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Abstract. We extend the results on minimal stabilization of Burman and Stamm [J. Sci.
Comp., 33 (2007), pp. 183-208] to the case of the local discontinuous Galerkin methods
on mixed form. The penalization term on the faces is relaxed to act only on a part
of the polynomial spectrum. Stability in the form of a discrete inf-sup condition is
proved and optimal convergence follows. Some numerical examples using high order
approximation spaces illustrate the theory.
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1 Introduction

Discontinuous Galerkin methods for scalar elliptic problems date back to the pioneering
work of Douglas and Dupont [15], Baker [3], Wheeler [24] and Arnold [1]. Later the dis-
continuous Galerkin method was applied to the case of elliptic problems written as first
order system by Bassi and Rebay [4] and the local discontinuous Galerkin (LDG-) method
was proposed by Cockburn and Shu [14]. In the high order framework the LDG-method
was analyzed in [10, 11, 13, 20]. An essential point of a DG-method is that continuity is
not imposed by the space and therefore some stabilizing mechanism is needed to im-
pose continuity weakly. A number of approaches have been proposed. For a unified
framework for discontinuous Galerkin methods for elliptic problems and a discussion
of stabilization mechanisms involved see the papers of Arnold and coworkers [2]. In
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the high order framework both the first order scalar hyperbolic problem and the diffu-
sion equation were analyzed by Houston and co-workers [18]. Finally the case of elliptic
equations in mixed form and hyperbolic equations was given a unified treatment in the
framework of Friedrich systems in the papers by Ern and Guermond [16, 17].

Recently it has been discussed how much the methods for elliptic problems in mixed
form really need to be stabilized. Indeed most of the above mentioned references con-
sidered sufficient stabilization to obtain stability, however in many cases this appears not
necessary. There may be many reasons to try to diminish the amount of stabilization
added. The computation of stabilization terms is costly and the added stability may per-
turb the local conservation properties of the scheme. Another reason for the numerical
analyst is simple curiosity: what are the most basic stability mechanisms of DG-methods?

It was noticed in the paper by Sherwin and coworkers [23] that for certain configura-
tions the discontinuous Galerkin method appears to be stable in the sense that the discrete
solution exists even without any stabilization. This phenomenon was also observed and
given a detailed analysis by Marazzina in [19] in the case of shape regular quadrilateral
meshes. It was shown that it is enough to stabilize the solution on one boundary face. The
convergence analysis however was restricted to the case of structured meshes. Cockburn
and Dong introduce in [12] an artificial wind to stabilize the scheme using the upwind
technique and drop the penalty term. The idea of minimal stabilization was then applied
to the case of first order scalar hyperbolic problems by Burman and Stamm in the case
of high order approximation [8]. In that work it was shown that it is enough to penalize
the upper two thirds of the polynomial spectrum in order to obtain stability and optimal
order graph-norm convergence. As a particular case stabilization of the tangential part
of the gradient jump was advocated. The relaxation of the penalty allowed for a local
mass conservation property that was independent of the penalty parameter. The same
authors then made a detailed analysis of the scalar second order elliptic equation for the
case of affine approximation [7]. It was shown in two or three space dimensions that
both for the symmetric and the non symmetric formulation a boundary penalty term is
sufficient to ensure existence of the solution. Optimal convergence however requires ei-
ther that the mesh satisfies a certain macro element property or that the space is enriched
with non-conforming quadratic bubbles, see also [9]. If these conditions are not met a
checkerboard mode can appear that destroys convergence when the mesh is irregular or
the data rough. In one space dimension a complete characterization of the stability prop-
erties for the symmetric DG-method for scalar elliptic problems was given by Burman
and co-workers in [6].

In this note we will revisit the results of [8] and show how the analysis can be ex-
tended to the case of the local discontinuous Galerkin method for elliptic problems in
mixed form on triangular meshes. Although we add stabilization on all faces it only
affects a part of the polynomial spectrum. Since full control of the solution jumps is re-
covered by an inf-sup argument the method has optimal convergence order. This way
the local conservation property of the scheme is independent of the penalty parameter.
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2 Preliminary results

2.1 Definitions

Let Ω⊂R
2 be an open, bounded and convex polygon with boundary ∂Ω. We consider

the following diffusion equation with Dirichlet boundary conditions:

Find u : Ω→R such that {
−∇·(ε∇u)= f in Ω,

u|∂Ω
= g on ∂Ω,

(2.1)

with ε∈R s.t. ε>0, f ∈L2(Ω) and g∈L2(∂Ω). Problem (2.1) is equivalent to the following
system of first order differential equations:

Find u : Ω→R and σ : Ω→R
d such that





σ−ε
1
2 ∇u=0 in Ω,

−∇·(ε
1
2 σ)= f in Ω,

u|∂Ω
= g on ∂Ω.

