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Abstract. We present an efficient numerical strategy for the Bayesian solution of in-
verse problems. Stochastic collocation methods, based on generalized polynomial
chaos (gPC), are used to construct a polynomial approximation of the forward solu-
tion over the support of the prior distribution. This approximation then defines a sur-
rogate posterior probability density that can be evaluated repeatedly at minimal com-
putational cost. The ability to simulate a large number of samples from the posterior
distribution results in very accurate estimates of the inverse solution and its associ-
ated uncertainty. Combined with high accuracy of the gPC-based forward solver, the
new algorithm can provide great efficiency in practical applications. A rigorous error
analysis of the algorithm is conducted, where we establish convergence of the approx-
imate posterior to the true posterior and obtain an estimate of the convergence rate. It
is proved that fast (exponential) convergence of the gPC forward solution yields sim-
ilarly fast (exponential) convergence of the posterior. The numerical strategy and the
predicted convergence rates are then demonstrated on nonlinear inverse problems of
varying smoothness and dimension.
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1 Introduction

The indirect estimation of model parameters or inputs from observations constitutes an
inverse problem. Such problems arise frequently in science and engineering, with applica-
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tions ranging from subsurface and atmospheric transport to chemical kinetics. In prac-
tical settings, observations are inevitably noisy and may be limited in number or resolu-
tion. Quantifying the resulting uncertainty in inputs or parameters is then essential for
predictive modeling and simulation-based decision-making.

The Bayesian approach to inverse problems [6,13,18,22,23] provides a foundation for
inference from noisy and incomplete data, a natural mechanism for incorporating physi-
cal constraints and heterogeneous sources of information, and a quantitative assessment
of uncertainty in the inverse solution. Indeed, the Bayesian setting casts the inverse solu-
tion as a posterior probability distribution over the model parameters or inputs. Though
conceptually straightforward, this setting presents challenges in practice; the posterior
probability distribution is typically not of analytical form and, especially in high dimen-
sions, cannot be easily interrogated. Many numerical approaches have been developed
in response, mostly seeking to approximate the posterior distribution or posterior ex-
pectations via samples [9]. These approaches require repeated solutions of the forward
model; when the model is computationally intensive, e.g., specified by partial differential
equations (PDEs), the Bayesian approach then becomes prohibitive.

Several efforts at accelerating Bayesian inference in inverse problems have appeared
in recent literature; these have relied largely on reductions or surrogates for the forward
model [3, 14, 17, 24], or instead have sought more efficient sampling from the poste-
rior [4,5,11]. Recent work [17] used (generalized) polynomial chaos (gPC)-based stochas-
tic Galerkin methods [8, 29] to propagate prior uncertainty through the forward model,
thus yielding a polynomial approximation of the forward solution over the support of
the prior. This approximation then entered the likelihood function, resulting in a poste-
rior density that was inexpensive to evaluate. This scheme was used to infer parameters
appearing nonlinearly in a transient diffusion equation, demonstrating exponential con-
vergence to the true posterior and multiple order-of-magnitude speedup in posterior ex-
ploration via Markov chain Monte Carlo (MCMC). The gPC stochastic Galerkin approach
has also been extended to Bayesian inference of spatially-distributed quantities, such as
inhomogeneous material properties appearing as coefficients in a PDE [16].

An alternative to the stochastic Galerkin approach to uncertainty propagation is
stochastic collocation [25,27]. A key advantage of stochastic collocation is that it requires
only a finite number of uncoupled deterministic simulations, with no reformulation of
the governing equations of the forward model. Also, stochastic collocation can deal
with highly nonlinear problems that are challenging, if not impossible, to handle with
stochastic Galerkin methods. A spectral representation may also be applied to arbitrary
functionals of the forward solution; moreover, many methods exist for addressing high
input dimensionality via efficient low-degree integration formulae or sparse grids. For
an extensive discussion of gPC-based algorithms, see [26].

This paper extends the work of [17] by using gPC stochastic collocation to construct
posterior surrogates for efficient Bayesian inference in inverse problems. We also con-
duct a rigorous error analysis of the gPC Bayesian inverse scheme. Convergence of the
approximate posterior distribution to the true posterior distribution is established and
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its asymptotic convergence rate obtained. Numerical examples are provided for a vari-
ety of nonlinear inverse problems to verify the theoretical findings and demonstrate the
efficiency of the new algorithms.

