different Π values. The computational grid used has 65×65 uniform mesh
points. It can be seen that the computational result agrees very well with the analytical
solution. The numerical error is found to be below 10−14, which is machine accuracy.

Fig. 3 shows the convergence history for different values of artificial compressibility
factor β. The best value of β for which convergence is fastest is observed to be about 200.
However, it must be emphasized that this optimal β is problem dependent. Although the
convergence rate depends on β, it seems not a big problem as there is a wide range of
β for which essentially same convergence rate can be obtained, e.g., for 10< β < 1000 in
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Figure 2: Velocity profile for the Couette-Poiseuille flow.
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Figure 3: Convergence history for different values of β (with corresponding optimal CFL number) for the
Couette-Poiseuille flow with Π=1.0

this problem. It is also found that the optimal β and CFL number are not sensitive to grid
size, therefore it is suggested that one first finds the optimal β (and corresponding CFL)
on coarse meshes before conducting intensive calculations on fine meshes.
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5.2 The lid driven cavity flow

The two-dimensional lid driven square cavity flow whose top wall moves with a uni-
form velocity, is frequently used as a benchmark problem for the assessment of numer-
ical methods for the incompressible N-S equations, because the geometry as well as the
boundary condition is very simple yet the flow phenomenon can be quite complicated.
The top moving wall generates vorticity which diffuses into the cavity and this diffu-
sion becomes the driven mechanism of the flow patterns. Since for 5,000< Re < 15,000,
the flow becomes time periodic and for 15,000≤Re≤ 20,000 it becomes chaotic [22], we
only computed several Reynolds numbers ranging form 100 to 5000 for obtaining sta-
tionary solutions. The artificial compressibility factor β is found to have little effects on
steady-state solutions, and we will show results for β = 1 and a 129×129 grid. Fig. 4
shows comparisons of the present u− and v− velocity components on the lines passing
through the geometric center of the cavity along the y− and x− axis, respectively, with
the calculations of Ghia [23]. Note that the origin of these plots is shifted for each suc-
cessive Reynolds number case. We can see the present numerical results agree well with
available results of [22–25].

u

y

-1 -0.5 0 0.5 1
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0.4
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0.8

1
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Ghia et al.
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Figure 4: Comparison of u and v-velocity components for Re=100,400,1000 and 5000 with the computation of
Ghia et al. [23].

In Fig. 5, the streamline contours for four Reynolds numbers: Re=100,400,1000,5000,
respectively, show the ability of our flow solver to predict the primary, secondary and
particularly, tertiary vortices at higher Reynolds numbers. The secondary vortices formed
at the bottom left and right corners are not equal to each other in size as the vortex at the
bottom right corner is larger than at the bottom left corner. The streamline patterns are
similar to those of [23, 25].

Fig. 6 shows comparison of the vorticity contours at Reynolds number 100 as com-
puted from the velocity field. The contour lines are smooth, and the shape and positions
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Figure 5: Streamlines showing the driven cavity flow at Re=100,400,1000,5000 respectively on a 129×129 grid.

of the contour lines are in good agreement with the results of [23].

The static pressure coefficient is defined as Cp =2Re(P−Pref), where Pref is the refer-
ence pressure at the middle of the lower wall. The contours of the static pressure coef-
ficient at different Reynolds numbers were compared with that results given in [24] and
we have seen a very good agreement between them. Since the upper wall velocity was
chosen in the opposite direction in [24], we observed a very good symmetry between the
two results as shown in Fig. 7 for the case of Reynolds number 100.

5.3 Constricting channel flow

Finally, we will test our scheme on curvilinear meshes using the laminar incompress-
ible flow in a two-dimensional constricting channel, which has been studied numerically
in [26–28]. As shown in Fig. 8, the channel boundary can be varied from a smooth con-
striction to one possessing a very sharp but a smooth corner through a controlled param-
eter δ. Different values of δ gives different channel geometries as shown in Fig. 9. The
basic challenge in simulating this flow problem is to obtain the recirculation region imme-
diately downstream of the corner for moderately high Reynolds numbers. The channel
is symmetric about the centerline, therefore we only consider the upper half plane.