(2.2)

Let K be a subdivision of Ω ⊂ R
2 into non-overlapping triangles. The triangles κ are

closed and their interior denoted by
◦
κ. For an element κ∈K, hκ denotes its diameter and

set h=maxκ∈Khκ . Assume that

• K covers Ω exactly;

• K does not contain any hanging nodes;

• K is shape-regular.

Suppose that each κ∈K is an affine image of the reference element κ̂, i.e. for each element
κ⊂K there exists an affine transformation Tκ : κ̂→κ. Let Fi denote the set of interior faces
(1-manifolds) of the mesh, i.e., the set of faces that are not included in the boundary ∂Ω.
The set Fe denotes the faces that are included in ∂Ω and denote F =Fi∪Fe. For F∈F ,
hF denotes its diameter. Let us denote by h̃ the function defined such that h̃|◦

κ
=hκ for all

κ∈K and such that h̃| ◦
F
=hF for all F∈F .

Denote by Γ the skeleton of the mesh defined by Γ = {x∈Ω : ∃F∈F s.t. x∈ F}. For
a non-empty subdomain R⊂Ω or R⊂Γ, (·,·)R denotes the L2(R)–scalar product, ‖·‖R =

(·,·)1/2
R the corresponding norm, and ‖·‖s,R the Hs(R)–norm. For s≥1, let Hs(K) be the

space of piecewise Sobolev Hs–functions and denote its scalar product, norm and semi-
norm respectively by (·,·)s,K, ‖·‖s,K and |·|s,K. For s=0 the index s is dropped.

For v∈H1(K), τ ∈ [H1(K)]2 and an interior face F = κ1∩κ2 ∈Fi, where κ1 and κ2 are
two distinct elements of K with respective outer normals n1 and n2, the jump is defined
by

[v]=v|κ1
n1+v|κ2 n2, [τ]=τ|κ1

·n1+τ,|κ2 ·n2
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and the average by

{v}= 1
2 (v|κ1

+v|κ2 ), {τ}= 1
2 (τ|κ1

+τ|κ2).

On outer faces F=∂κ∩∂Ω∈Fe with outer normal n, the jump and the average are defined
as [v]=v|κ n and {v}=v|κ , resp. [τ]=τ|κ ·n and {τ}=τ|κ .

Further let nF be an arbitrary but fixed normal on F ∈ F and define [v]n = [v]·nF .
Observe that

‖[v]‖F =‖[v]n‖F . (2.3)

2.2 Finite element spaces

Let p,λ ≥ 0 be two arbitrary integers and let κ be an arbitrary element of the mesh K.
Further let Pp(κ) be the space of polynomials of total degree p on κ and introduce the
global discontinuous finite element space

V
p

h ={vh ∈L2(Ω) : vh|κ ∈Pp(κ), ∀κ∈K}. (2.4)

Define the following polynomial space on ∂κ:

Pλ(∂κ)={v∈L2(∂κ) : v|F ∈Pλ(F), ∀F∈F(∂κ)},

where Pλ(F) is the usual one dimensional polynomial space of total degree λ on F and
F(∂κ) denotes the set of all faces of κ. Observe that there is no continuity required at the
vertices of κ. On a global level we define

Wλ
h ={v∈L2(Γ) : v|F ∈Pλ(F), ∀F∈F}. (2.5)

Let us further present some known results.

Lemma 2.1 (Trace inequality). Let τh∈[V
p

h ]m, m≥1. Then there holds exists a constant cT >0,
independent of the mesh size h, such that

‖{τh}‖
2
F +‖[τh]‖

2
F ≤ cT‖h̃−

1
2 τh‖

2
K,

where cT > 0 is a constant independent of the mesh size h. On the other hand if τ ∈ [H1(K)]m,
then there exists a constant cT >0, independent of the mesh size h, such that

‖{τ}‖2
F +‖[τ]‖2

F ≤ cT

(
‖h̃−

1
2 τ‖2

K+|h̃
1
2 τ|21,K

)
.

Lemma 2.2 (Inverse inequality). Let vh ∈V
p

h . Then there holds

‖∇vh‖
2
K≤ c‖h̃−1vh‖

2
K.
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2.3 Projections

Let V1(κ̂),V2(κ̂)⊂Pp(κ̂), and V3(∂κ̂)⊂Pp(∂κ̂). Then, we address the question for which
spaces V1(κ̂),V2(κ̂),V3(∂κ̂) the following projection exists: Let v∈ L2(∂κ̂) be given, then
find π̂∈ [V1(κ̂)]2 such that

∫

κ̂
π̂ ·∇wh dx̂=0 ∀wh∈V2(κ̂), (2.6)

∫

∂κ̂
π̂ ·nκ̂zh dŝ=

∫

∂κ̂
vzh dŝ ∀zh ∈V3(∂κ̂), (2.7)

where nκ̂ denotes the outer unit normal of κ̂. Let us remark that the global variants of
V1(κ̂), V2(κ̂) will be the spaces in which we will seek approximations of the flux and
primal variables (σ,u) of problem (2.2), whereas V3(∂κ̂) defines the part of the spectrum
of the jump of u which may be omitted in the stabilization. Thus, we would like to chose
V1(κ̂)=V2(κ̂)=Pp(κ̂) in order to ensure full approximability of both variables and have
V3(∂κ̂) as rich as possible to reduce the stabilization to a minimum. Several choices of
V1(κ̂), V2(κ̂) and V3(∂κ̂) will be discussed in Section 4.1.