2 Formulation

Let D⊂R
ℓ, ℓ=1,2,3, be a physical domain with coordinates x=(x1,··· ,xℓ) and let T>0 be

a real number. We consider the following general stochastic partial differential equation





ut(x,t,Z)=L(u), D×(0,T]×R
nz ,

B(u)=0, ∂D×[0,T]×R
nz ,

u=u0, D×{t=0}×R
nz ,

(2.1)

where L is a (nonlinear) differential operator, B is the boundary condition operator, u0 is
the initial condition, and Z =(Z1,··· ,Znz)∈R

nz ,nz ≥ 1, are a set of independent random
variables characterizing the random inputs to the governing equation. The solution is
therefore a stochastic quantity,

u(x,t,Z) : D̄×[0,T]×R
nz →R

nu . (2.2)

We assume that each random variable Zi has a prior distribution

Fi(zi)= P(Zi ≤ zi)∈ [0,1],

where P denotes probability. In this paper we will focus on continuous random variables.
Subsequently each Zi has a probability density function πi(zi) = dFi(zi)/dzi. The joint
prior density function for Z is

πZ(z)=
nz

∏
i=1

πi(zi). (2.3)

Throughout this paper, we will neglect the subscript of each probability density and use
π(z) to denote the probability density function of the random variable Z, πZ(z), unless
confusion arises otherwise. Note that it is possible to loosen the independence assump-
tion on the input random variables Z by assuming some dependence structure; see, for
example, discussions in [1, 21]. As the focus of this paper is not on methods for the
stochastic problem (2.1), we follow the usual approach by assuming prior independence
on Z.

Let
dt = g(u)∈R

nd (2.4)

be a set of variables that one observes, where g : R
nu → R

nd is a function relating the
solution u to the true observable dt. We then define a “forward model” G : R

nz →R
nd to

describe the relation between the random parameters Z and observable dt:

dt =G(Z),g◦u(Z). (2.5)
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In practice, measurement error is inevitable and the observed data d may not match the
true value of dt. Assuming additive observational errors, we have

d=dt +e=G(Z)+e, (2.6)

where e∈R
nd are mutually independent random variables with probability density func-

tions π(e) = ∏
nd
i=1π(ei). We make the usual assumption that e are also independent of

Z.
The present Bayesian inference problem is concerned with estimating the parameters

Z given a set of observations d. To this end, Bayes’ rule takes the form

π(z|d)=
π(d|z)π(z)∫
π(d|z)π(z)dz

, (2.7)

where π(z) is the prior probability density of Z; π(d|z) is the likelihood function; and
π(z|d), the density of Z conditioned on the data d, is the posterior probability density of Z.
For notational convenience, we will use πd(z) to denote the posterior density π(z|d) and
L(z) to denote the likelihood function π(d|z). That is, (2.7) can be written as

πd(z)=
L(z)π(z)∫
L(z)π(z)dz

. (2.8)

Following the independence assumption on the measurement noise e, the likelihood
function is

L(z),π(d|z)=
nd

∏
i=1

πei
(di−Gi(z)). (2.9)

3 Algorithm

In this section we describe a stochastic collocation scheme, based on generalized polyno-
mial chaos (gPC) expansions, for the Bayesian solution of the inverse problem (2.7).

3.1 Generalized polynomial chaos

The generalized polynomial chaos (gPC) is an orthogonal polynomial approximation to
random functions. Without loss of generality, in this subsection we describe the gPC
approximation to the forward problem (2.5) for nd =1. When nd >1 the procedure will be
applied to each component of G and is straightforward.

Let i = (i1,··· ,inz)∈ N
nz
0 be a multi-index with |i|= i1+···+inz , and let N ≥ 0 be an

integer. The Nth-degree gPC expansion of G(Z) is defined as

GN(Z)=
N

∑
|i|=0

aiΦi(Z), (3.1)
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where

ai =E[G(Z)Φi(Z)]=
∫

G(z)Φi(z)π(z)dz, (3.2)

are the expansion coefficients, E is the expectation operator, and Φi(Z) are the basis func-
tions defined as

Φi(Z)=φi1(Z1)···φinz
(Znz), 0≤|i|≤N. (3.3)

Here φm(Zk) is the mth-degree one-dimensional orthogonal polynomial in the Zk direc-
tion satisfying, for all k=1,··· ,nz,

Ek [φm(Zk)φn(Zk)]=
∫

φm(zk)φn(zk)π(zk)dzk =δm,n, 0≤m,n≤N, (3.4)

where the expectation Ek is taken in terms of Zk only and the basis polynomials have been
normalized. Consequently {Φi(Z)} are nz-variate orthonormal polynomials of degree up
to N satisfying

E
[
Φi(Z)Φj(Z)

]
=

∫
Φi(z)Φj(z)π(z)dz=δi,j , 0≤|i|,|j|≤N, (3.5)

where δi,j = ∏
nz

k=1 δik,jk . From (3.4), the distribution of Zk will determine the polynomial
type. For example, Hermite polynomials are associated with the Gaussian distribution,
Jacobi polynomials with the beta distribution, Laguerre polynomials with the gamma
distribution, etc. For a detailed discussion of these correspondences and their resulting
computational efficiency, see [28].