To avoid high-frequency errors at the sharp corner, a large number of grid points are
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Figure 7: Contours of the pressure coefficient at Re=100.

packed close to the corner. This is done by the following conformal transformation [28]
of independent variables:

x=Cξ+
D

M
[ξsinh(2ξ)−ηsin(2η)],

y=Cη+
D

M
[ηsinh(2ξ)+ξsin(2η)],

which transforms the physical plane (x,y) into a computational plane (ξ,η), where M =
cosh(2ξ)+cos(2η). The constants C and D are determined by

C=
h1+h2

2δ
, D=

h2−h1

2δ
,
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Figure 8: Sketch of the constricted channel flow.

where h1 and h2 are the inlet and outlet half-widths of the channel and are chosen as
1.0 and 0.5 respectively, while the parameter δ, which controls the smoothness as well as
sharpness of the constriction, is chosen in the range of 0< δ≤1. This enables us to avoid
the coordinate singularity which occurs at (ξ0,η0)≃ (0.56,1.05). Since the whole domain
of the channel is given by −∞<ξ<+∞ and −δ<η<+δ in the computational space, then
y→h1 as x→−∞ and y→h2 as x→∞ in the physical space. For the upper half plane, we
choose η = δ as the upper boundary and η =0 as the symmetric centerline. The choice of
the location of the inlet and outlet boundaries affects the flow development, therefore the
inlet boundary is set at x≃−7 and the outlet boundary is set at x≃14 far away from the
corner. The velocities and pressure at the inlet are given by u = 1.5

(

1−y2
)

, v = 0, and p
is extrapolated, while zero normal derivative for velocity and zero pressure are imposed
at the outlet boundary. Non-slip velocity and zero normal pressure gradient are applied
on the upper stationary wall whereas ∂u/∂y = 0, ∂p/∂y = 0 and v = 0 are used on the
centerline.

Results are presented for three cases, namely δ=0.6 representing a smooth constrict-
ing channel, δ=0.9 representing a channel with a smooth corner, and δ=1.0 representing
a channel with a smooth but very sharp corner.

Table 2: Separation and reattachment points for δ=0.9.

Re Sep.(Present) Reatt.(Present) Sep.([26]) Reatt.([26])

175 0.68 0.86 0.66 0.85

200 0.62 1.0 0.62 1.1

250 0.59 1.2 0.57 1.3

500 0.53 2.1 0.52 2.3

600 0.51 2.4 0.51 2.8

750 0.51 3.0 0.51 3.5

In Table 2, the columns 2 and 3 show presently computed separation and reattach-
ment points for a fixed δ=0.9 at different values of Re, while columns 4 and 5 show those
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Figure 9: Grid lines for constricted channel with different δ values.

obtained from [26]. It is evident from Table 2 that for small Re, the recirculation region
is relatively small but becomes large with increasing Reynolds number. It is remarked
that no tabulated data was available in the literature to the best of our knowledge. We
scanned Fig. 12 of [26] to get the data in Table 2. Therefore, it might be one possible
reason for some differences between the two results.

The streamlines in Fig. 10 clearly show the main features of the flow and various
separation zones for different δ and Reynolds numbers. For fixed Re =250 and different
δ values, we observe that no separation zones appear for δ =0.8 or less but they start to
occur with larger δ. The last two frames in Fig. 10 show that for δ = 1.0 the separation
zone becomes larger as the Reynolds number increases. It is therefore concluded that
the corner sharpness parameter (δ) and the Reynolds number (Re) are two important
parameters affecting the development of the corner vortex.
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Figure 10: Comparison of streamlines for different geometries and Reynolds numbers.
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6 Conclusions

The present paper presents a third-order upwind compact scheme based on flux differ-
ence splitting for solving the incompressible Navier-Stokes equations in general curvilin-
ear coordinates using the artificial compressibility method. The accuracy of the numeri-
cal scheme is verified by using several benchmark problems. The computed results are in
good agreement with available analytical as well as numerical results. Furthermore, the
scheme, like its precedent conventional third-order upwind scheme, can be implemented
on curvilinear meshes, rendering it a potential for simulating many incompressible flow
problems involving complex geometries. Unlike streamfunction-vorticity formulation,
the extension of the present scheme to three-dimensional cases is quite straightforward.
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