Let V1,V2⊂V
p

h and V3⊂W
p
h be the global versions of V1(κ̂), V2(κ̂) and V3(∂κ̂), i.e.,

Vi ={vh ∈L2(Ω) : vh|κ◦Tκ ∈Vi(κ̂), ∀κ∈K} i=1,2,

V3 ={vh ∈L2(Γ) : vh|∂κ◦Tκ ∈V3(∂κ̂), ∀κ∈K}.

Proposition 2.1 (Global projection). Assume that the local projection defined by (2.6)-
(2.7) is well posed. Let v∈L2(Γ), then there exists a projection Πh(v)∈ [V1]

2 such that

∫

Ω

Πh(v)·∇wh dx=0 ∀wh∈V2, (2.8)
∫

F
({Πh(v)}·nF−v)zh ds=0 ∀zh ∈V3. (2.9)

In addition, the projection satisfies the following stability properties

‖{Πh(v)}‖2
F +‖[Πh(v)]‖2

F ≤ c‖v‖2
F , (2.10)

and
‖Πh(vh)‖

2
K≤ cIT‖h̃

1
2 vh‖

2
F . (2.11)

Remark 2.1. The stability result follows directly from the local construction of the pro-
jection and from the equivalence of discrete norms on the reference triangle. We do not
address the stability with respect to the polynomial degree p.

Remark 2.2. Another approach consists in directly considering the global projections
without constructing the projection locally. This approach can allow a further reduction
of the stabilization but goes beyond the scope of this paper. For details of this approach
see [12] and for second order elliptic problems in scalar form see [6, 7, 9].
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3 The discontinuous finite element method

Define by P : L2(Γ)→V3 the L2-projection onto V3 satisfying

‖Pv‖2
F ≤‖v‖2

F and ‖(I−P)v‖2
F ≤‖v‖2

F , (3.1)

for all v∈L2(Γ). Then, define the bilinear forms

a(τh,vh)=(τh,∇vh)K−({τh},[vh])F ,

j(vh,wh)=γ(h̃−1ε(I−P)[vh],(I−P)[wh])F ,

for all τh∈ [V1]
2, vh,wh∈V2 and where γ>0 is a stabilization parameter independent of h.

Let us define the discontinuous finite element space Vh =[V1]
2×V2 as a finite dimen-

sional subspace of V =[H1(K)]2×H1(K). Then, the discrete problem consists of seeking
(σh,uh)∈Vh such that

A(σh,uh;τh,vh)= F(τh,vh) ∀(τh,vh)∈Vh, (3.2)

where

A(ρh,wh;τh,vh)=(ρh,τh)K−a(ε
1
2 τh,wh)+a(ε

1
2 ρh,vh)+ j(wh,vh),

F(τh,vh)=( f ,vh)K+(τh,ε
1
2 gn)Fe

+γ(h̃−1ε(I−P)g,(I−P)vh)Fe
,

for all (ρh,wh),(τh,vh)∈Vh.

Remark 3.1. Observe that if W0
h ⊂V3, then the above defined flux variable satisfies the

following local mass conservation property, which is independent of the stabilization
parameter and the primal variable uh,

∫

∂κ
{ε

1
2 σh}·nκ ds=

∫

κ
f dx

for all interior elements κ and where nκ denotes the exterior normal vector of κ.

Remark 3.2. If Wλ
h ⊂V3 with λ≥0 and using the Bramble-Hilbert lemma the (I−P) oper-

ator may be replaced by a differential operator of order λ+1 in the tangential directions
of the face. In particular, if λ=0, we get

‖h̃−
1
2 ε

1
2 (I−P)[vh]n‖F ≤ c‖h̃

1
2 ε

1
2 [∇vh]t‖F ,

where here [∇vh]t = ∇vh|κ1
×n1+∇vh|κ2 ×n2 is the tangential jump of the gradient. It

follows that an equivalent stabilization term is obtained penalizing the jumps of certain
derivatives, leading to a term that is no more complicated or expensive to compute than
in the standard case. The following analysis holds in this case also with minor modifica-
tions.
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Lemma 3.1. Let (τ,v)∈V . Then

a(τ,v)=−(∇·τ,v)K+([τ],{v})Fi
.

Proof. Straightforward by integration by parts.