Following classical approximation theory, the gPC expansion (3.1) converges when
G(Z) is square integrable with respect to π(z), that is,

‖G(Z)−GN(Z)‖2
L2

πZ
,

∫
(G(z)−GN(z))2π(z)dz→0, N→∞. (3.6)

Furthermore, the rate of convergence depends on the regularity of G such that

‖G(Z)−GN(Z)‖L2
πZ
≤CN−α, (3.7)

where C is a constant independent of N, and α > 0 depends on the smoothness of G.
When G is relatively smooth, the convergence rate can be large. This implies that a rela-
tively low-degree expansion can achieve high accuracy and is advantageous in practical
stochastic simulations. Many studies have been devoted to the convergence properties of
gPC, numerically or analytically, and the computational efficiency of gPC methods. See,
for example, [2, 8, 15, 28, 29].

3.2 Stochastic collocation

In the pseudo-spectral stochastic collocation method [25], an approximate gPC expansion
is sought, similar to (3.1), in the following form,

G̃N(Z)=
N

∑
|i|=0

ãiΦi(Z), (3.8)
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where the expansion coefficients are obtained by

ãi =
Q

∑
m=1

G(Z(m))Φi(Z(m))w(m), (3.9)

where Z(m) =(Z
(m)
1 ,··· ,Z(m)

nz
) are a set of nodes and w(m) are the corresponding weights

for m=1,··· ,Q, of an integration rule (cubature) on R
nz such that

ãi ≈
∫

G(z)Φi(z)π(z)dz= ai . (3.10)

The expansion of (3.8) thus becomes an approximation to the exact expansion (3.1); that
is,

G̃N(Z)≈GN(Z).

The difference between the two expansions is the so-called “aliasing error” [25] and is
induced by the error of using the integration rule in (3.9). If a convergent integration rule
is employed such that

lim
Q→∞

ãi = ai, ∀i,

then

lim
Q→∞

G̃N(Z)=GN(Z), ∀Z, (3.11)

and convergence of G̃N to the exact forward model G follows naturally,

∥∥∥G(Z)−G̃N(Z)
∥∥∥

2

L2
πZ

→0, N→∞, Q→∞. (3.12)

A prominent feature of the pseudo-spectral collocation method is that it only requires
simulations of the forward model G(Z) at fixed nodes Z(m),m=1,··· ,Q, which are uncou-
pled deterministic problems with different parameter settings. This significantly facili-
tates its application in practical simulations, as long as the aliasing error is under control.
For detailed presentation and analysis, see [25].

3.3 gPC-based Bayesian algorithm

In the gPC-based Bayesian method, we use the approximate gPC solution (3.8) to replace
the exact (but unknown) forward problem solution (3.1) in Bayes’ rule (2.8) and define
the following approximate posterior probability,

π̃d
N(z)=

L̃N(z)π(z)∫
L̃N(z)π(z)dz

, (3.13)
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where π(z) is again the prior density of Z and L̃N is the approximate likelihood function
defined as

L̃N(z), π̃N(d|z)=
nd

∏
i=1

πei
(di−G̃N,i(z)), (3.14)

where G̃N,i is the i-th component of G̃N.

The advantage of this algorithm is that, upon obtaining an accurate gPC solution G̃N,
dependence on the random parameters Z is known analytically (in polynomial form).
Subsequently, the approximate posterior density π̃d

N of (3.13) can be evaluated at arbi-
trary values of z and for an arbitrarily large number of samples, without resorting to
additional simulations of the forward problem. Very high accuracy in sampling the pos-
terior distribution can thus be achieved at negligible computational cost. Combined with
an efficient forward problem solver employing gPC collocation, this scheme provides a
fast and accurate method for Bayesian inference.

4 Convergence study

To establish convergence of the gPC-based Bayesian algorithm, we quantify the differ-
ence between the approximate posterior π̃d

N and the exact posterior πd via Kullback-
Leibler divergence. The Kullback-Leibler divergence (KLD) measures the difference be-
tween probability distributions and is defined, for probability density functions π1(z)
and π2(z), as

D(π1‖π2),
∫

π1(z)log
π1(z)

π2(z)
dz. (4.1)

It is always non-negative, and D(π1‖π2)=0 when π1 =π2.
Similar to (3.13), we define πd

N as a posterior density obtained in terms of the exact
Nth-degree gPC expansion (3.1). That is,

πd
N(z)=

LN(z)π(z)∫
LN(z)π(z)dz

, (4.2)

where LN is the likelihood function obtained by using the exact Nth-degree gPC expan-
sion (3.1),

LN(z),πN(d|Z)=
nd

∏
i=1

πei
(di−GN,i(z)), (4.3)

where GN,i is the i-th component of GN . By the definitions of π̃d
N and πd

N , we immediately

have the following lemma by following the pointwise convergence of G̃N to GN in (3.11).

Lemma 4.1. If G̃N converges to GN in the form of (3.11), i.e.,

lim
Q→∞

G̃N,i(Z)=GN,i(Z), 1≤ i≤nd, ∀Z, (4.4)
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then

lim
Q→∞

π̃d
N(z)=πd

N(z), ∀z, (4.5)

and

lim
Q→∞

D
(

π̃d
N‖πd

N

)
=0. (4.6)

Hereafter we employ the common assumption that the observational error in (2.6) is
i.i.d. Gaussian, and without loss of generality, assume

e∼N(0,σ2
I), (4.7)

where σ>0 is the standard deviation and I is the identity matrix of size nd×nd.

Lemma 4.2. Assume that the observational error in (2.6) has an i.i.d. Gaussian distribution (4.7).
If the gPC expansion GN (3.1) of the forward model converges to G in the form of (3.6), i.e.,

‖Gi(Z)−GN,i(Z)‖L2
πZ

→0, 1≤ i≤nd, N→∞, (4.8)

then the posterior probability πd
N (4.2) converges to the true posterior probability (2.8) in the sense

that the Kullback-Leibler divergence (4.1) converges to zero, i.e,

D(πd
N‖πd)→0, N→∞. (4.9)

Proof. Let

γ=
∫

L(z)π(z)dz, γN =
∫

LN(z)π(z)dz. (4.10)

Obviously, γ > 0 and γN > 0. By following the definitions of the likelihood functions
L(z) (2.9) and LN(z) (4.3) and utilizing the fact that function e−x is (uniformly) Lipschitz
continuous for x≥0, i.e., |e−x−e−y|≤Λ|x−y| for all x,y≥0, where Λ is a positive constant,
we have

|γN−γ|=
∣∣∣∣
∫

(LN(z)−L(z))π(z)dz

∣∣∣∣

≤
nd

∏
i=1

∫
1√

2πσ2

∣∣∣∣∣e
− (di−GN,i (z))2

2σ2 −e
− (di−Gi(z))2

2σ2

∣∣∣∣∣π(z)dz

≤
nd

∏
i=1

∫
Λ

2σ2
√

2πσ2

∣∣(di−GN,i(z))2−(di−Gi(z))2
∣∣π(z)dz

≤
nd

∏
i=1

Λ

2σ2
√

2πσ2
‖GN,i−Gi‖L2

πZ
‖2di−GN,i−Gi‖L2

πZ

≤C1

nd

∏
i=1

‖Gi−GN,i‖L2
πZ

, (4.11)
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where Hölder’s inequality has been used. Note the positive constant C1 is independent
of N. Therefore, by the L2

πZ
convergence of (4.8), we have

γN →γ, N→∞. (4.12)

Also,

πd
N

πd
=

LN

L

γ

γN
=

γ

γN

nd

∏
i=1

πei
(di−GN,i)

πei
(di−Gi)

=
γ

γN

nd

∏
i=1

exp

(
− (di−GN,i)

2−(di−Gi)
2)

2σ2

)
.

Therefore,

log
πd

N

πd
=− 1

2σ2

nd

∑
i=1

[
(di−GN,i)

2−(di−Gi)
2
]
+log

(
γ

γN

)
,

and

D(πd
N‖πd)=

1

2σ2γN

nd

∑
i=1

∫
LN(z)

[
(di−Gi)

2−(di−GN,i)
2
]
π(z)dz

+
1

γN

∫
LN(z)log

(
γ

γN

)
π(z)dz

=
1

2σ2γN

nd

∑
i=1

∫
LN(z)

[
(di−Gi)

2−(di−GN,i)
2
]
π(z)dz+log

γ

γN
. (4.13)

Since both γ >0 and γN >0 are constants and LN(z) is bounded, i.e., 0< LN(z)≤C2, we
obtain immediately

D(πd
N‖πd)≤ C2

2σ2γN

nd

∑
i=1

∫ ∣∣(di−GN,i)
2−(di−Gi)

2
∣∣π(z)dz+

∣∣∣∣log
γ

γN

∣∣∣∣

≤ C3

2σ2γN

nd

∑
i=1

‖Gi−GN,i‖L2
πZ

+

∣∣∣∣log
γ

γN

∣∣∣∣. (4.14)

Again, the Hölder inequality has been used. The first term converges by following (4.8).
Along with (4.12), the convergence (4.9) is established.

Lemma 4.3. Assume the convergence of GN,i takes the form of (3.7), i.e.,

‖Gi(Z)−GN,i(Z)‖L2
πZ
≤CN−α, 1≤ i≤nd, α>0, (4.15)

where the constant C is independent of N, and let γ and γN be defined as in (4.10). Then, for
sufficiently large N,

∣∣∣∣
γ

γN
−1

∣∣∣∣≤
CγN−α·nd

1−CγN−α·nd
∼N−α·nd ,

∣∣∣∣log
γ

γN

∣∣∣∣≤
∣∣log

(
1−CγN−α·nd

)∣∣∼N−α·nd . (4.16)
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Proof. By using (4.11) and (4.15), we immediately have

|γN−γ|≤C4N−α·nd , (4.17)

where the constant C4 >0 is independent of N. To prove the inequality (4.16), we divide
the above inequality by γ and require N to be sufficiently large such that

0<1−CγN−α·nd ≤ γN

γ
≤1+CγN−α·nd ,

where Cγ =C4/γ is independent of N. The inequality (4.16) is then straightforward.