Lemma 3.2 (Coercivity). Let (τh,vh)∈Vh, then there exists a constant cL > 0 independent of
the mesh size h such that

cL A(τh,vh;τh,vh)≥‖τh‖
2
K+‖h̃−

1
2 ε

1
2 (I−P)[vh]‖

2
F .

Proof. The definition of the bilinear form A(·;·) yields

A(τh,vh;τh,vh)=‖τh‖
2
K+γ‖h̃−

1
2 ε

1
2 (I−P)[vh]‖

2
F ,

then taking cL =1/min(1,γ) completes the proof.

Lemma 3.3 (Consistency). Let u∈H2(Ω) be the exact solution of problem (2.1) and let (σh,uh)
be the solution of (3.2). Then

A(ε
1
2∇u−σh,u−uh;τh,vh)=0

for all (τh,vh)∈Vh.

Proof. Since (σh,uh) is the discrete solution it satisfies

A(σh,uh;τh,vh)= F(τh,vh) ∀(τh,vh)∈Vh.

On the other hand since u∈H2(Ω) we have [u]|F =0 for all F∈Fi. Additionally applying
Lemma 3.1 yields for all (τh,vh)∈Vh

A(ε
1
2∇u,u;τh,vh)

=(ε
1
2 ∇u,τh)K−(ε

1
2 τh,∇u)K+({ε

1
2 τh},[u])F +a(ε∇u,vh)+ j(u,vh)

=(−∇·(ε∇u),vh)K+({τh},[ε
1
2 u])Fe

+γ(h̃−1ε(I−P)[u]n,(I−P)[vh]n)Fe

=( f ,vh)K+(τh,ε
1
2 gn)Fe

+γ(h̃−1ε(I−P)g,(I−P)vh)Fe
.

Finally we conclude that

A(ε
1
2 ∇u,u;τh,vh)= F(τh,vh), ∀(τh,vh)∈Vh.

This completes the proof of the lemma.
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4 Convergence analysis

We denote by c a generic strictly positive constant independent of the mesh size h (but
possibly dependent of the diffusion coefficient ε) that may change at each occurrence
whereas constants with an index stay fixed. Further we define the following triple norm
for all (τ,v)∈V :

|‖τ,v‖|2 =‖τ‖2
K+‖ε

1
2 ∇v‖2

K+‖h̃−
1
2 ε

1
2 [v]‖2

F .

Proposition 4.1 (Inf-Sup Condition). Assume that the spaces V1, V2 and V3 are chosen
such that the projection defined in Proposition 2.1 exists and that ∇V2 ⊆ [V1]

2. Then,
there exists a constant c>0, independent of the mesh size h, such that

c|‖τh,vh‖|≤ sup
(τ ′

h ,v′h)∈V
p
h

A(τh,vh;τ ′
h,v′h)

|‖τ ′
h,v′h‖|

∀(τh,vh)∈Vh.

The proof consists of two lemmas, Lemmas 4.1 and 4.2.

Lemma 4.1. For all (τh,vh)∈Vh there exists (τ ′
h,v′h)∈Vh and a constant c > 0 independent of

the mesh size h such that
c|‖τh,vh‖|

2≤A(τh,vh;τ ′
h,v′h).

Lemma 4.2. Fix (τh,vh)∈Vh and let (τ ′
h,v′h)∈Vh be the functions defined in Lemma 4.1, then

there exists a constant c>0 independent of the mesh size h such that

|‖τ ′
h,v′h‖|≤ c|‖τh ,vh‖|.

Combining these two lemmas leads to the result. Indeed for all (τh,vh) ∈ Vh there
exists (τ ′

h,v′h)∈Vh and c>0 such that

A(τh,vh;τ ′
h,v′h)≥ c|‖τh,vh‖|

2 ≥ c|‖τh,vh‖||‖τ ′
h ,v′h‖|.

Proof of Lemma 4.1. First fix (τh,vh)∈Vh and define the vector functions ρh,wh∈ [V1]
2 by

ρh =−ε
1
2 ∇vh and wh = h̃−1ε

1
2 Πh(P[vh]n)

where the projection Πh is defined by Proposition 2.1. We proceed in three steps.

Step 1: In the first step we show that there exists a constant cρ >0 such that

‖ε
1
2 ∇vh‖

2
K≤A(τh,vh;2ρh+cρτh,cρvh)+cρ‖h̃−

1
2 ε

1
2 P[vh]‖

2
F .

The definition of the bilinear form A(·,·) yields

‖ε
1
2 ∇vh‖

2
K = A(τh,vh;ρh,0)+(τh,ε∇vh)K+({ε∇vh},[vh])F

= A(τh,vh;ρh,0)+I1+I2.
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Then using Young’s inequality leads to

I1≤ c‖τh‖
2
K+ 1

4‖ε
1
2 ∇vh‖

2
K. (4.1)

On the other side, using additionally the trace inequality, Lemma 2.1, yields

I2≤ c‖h̃−
1
2 ε

1
2 [vh]‖

2
F + 1

4‖ε
1
2 ∇vh‖

2
K. (4.2)

Thus combining (4.1) and (4.2) and using coercivity, Lemma 3.2, yield

1
2‖ε

1
2 ∇vh‖

2
K≤A(τh,vh;ρh,0)+c

(
‖τh‖

2
K+‖h̃−

1
2 ε

1
2 [vh]‖

2
F

)