Theorem 4.1. Assume that the observational error in (2.6) has an i.i.d. Gaussian distribution
(4.7) and the gPC expansion GN (3.1) of the forward model converges to G in the form of (4.15),
then for sufficiently large N

D(πd
N‖πd). N−α. (4.18)

Proof. The proof of (4.18) starts from (4.14). By slightly rewriting (4.14), we have

D(πd
N‖πd)≤ C3

2σ2γ

γ

γN

nd

∑
i=1

‖GN,i−Gi‖L2
πZ

+

∣∣∣∣log
γ

γN

∣∣∣∣

≤ C3

2σ2γ

(
1+

∣∣∣∣
γ

γN
−1

∣∣∣∣
) nd

∑
i=1

‖GN,i−Gi‖L2
πZ

+

∣∣∣∣log
γ

γN

∣∣∣∣. (4.19)

We then establish (4.18) by following (4.15) and (4.16).

The result indicates that the asymptotic convergence rate of the posterior distribu-
tion πd

N to πd, measured by Kullback-Leibler divergence, is at least the same as the L2
πZ

convergence rate of the forward model GN(Z) to G(Z). This result is based on the as-
sumptions of Gaussian measurement noise and mean-square integrability of G and GN

but not continuity. Therefore while the convergence rate of the forward model can be a
sharp estimate, the rate (4.18) may not be, and in practice one may see convergence faster
than (4.18). Nevertheless, we immediately have

Corollary 4.1. If ‖GN−G‖L2
πZ

converges to zero exponentially fast for sufficiently large

N, then D(πd
N‖πd) converges to zero exponentially fast for sufficiently large N.

Finally we have the convergence of π̃d
N to πd.

Theorem 4.2. If the convergence of GN is in the form of (4.8) and that of G̃N is in the form of
(4.4), then the posterior density π̃d

N converges to the true posterior density πd in the sense that
the KLD converges, i.e.,

D
(

π̃d
N‖πd

)
→0, N→∞, Q→∞. (4.20)
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Proof.

D
(

π̃d
N‖πd

)
=

∫
π̃d

N(z)log
π̃d

N(z)

πd(z)
dz

=
∫

π̃d
N(z)log

π̃d
N(z)

πd
N(z)

dz+
∫

π̃d
N(z)log

πd
N(z)

πd(z)
dz

= D
(

π̃d
N‖πd

N

)
+

∫
πd

N(z)log
πd

N(z)

πd(z)
dz+

∫
(π̃d

N(z)−πd
N(z))log

πd
N(z)

πd(z)
dz

= D
(

π̃d
N‖πd

N

)
+D

(
πd

N‖πd
)
+

∫
(π̃d

N(z)−πd
N(z))log

πd
N(z)

πd(z)
dz. (4.21)

All three terms converge to zero when N → ∞ and Q → ∞, following Lemma 4.1 and
Lemma 4.2.

5 Numerical examples

In this section we provide numerical examples to verify our theoretical findings and
demonstrate the efficacy of the stochastic collocation approach to Bayesian inference.

5.1 Burgers’ equation

We consider the viscous Burgers’ equation which, under proper conditions, exhibits su-
persensitivity to a random boundary condition [30]:

ut+uux =νuxx, x∈ [−1,1]

u(−1)=1+δ(Z), u(1)=−1.

Here δ(Z) > 0 is a small perturbation to the left boundary condition and ν > 0 is the
viscosity. At steady state, this system has an exact solution,

u(x,Z)= tanh

[
A

2ν
(x−zex)

]
, (5.1)

where zex is the location of the “transition layer,” defined as the zero of the solution profile
u(x= zex)=0, and A is given by the slope at zex:

−A=
∂u

∂x

∣∣∣∣
x=zex

.

With boundary conditions specified in (5.1), A and zex may be obtained by solving a
nonlinear system of equations. Details are provided in [30].

We now pose a simple one-parameter inverse problem: given noisy observation(s)
of the steady-state transition layer location zex, what is the initial perturbation δ? In the
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Bayesian setting, we seek the posterior density of δ conditioned on observations di =
zex+ei,i = 1···nd. The measurement noise is assumed to be Gaussian, ei ∼ N(0,σ2) with
σ = 0.05. The prior distribution on δ is chosen to be uniform between 0 and an upper
bound δmax =0.1. For convenience, we transform the problem to

Z=2δ/δmax−1,

such that the prior distribution on Z is U(−1,1). The forward model G then maps Z to
zex. (Note that because the definition of zex does not have an explicit closed formula, a
gPC Galerkin approximation is impossible to obtain.)