≤A(τh,vh;ρh,0)+c
(

A(τh,vh;τh,vh)+‖h̃−
1
2 ε

1
2 P[vh]‖

2
F

)

and therefore there exists a constant cρ >0 such that

‖ε
1
2 ∇vh‖

2
K≤A(τh,vh;2ρh+cρτh,cρvh)+cρ‖h̃−

1
2 ε

1
2 P[vh]‖

2
F .

Step 2: In the second step we show that there exists a constant cw >0 such that

‖h̃−
1
2 ε

1
2 P[vh]‖

2
F ≤A(τh,vh;2wh+cwτh,cwvh).

Firstly observe that by the definitions of the bilinear form A(·,·) and of the projection Πh

we have

A(τh,vh;wh,0)=(τh,wh)K−(ε
1
2 wh,∇vh)K+({ε

1
2 wh},[vh])F

=(τh,wh)K+({ε
1
2 wh}·nF,[vh]n)F

since vh ∈V2. Secondly, again by the definition of the projection Πh we may write

({ε
1
2 wh}·nF,[vh]n)F =‖h̃−

1
2 ε

1
2 P[vh]‖

2
F +({ε

1
2 wh},(I−P)[vh])F ,

by (2.3). Therefore we have

‖h̃−
1
2 ε

1
2 P[vh]‖

2
F = A(τh,vh;wh,0)−(τh,wh)K−({ε

1
2 wh},(I−P)[vh])F

= A(τh,vh;wh,0)−I1−I2.

Using Young’s inequality and the inverse trace inequality (2.11) leads to

|I1|≤ c‖τh‖
2
K+ 1

4‖h̃−
1
2 ε

1
2 P[vh]‖

2
F . (4.3)

On the other hand applying Young’s inequality and the stability property of the projec-
tion Πh, (2.10), yields

|I2|≤ c‖h̃−
1
2 ε

1
2 (I−P)[vh]‖

2
F + 1

4‖h̃−
1
2 ε

1
2 P[vh]‖

2
F . (4.4)
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Thus, combining (4.3) and (4.4) and using coercivity, Lemma 3.2, yield

‖h̃−
1
2 ε

1
2 P[vh]‖

2
F ≤A(τh,vh;2wh+cwτh,cwvh).

Step 3: Now it only remains to combine coercivity and the results of Step 1 and Step 2:

|‖τh,vh‖|
2 =‖τh‖

2
K+‖ε

1
2 ∇vh‖

2
K+‖h̃−

1
2 ε

1
2 [vh]‖

2
F

≤A(τh,vh;cLτh,cLvh)+‖ε
1
2 ∇vh‖

2
K+‖h̃−

1
2 ε

1
2 P[vh]‖

2
F

≤A(τh,vh;(cL+cρ)τh+2ρh,(cL+cρ)vh)+(1+cρ)‖h̃−
1
2 ε

1
2 P[vh]‖

2
F

≤A(τh,vh;τ ′
h,v′h)

where

τ ′
h =(cL+cρ+(1+cρ)cw)τh+2ρh+2(1+cρ)wh = c1τh+2ρh+2c2wh,

v′h =(cL+cρ+(1+cρ)cw)vh = c1vh.

This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. By definition of the triple norm:

|‖τ ′
h,v′h‖|

2 =‖τ ′
h‖

2
K+c2

1‖ε
1
2 ∇vh‖

2
K+c2

1‖h̃−
1
2 ε

1
2 [vh]‖

2
F .

For the first term use (2.11) and (3.1)

‖τ ′
h‖

2
K≤ c2

1‖τh‖
2
K+4‖ρh‖

2
K+4c2

2‖wh‖
2
K

≤ c2
1‖τh‖

2
K+4‖ε

1
2 ∇vh‖

2
K+4c2

2cIT‖h̃−
1
2 ε

1
2 P[vh]‖

2
F

≤ c2
1‖τh‖

2
K+4‖ε

1
2 ∇vh‖

2
K+4c2

2cIT‖h̃−
1
2 ε

1
2 [vh]‖

2
F

≤max(c2
1,4,4c2

2cIT)|‖τh,vh‖|
2.

Thus, there exists a constant c>0 such that

|‖τ ′
h,v′h‖|≤ c|‖τh ,vh‖|.

This completes the proof of Lemma 4.2.

Let us denote by πh the piecewise vectorial L2-projection πh : [L2(Ω)]2→ [V1]
2 and by

πh its scalar version πh : L2(Ω)→V2 satisfying the following approximation results

‖πhτ−τ‖k,K≤ c|h̃s1−kτ|s1,K, k=0,1, (4.5)

‖πhv−v‖k,K≤ c|h̃s2−kv|s2 ,K, k=0,1 (4.6)
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for all τ ∈ [Hr1(K)]2, v ∈ Hr2(K) and with si = min(pi+1,ri) for some space specific pi

specifying the polynomial order of the discrete space. Further let σ and u denote the
exact solution of (2.2) and let (σh,uh)∈Vh be the solution of (3.2), then define

ησ =σ−πhσ,
ηu =u−πhu,

and
ξσ =σh−πhσ,
ξu =uh−πhu.