Using a gPC expansion consisting of Legendre polynomials in Z, the pseudo-spectral
stochastic collocation procedure yields an approximation G̃N(Z) to the forward model.
This approximation then defines a posterior probability density π̃d

N(z), as described in
Section 3.3. For comparison, we also compute the exact posterior density πd(z) using the
exact forward model G. Fig. 1 shows the resulting densities at two values of the viscosity
ν. In both cases, nd = 5 observations were used to estimate δ; these observations are
independent random perturbations to the zex resulting from a “true” value of δ=0.5.

Posterior probability densities in Fig. 1(a)-(b) are non-Gaussian, reflecting the non-
linearity of the forward model. A lower value of the viscosity, ν = 0.05, results in a
broader posterior density than the larger value ν = 0.10. This phenomenon is a result
of the steady-state solution profile steepening as viscosity decreases. Given a fixed range
on δ, the resulting distribution of transition layer locations tightens with smaller ν [30];
conversely, given a fixed observational error in zex, a wider range of δ values correspond
to transitions that fall near the center of the observational distribution—thus spreading
the posterior probability density over a wider range of δ. In both cases, however, the
approximate posterior densities π̃d

N(z) approach the exact density with increasing gPC
order N.

Convergence of the posterior with respect to polynomial order is analyzed more
quantitatively in Fig. 2. Again, results are shown for ν = 0.05 and ν = 0.10. We plot
the L2 error in the forward model,

‖G−G̃N‖2
L2

πZ

,

and the Kullback-Leibler divergence of the exact posterior from the approximate poste-
rior, D(π̃d

N‖πd). A large number of collocation points (Q = 800) are employed so that
aliasing errors are well-controlled, particularly since results are computed at high order.
Since the forward model is smooth, we find the expected exponential convergence of G̃N

to G at large N. We also observe exponential convergence of the Kullback-Leibler di-
vergence at large N. (Dashed lines show log-linear fits at large N.) Moreover, we find
that the posterior Kullback-Leibler divergence converges somewhat faster than the L2 er-
ror in the forward model, thus exceeding the (minimal) convergence rate guaranteed by
Theorem 4.1.
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Figure 1: Posterior probability density of δ, the boundary condition of Burgers’ equation, conditioned on
observations of the transition layer location. Dash-dotted and dashed lines correspond to approximate posteriors
π̃d

N with gPC order N =4 and N =8, respectively; solid line is the exact posterior πd.

5.2 Discontinuous forward model

The Burgers’ example above yields a transition layer location z that, while nonlinear, is an
infinitely smooth function of the input random parameter Z. For contrast, we consider a
forward model whose output depends discontinuously on the input parameter. A simple
but illustrative case is the step function H(z) defined on [−1,1],

H(Z)=

{
0, Z∈ [−1,0],
1, Z∈ (0,1].

(5.2)

We take H to be our forward model (i.e., we put G(Z) = H(Z)) and use a single ob-
servation d = G(ztrue)+e to define a posterior density πd(z). As before, e is Gaussian;
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Figure 2: Convergence of the forward model and the posterior density for boundary-condition inversion of
Burgers’ equation, with respect to gPC order N. Lines marked with squares show L2 error in the gPC forward

model, ‖G−G̃N‖2
L2

πZ

; lines marked with circles show Kullback-Leibler divergence of the exact posterior from the

approximate posterior, D(π̃d
N‖πd).

e ∼ N(0,σ2) with σ = 0.1. The prior distribution on Z is uniform on the entire domain
[−1,1]. The original input ztrue =0.2, and thus we expect most posterior probability to lie
on the right half of the domain.

Pseudo-spectral stochastic collocation is used to construct a Legendre polynomial
chaos approximation to the forward model GN(Z). Fig. 3(a) shows the forward model
approximation at N = 9. Oscillations characteristic of Gibbs’ phenomena are observed;
these are expected, given the discontinuity in the exact forward model. Fig. 3(b) shows
the corresponding posterior density π̃d

N ; here, the oscillations of the approximate forward

model G̃N are inherited and indeed amplified by the nonlinearity of the Gaussian density
of e.
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Figure 3: Exact and approximated forward model and posterior density for a step-function G(Z), using gPC
stochastic collocation with N =9.

Fig. 4 shows convergence of the forward model and posterior with respect to gPC
order: we plot the L2 error in the forward model, ‖G−G̃N‖2

L2
πZ

, and the Kullback-Leibler

divergence of the exact posterior from the approximate posterior, D(π̃d
N‖πd). Q = 600

collocation points are employed. Convergence is algebraic, since the forward model is
not smooth. But the convergence rate of the Kullback-Leibler divergence still exceeds
that of the L2 error in the forward model, consistent with Theorem 4.1.