(4.7)

To disburden the continuity proof for the bilinear form A(·,·;·,·) we define a well scaled
auxiliary norm:

|]ησ,ηu[|
2 = |‖ησ,ηu‖|

2+‖h̃
1
2 {ησ}‖2

F .

Proposition 4.2 (Continuity). Let ησ, ηu, ξσ and ξu be defined by (4.7). Then

A(ησ,ηu;ξσ,ξu)≤ c|]ησ,ηu[| |‖ξσ,ξu‖|.

Proof. Develop

A(ησ,ηu;ξσ,ξu)=(ησ,ξσ)K−a(ε
1
2 ξσ,ηu)+a(ε

1
2 ησ,ξu)+ j(ηu,ξu),

and apply the Cauchy-Schwarz inequality for the first term

(ησ,ξσ)K≤‖ησ‖K ‖ξσ‖K≤|]ησ,ηu[| |‖ξσ,ξu‖|.

Use the same argument for the last term

j(ηu,ξu)≤ j(ηu ,ηu)
1
2 j(ξu,ξu)

1
2 ≤ c|]ησ,ηu[| |‖ξσ,ξu‖|,

where additionally the stability result (3.1) is used. For the remaining terms similar ar-
guments are used. The trace inequality, Lemma 2.1, yields

−a(ε
1
2 ξσ,ηu)=−(ξσ,ε

1
2 ∇ηu)K+({ξσ},ε

1
2 [ηu])F

≤‖ξσ‖K‖ε
1
2 ∇ηu‖K+‖h̃

1
2 {ξσ}‖F ‖h̃−

1
2 ε

1
2 [ηu]‖F

≤‖ξσ‖K‖ε
1
2 ∇ηu‖K+c‖ξσ‖K‖h̃−

1
2 ε

1
2 [ηu]‖F

≤ c|]ησ,ηu[| |‖ξσ,ξu‖|.

In the same manner we develop

a(ε
1
2 ησ,ξu)≤ c|]ησ,ηu[| |‖ξσ,ξu‖|,

and respecting all bounds yields

A(ησ,ηu;ξσ,ξu)≤ c|]ησ,ηu[| |‖ξσ,ξu‖|.

This ends the proof.
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Proposition 4.3 (Approximability). Let ησ, ηu, ξσ and ξu be defined by (4.7) and let V1,
V2 such that the approximation results (4.5), (4.6) hold for some p1, p2. Assume that
u∈Hr(K) with some r≥2. Then for all 0≤sσ≤min(p1+1,r−1) and 0≤su≤min(p2+1,r):

|‖ησ,ηu‖|+|]ησ,ηu[|≤ c
(
|h̃sσ u|sσ+1,K+|h̃su−1u|su,K

)
.

Proof. Since u∈Hr(K) it follows that σ∈ [Hr−1(K)]2. Using the standard approximation
properties of the L2-projection, (4.5), (4.6), yields

‖ησ‖K≤ c|h̃sσ σ|sσ ,K= c|h̃sσ u|sσ+1,K,

|ησ|1,K≤ c|h̃sσ−1σ|sσ,K= c|h̃sσ−1u|sσ+1,K,

since σ = ε
1
2 ∇u. In addition,

‖ηu‖K≤ c|h̃su u|su,K, |ηu|1,K≤ c|h̃su−1u|su,K.

For the boundary terms, the trace inequality, Lemma 2.1, is applied:

‖h̃−
1
2 [ηu]‖F ≤ c

(
‖h̃−1ηu‖K+|ηu|1,K

)
≤ c|h̃su−1u|su,K.

In the same manner we develop

‖h̃
1
2 {ησ}‖F ≤ c

(
‖ησ‖K+|h̃ησ|1,K

)
≤ c|h̃sσ u|sσ+1,K.

Recalling the definitions of the triple norm and the auxiliary norm yields

|‖ησ,ηu‖|≤ c
(
|h̃sσ u|sσ+1,K+|h̃su−1u|su,K

)
,

|]ησ,ηu[|≤ c
(
|h̃sσ u|sσ+1,K+|h̃su−1u|su,K

)
,

which gives the desired inequality.

Theorem 4.1 (Convergence). Assume that the spaces V1, V2 and V3 are chosen such that the
projection defined by Proposition 2.1 exists, that ∇V2⊆ [V1]

2 and that the approximation results
(4.5), (4.6) hold for some p1, p2. Let σ and u denote the exact solution of (2.2) and let σh and
uh be the solution of (3.2). Assume that u∈ Hr(K)∩H2(Ω) with r ≥ 2; then for all 0≤ sσ ≤
min(p1+1,r−1) and 0≤ su ≤min(p2+1,r)

|‖σ−σh,u−uh‖|≤ c
(
|h̃sσ u|sσ+1,K+|h̃su−1u|su,K

)

where c>0 is independent of the mesh size h.
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Remark 4.1. If V1 =V2 =V
p

h , then choose s = su = sσ+1. Indeed, observe that if p+1≥ r,
then

min(p+1,r)=min(p+1,r−1)+1

and thus the largest admissible sσ, su are the choice of s= su = sσ+1. On the other hand if
p+1≤ r−1, then

min(p+1,r)=min(p+1,r−1).

Thus 0≤ s≤min(p+1,r) implies that 0≤ s−1≤min(p+1,r−1). As a consequence

|‖σ−σh,u−uh‖|≤ c|h̃s−1u|s,K≤ chs−1

for all 0≤ s≤min(p+1,r).

Remark 4.2. Note that in the case of V1 = V
p

h , V2 = V
p−1

h , V3 = W
p−1
h , the convergence is

suboptimal for smooth problems. Indeed if p≤ r−2 it follows that su = p and sσ = p+1.
Thus

|‖σ−σh,u−uh‖|≤ c
(
|h̃p+1u|p+2,K+|h̃p−1u|p,K

)
≤ chp−1.

Proof of Theorem 4.1. Let ησ, ηu, ξσ and ξu be defined by (4.7). Use the triangle inequality

|‖σ−σh,u−uh‖|≤ |‖ησ ,ηu‖|+|‖ξσ,ξu‖|,

and by Proposition 4.3 the first term is bounded by

|‖ησ,ηu‖|≤ c
(
|h̃sσ u|sσ+1,K+|h̃su−1u|su,K

)
, (4.8)

for all 0≤ sσ ≤min(p1+1,r−1) and 0≤ su ≤min(p2+1,r). For the second term use the
inf-sup condition, the consistency and the continuity result, Proposition 4.1, Lemma 3.3
and Proposition 4.2,

|‖ξσ,ξu‖|≤ c sup
(τh,vh)∈V

p
h

A(ξσ,ξu;τh,vh)

|‖τh,vh‖|
= c sup

(τh,vh)∈V
p
h

A(ησ,ηu;τh,vh)

|‖τh,vh‖|

≤ c sup
(τh,vh)∈V

p
h

|]ησ,ηu[| |‖τh,vh‖|

|‖τh,vh‖|
= c|]ησ,ηu[|

≤ c
(
|h̃sσ u|sσ+1,K+|h̃su−1u|su,K

)
.

This completes the proof of Theorem 4.1.
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4.1 Existence of local projections

The above analysis relies on the existence of the local projection defined by (2.6)-(2.7). Let
us present some cases where the projection exists.

• V1(κ̂)=V2(κ̂)=Pp(κ̂) and V3(∂κ̂)=Pλ(∂κ̂): In [8] the theoretical bound for λ of 0≤

λ≤⌊ p+1
3 ⌋−1 for p≥2 has been shown for a scalar projection. It can be further generalized

to a vectorial projection by considering the scalar projection componentwise. However
this approach may be suboptimal since in the vectorial case only the normal component
of π in (2.6) has to be imposed. Indeed, computations on the reference element κ̂ show

that the projection is well defined for 0≤λ≤⌊ 2(p+1)
3 ⌋−1 and p≥ 1. The following table

shows the largest possible λ for each p such that the projection exists, noted as λ⋆:

p 1 2 3 4 5 6 7 8

λ⋆ 0 1 1 2 3 3 4 5

Thus only the upper third of the polynomial spectrum of the jump has to be stabilized to
get optimal convergence for the flux and primal variable.

• V1(κ̂)= V2(κ̂)= Pp(κ̂) and V3(∂κ̂)= Pp(∂κ̂)\Pλ(∂κ̂): This approach consists of sta-
bilizing the lower modes of the polynomial spectrum of the jump. The following table
shows the smallest possible λ for each p such that the projection exists:

p 1 2 3 4 5 6 7 8

λ⋆ 1 2 2 3 3 4 4 5

Observe that λ⋆ behaves as ⌊ p
2 ⌋+1.

• V1(κ̂)=Pp(κ̂), V2(κ̂)=Pp−1(κ̂) and V3(∂κ̂)=Pp−1(∂κ̂): In this case no stabilization
is necessary, but optimal convergence for the primary variable is not obtained without
reconstruction. The existence of the projection in this case is proven in [5, Lemma 2.1].