5.3 Genetic toggle switch

A larger-scale example is given by the kinetics of a genetic toggle switch, first synthe-
sized in [7] and studied numerically in [25]. The toggle switch consists of two repressible
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Figure 4: Errors in the forward model and posterior density approximations for a step-function G(Z), as a
function of gPC order N.

promotors arranged in a mutually inhibitory network: promoter 1 transcribes a repressor
for promoter 2, while promoter 2 transcribes a repressor for promoter 1. Either repres-
sor may be induced by an external chemical or thermal signal. Genetic circuits of this
form have been implemented on E. coli plasmids, and the following differential-algebraic
(DAE) model has been proposed [7]:

du

dt
=

α1

1+vβ
−u,

dv

dt
=

α2

1+wγ
−v,

w=
u

(1+[IPTG]/K)η . (5.3)

Here u is the concentration of the first repressor and v is the concentration of the second
repressor; α1 and α2 are the effective rates of synthesis of the repressors; γ and β represent
cooperativity of repression of promotors 1 and 2, respectively; and [IPTG] is the concen-
tration of IPTG, the chemical compound that induces the switch. Parameters K and η
describe binding of IPTG with the first repressor. At low values of [IPTG], the switch is
in the ‘low’ state, reflected in low values of v; conversely, high values of [IPTG] lead to
strong expression of v. Experimental measurements [7] of steady-state expression levels
v(t=∞) are reproduced in Fig. 5. Observations over a wide range of IPTG concentrations
clearly reveal the two-state behavior of the switch.

Values of the six parameters Zθ =(α1,α2,β,γ,η,K)∈R
6 are highly uncertain. Nominal

values were estimated in [7], but here we compute the joint posterior probability density
of these parameters from experimental data. This density will reflect not only nominal
values (e.g., mean or maximum a posteriori estimates), but variances, correlations, and
any other desired measure of uncertainty in the parameter vector Z. Our data consist
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Figure 5: Experimental measurements of steady-state gene expression levels in the toggle switch, reproduced
from [7]. Values are normalized by the mean expression level at the largest concentration of IPTG, and corre-
spond to v(t=∞) in (5.3).

of normalized steady-state values of v at selected IPTG concentrations.† We choose one
IPTG concentration on the ‘low’ side of the switch and five IPTG concentrations on the
‘high’ side. For the purpose of the present demonstration, we avoid IPTG values imme-
diately around the transition region, as the DAE state there exhibits bimodality over the
range of the prior, which is not efficiently captured by a global gPC expansion.

The experimental error is assumed Gaussian and zero-mean, but with a standard
deviation that depends on whether the expression level is low or high: σlow = 4×10−5,
σhigh=5×10−3. This simplified error model is consistent with experimental observations.
Priors are uniform and independent for each parameter, centered at the nominal values
θ̄ suggested by Gardner et al. in [7]. In other words, we have

Zθ,i = θ̄i (1+ςiZi) ,

where Z is a vector of six uniform random variables, Zi ∼U(−1,1). The entries of ς are
(0.20,0.15,0.15,0.15,0.30,0.20).

Since the dimension of the problem (nz = 6) renders a tensor-product formula im-
practical, we use sparse grid stochastic collocation to construct a gPC approximation
GN(Z) of the forward model over the support of the prior. In particular, we employ a
Smolyak algorithm based on a one-dimensional Clenshaw-Curtis quadrature rule [20,25].
The resulting 6-dimensional posterior distributions clearly cannot be visualized directly;
rather, we must simulate samples from the posterior using Markov chain Monte Carlo
(MCMC) [9]. Because the posterior distribution contains strong correlations among com-
ponents of Z, along with differing scales of variability and sharp bounds, it is advan-
tageous to use an adaptive MCMC algorithm. We thus employ the delayed-rejection
adaptive Metropolis (DRAM) scheme of Haario et al. [10].

†Experimental data are courtesy of T. S. Gardner.
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Figure 6: 1-D and 2-D posterior marginals of parameters in the differential-algebraic model of a genetic toggle
switch, conditioned on experimental data using the full forward model (i.e., with no gPC approximation).

α1 140 160 180
0.005

0.01

0.015

0.02

α2 140 160 180

15.8

15.9

16

15.8 15.9 16
0

2

4

6

8

10

β 140 160 180

2.2

2.4

2.6

2.8

15.8 15.9 16

2.2

2.4

2.6

2.8

2.2 2.4 2.6 2.8
0

0.5

1

1.5

2

γ 140 160 180
0.85

0.9

0.95

1

1.05

1.1

15.8 15.9 16
0.85

0.9

0.95

1

1.05

1.1

2.2 2.4 2.6 2.8
0.85

0.9

0.95

1

1.05

1.1

0.9 1 1.1
0

5

10

15

η 140 160 180

1.6

1.8

2

2.2

2.4

2.6

15.8 15.9 16

1.6

1.8

2

2.2

2.4

2.6

2.2 2.4 2.6 2.8

1.6

1.8

2

2.2

2.4

2.6

0.9 1 1.1

1.6

1.8

2

2.2

2.4

2.6

1.5 2 2.5
0

0.5

1

1.5

2

K 140 160 180
2.4

2.6

2.8

3

3.2

3.4

x 10
−5

15.8 15.9 16
2.4

2.6

2.8

3

3.2

3.4

x 10
−5

2.2 2.4 2.6 2.8
2.4

2.6

2.8

3

3.2

3.4

x 10
−5

0.9 1 1.1
2.4

2.6

2.8

3

3.2

3.4

x 10
−5

1.5 2 2.5
2.4

2.6

2.8

3

3.2

3.4

x 10
−5

2.5 3 3.5
x 10

−5

2

4

6

8

10x 10
4

α1 α2 β γ η K

Figure 7: 1-D and 2-D posterior marginals of parameters in the differential-algebraic model of a genetic toggle
switch, conditioned on experimental data using the stochastic collocation Bayesian approach with N =3.
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Figure 8: 1-D and 2-D posterior marginals of parameters in the kinetic model of a genetic toggle switch,
conditioned on experimental data using the stochastic collocation Bayesian approach with N =4.

Posterior distributions for the toggle-switch parameters are shown in Figs. 6-8. Each
figure contains all of the one- and two-parameter marginal densities of πd(z) or π̃d

N(z).
We obtain 3×105 MCMC samples in each case, and use kernel density estimation [12,19]
to construct the marginal densities after discarding a “burn-in” interval of 104 samples.
Fig. 6 shows results of simulation from the exact posterior πd (2.8); these are obtained
by applying MCMC with the exact forward model G(Z). Fig. 7 depicts the approximate
posterior π̃d

N(Z) with gPC order N=3, using quadrature on a 5-level sparse grid to obtain
the gPC coefficients. Fig. 8 shows π̃d

N(z) with gPC order N = 4, using quadrature on a
6-level sparse grid to obtain the coefficients. Excellent agreement with the true posterior
is observed; indeed, the N = 3 approximation appears sufficient to capture the essential
features of the posterior distribution. We note that some of the parameters are not strictly
identifiable within the prior range, while other parameters (e.g., α2, γ) are endowed with
much sharper posterior bounds on their possible values. Very strong correlation between
α1 and γ is also evident.

A simple check on the efficiency of MCMC sampling is provided by the empirical
autocorrelation at lag s for each component of the Markov chain. Rapid decay of the
autocorrelation is indicative of good “mixing”: MCMC iterates are less correlated, and
the variance of any MCMC estimate at a given number of iterations is reduced [9]. Auto-
correlations for the present DRAM-based MCMC simulations are shown in Fig. 9; while
these plots are specifically for simulation from π̃d

N(z) with N =4, autocorrelation plots at
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Figure 9: Autocorrelation at lag s of each component of the MCMC chain, for Bayesian estimation of parameters
in the genetic toggle switch.

lower N or for simulation from the exact posterior πd are comparable. The decay of γ(s)
suggests that 3×105 samples are sufficient for the present purposes; indeed, essentially
no change in the posterior marginals of Figs. 6-8 is observed with further iterations.

The stochastic collocation Bayesian scheme provides dramatic gains in computational
efficiency. Using N = 3 and a 5-level sparse grid, computing the gPC coefficients takes
1130 sec; this calculation involves forward simulations at 4865 collocation points. Subse-
quently, 467 sec are required to complete 3×105 DRAM iterations. By contrast, the same
number of MCMC iterations on the exact posterior consumes approximately 80000 sec.
We also note that calculation of the gPC coefficients may be considered an “offline” cost,
performed before seeing any data. Restricting comparison to MCMC times alone, the
stochastic collocation Bayesian inference scheme thus provides approximately a factor of
170 in speedup.

6 Conclusions

This paper develops efficient and accurate algorithms for the Bayesian solution of in-
verse problems, using generalized polynomial chaos (gPC) expansions and stochastic
collocation. Given a prior distribution on model parameters or inputs, we use stochas-
tic collocation to construct a gPC approximation of the forward model; gPC expansions
then replace the full forward model in the likelihood function and define an approximate
posterior probability density. The approximate posterior can be evaluated at arbitrary
values of the inputs/parameters and for an arbitrarily large number of samples, at mini-
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mal computational cost.

We prove the convergence of the approximate posterior to the true posterior, in terms
of the Kullback-Leibler divergence (KLD), with increasing gPC order, and obtain an esti-
mate of the rate of convergence. In particular, we show that the asymptotic convergence
rate of the posterior density is at least the same as the L2 convergence rate of the gPC ex-
pansion for the forward solution, and therefore if the gPC representation of the forward
solution converges exponentially fast, so does the posterior density.

Convergence properties of our algorithm are then demonstrated numerically: first
on an infinitely smooth problem involving parameter estimation in the viscous Burgers’
equation, and second with a forward model exhibiting discontinuous dependence on its
input. In both cases, consistency with the predicted convergence rates is obtained. We
then present an example of kinetic parameter estimation from real experimental data, us-
ing stochastic collocation on sparse grids. The latter example shows the utility of sparse
grid constructions for the solution of inverse problems in higher dimensions, and demon-
strates that large computational speedups can be obtained with the present stochastic
collocation Bayesian inference scheme.
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