5 Numerical results

In this section we report some basic numerical results for the method with V1 =V2 =V
p

h ,
V3 =W0

h and a stabilization term consisting of the jump of the tangential part of the gra-
dient as presented in Remark 3.2. We compare our method to the local discontinuous
Galerkin (LDG-) method of [14] for the problem (2.1) with smooth solution, i.e. we con-
sider a domain Ω=(0,1)2 with ε=1,

f (x,y)=40

(
1−

(x−0.25)2+(y−0.25)2

0.1

)
exp

(
−

(x−0.25)2+(y−0.25)2

0.1

)

and corresponding Dirichlet boundary condition such that the solution consists of

u(x,y)=exp

(
−

(x−0.25)2+(y−0.25)2

0.1

)
∈C∞(Ω̄).
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0.1 1h1x10�111x10�101x10�91x10�81x10�71x10�60.000010.00010.0010.010.1 Grad stab, p=1LDG, p=1Grad stab, p=2LDG, p=2Grad stab, p=3LDG, p=3Grad stab, p=4LDG, p=4Grad stab, p=5LDG, p=5Grad stab, p=6LDG, p=6Grad stab, p=7LDG, p=7
(a) ‖u−uh‖L2(Ω)

0.1 1h1x10$91x10$81x10$71x10$60.000010.00010.0010.010.11 Grad stab, p=1LDG, p=1Grad stab, p=2LDG, p=2Grad stab, p=3LDG, p=3Grad stab, p=4LDG, p=4Grad stab, p=5LDG, p=5Grad stab, p=6LDG, p=6Grad stab, p=7LDG, p=7
(b) ‖∇u−σh‖L2(Ω)

Figure 1: Accuracy for h-refinement and different polynomial orders p.

1 2 3 4 5 6 7p1x10F121x10F111x10F101x10F91x10F81x10F71x10F60.000010.00010.0010.010.1
Grad stab, h=0.3LDG, h=0.3Grad stab, h=0.2LDG, h=0.2Grad stab, h=0.1LDG, h=0.1Grad stab, h=0.05LDG, h=0.05

(a) ‖u−uh‖L2(Ω)

1 2 3 4 5 6 7p1x10k91x10k81x10k71x10k60.000010.00010.0010.010.11
Grad stab, h=0.3LDG, h=0.3Grad stab, h=0.2LDG, h=0.2Grad stab, h=0.1LDG, h=0.1Grad stab, h=0.05LDG, h=0.05

(b) ‖∇u−σh‖L2(Ω)

Figure 2: Accuracy for p-refinement and different mesh sizes h.

We consider sequences of unstructured meshes for polynomial degrees p = 1,··· ,7. For
the computations the C++ library life, a unified C++ implementation of the finite and
spectral element methods in 1D, 2D and 3D, is used, see [21, 22].

Fig. 1 shows the behavior of the approximations uh and σh for h-refinement and fixed
polynomial degree p. It shows similar behavior of the solutions of the here presented
method and the LDG method.

Fig. 2 shows the behavior of the approximations uh and σh for p-refinement and fixed
mesh size h. Observe the exponential decay of the error for both methods.



E. Burman and B. Stamm / Commun. Comput. Phys., 5 (2009), pp. 498-514 513

Acknowledgments

The authors thank Thomas P. Wihler for discussions on the stabilization of LDG-methods
and the anonymous reviewers for their comments that helped improve the manuscript.
This project received financial support from the Swiss National Science Foundation under
grant 200021−113304.

References

[1] D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM
J. Numer. Anal., 19(4):742–760, 1982.

[2] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779 (electronic),
2001/02.

[3] G. A. Baker. Finite element methods for elliptic equations using nonconforming elements.
Math. Comp., 31(137):45–59, 1977.

[4] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the nu-
merical solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131(2):267–
279, 1997.

[5] F. Brezzi, J. Douglas, Jr., and L. D. Marini. Two families of mixed finite elements for second
order elliptic problems. Numer. Math., 47(2):217–235, 1985.

[6] E. Burman, A. Ern, I. Mozolevski, and B. Stamm. The symmetric discontinuous galerkin
method does not need stabilization in 1d for polynomial orders p≥2. C. R. Acad. Sci. Paris
Sér. I Math., 354(10):599–602, 2007.

[7] E. Burman and B. Stamm. Low order discontinuous Galerkin methods for second order
elliptic problems. Technical report, EPFL-IACS report 04, 2007.

[8] E. Burman and B. Stamm. Minimal stabilization for discontinuous Galerkin finite element
methods for hyperbolic problems. J. Sci. Comput., 33(2):183–208, 2007.

[9] E. Burman and B. Stamm. Symmetric and non-symmetric discontinuous Galerkin methods
stabilized using bubble enrichment. C. R. Math. Acad. Sci. Paris, 346(1-2):103–106, 2008.

[10] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. An a priori error analysis of the local
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[23] S. J. Sherwin, R. M. Kirby, J. Peiró, R. L. Taylor, and O. C. Zienkiewicz. On 2D elliptic
discontinuous Galerkin methods. Internat. J. Numer. Methods Engrg., 65(5):752–784, 2006.

[24] M. F. Wheeler. An elliptic collocation-finite element method with interior penalties. SIAM J.
Numer. Anal., 15(1):152–161, 1978.


