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Abstract. The scope of this paper is to show how a two-scale asymptotic analysis,
based on a superposition principle, allows us to derive high order approximate bound-
ary conditions for a scattering problem of a time-harmonic wave by a thin and tangen-
tially periodic multi-layered domain. The periods are assumed of the same order of the
thickness. New terms like memory effect and variance-covariance ones are observed
contrarily to the laminar case. As a result, optimal error estimates are obtained.
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1 Introduction

In industrial word, a wide variety of materials are coated or connected by a thin structure.
For example, electronic devices, patch antennas, radar absorbing paints, self-focusing
lens are some illustrations of this situation. Many authors have been devoted to solve
the problem of the coating effect by developing robust methods for approximating the
solution inside the thin layer, see [3, 8, 9, 16, 17, 25–27] and the references therein. Their
main approach consists of constructing an equivalent boundary (or transmission) condi-
tion which is able to memorize the effect of the thin shell in an approximate way. Our
motivation in this paper is to show how this memory effect can be captured in the case
of the scattering of a time-harmonic wave by an obstacle coated by a multi layered thin
periodic domain, the periods are small of same order of the thickness. More precisely,
besides the non commutativity of a two-step procedure, i.e., homogenization for a fixed
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thickness δ followed by an asymptotic analysis for small δ, or vice-versa, it is shown that
neither the one neither the other is able to give an answer in our case. So, inspired from
the two-scale convergence technique [7, 20, 21] which takes full advantage of the period-
icity information, a suitable superposition of test functions oscillating at same order of δ
is used to derive correctly some variance-covariance terms. The idea is similar to the one
used in [24] for rough surfaces when small details are not visible within a standard ho-
mogenization technique. Nevertheless, such an approach leads to a loss of a half power
of δ in the rate of convergence when compared with the case of an homogeneous thin
layer. This loss is due essentially to a compensation rule that keeps traces of some lower
order terms in the proof of the convergence theorem (cf., e.g., [3]). Finally, it is shown
how to optimize it by the use of the simple but clever trick (cf., e.g., [28]) making it possi-
ble to obtain optimal estimates from non-optimal ones and the existence of the ansatz up
to next order only.

In Section 2, a brief description of the model is presented for a 2D situation. In Section
3, a two-scale asymptotic analysis (cf., e.g., [3, 10, 13, 21, 24]) with respect to the thickness
and the period permits to justify the terms in the periodic ansatz proposed and a first
convergence theorem is obtained for the Neumann case. In Section 4, apparently new
to our knowledge, some approximate boundary conditions are derived until the second
order which makes the difference significative with respect to the homogeneous or even
the laminar cases (cf., e.g., [9,29]). Mainly, a convergence result is proved and it is shown
how to optimize it providing more regularity on the data.

2 The model setting

In all what follows, standards tools from the functional analysis of PDE(s) and differential
geometry background are used without comments (cf., e.g., [11, 12, 15]). Let Ωδ,∞ be
an exterior domain in R

2 with boundary Γδ (compact C∞ manifold) such that Ωδ,∞ =
Ω+

δ ∪Γ∪Ω∞. Γ is an interface parallel to Γδ and δ is a non-negative small parameter.
Ω̄+

δ ={x∈Ωδ,∞ : d(x,Γ)≤δ} represents the thin layer of thickness δ and Ω∞ is the exterior
domain to the coated scatterer. Let f ∈ L2(R

2) compactly supported in Ω∞. From now
on, v+ (respectively v−) will denote the restriction of a distribution v defined on Ωδ,∞ to
the subset Ω+

δ (respectively Ω∞). The problem is to find a complex valued distribution
uδ solution of the scattering problem:

∆u−
δ +k2u−

δ =− f , (2.1)

div
(

αδ∇u+
δ

)

+k2βδu+
δ =0, (2.2)

u+
δ

∣

∣

Γ
= u−

δ

∣

∣

Γ
, (2.3)

αδ∂nu+
δ

∣

∣

Γ
= ∂nu−

δ

∣

∣

Γ
, (2.4)

lim
|x|→∞

|x|

(

∇u−
δ .

x

|x|
−iku−

δ

)

=0, (2.5)
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with either a Neumann boundary condition

N : ∂nu+
δ

∣

∣

Γδ
=0 (2.6)

or a Dirichlet condition

D : u+
δ

∣

∣

Γδ
=0 (2.7)

on the scatterer’s boundary. n will designate different unitary outwardly normal vectors
to the corresponding boundaries (oriented all towards the scatterer Ω0 = R

2−Ω̄δ,∞). αδ

and βδ are two regular functions related to the contrast and refractive index properties of
the periodic coating. They are expected to be periodic in the tangential direction with a
small period ǫ=dδ, of the same order of the thickness parameter. Without loss of gener-
ality, one can take d=1. In addition, one assumes the following uniform estimations:

c1≤‖αδ‖L∞(Ω+
δ )≤ c2, (2.8)

0≤‖βδ‖L∞(Ω+
δ )≤ c2, (2.9)

where 0<c1<c2 are two constants independents of δ (sufficiently small). k>0 denotes the
wave number. The relations (2.3) and (2.4) are transmission conditions at the interface
between the thin layer Ω+

δ and the exterior domain Ω∞. Finally, (2.5) is the far field
Sommerfield outgoing radiation condition which will be denoted in all what follows by
S.R.C(·). The system (2.2)-(2.7) describes the scattering of a time-harmonic wave problem
for a TM (or TE) polarization in electromagnetic or a soft (or hard) obstacle in acoustics,
according to the boundary conditions considered in (2.6) or (2.7). Standard techniques
using Rellich lemma and the Fredholm alternative show the existence and uniqueness of
a strong solution in the space H2

loc(Ω̄δ,∞) (see [9, 23, 30]).

3 Two-scale asymptotic analysis

Let us focus our analysis on the Neumann boundary condition, the Dirichlet’s one is
being more straightforward to handle. Using tangential and normal coordinates (s,t)∈
Γ×(0,1) in the tubular manifold Ω+

δ , and the Dirichlet-Neumann operator Sk,ρ associ-
ated to the exterior Helmholtz equation for large radius ρ, one obtains the variational
formulation of the system (2.2)-(2.6) in a fixed and bounded domain as follows:

uδ∈XN ; ∀v∈XN , (3.1a)

δa+
(

δ,u+
δ ,v+

)

+δb+
(

δ,u+
δ ,v+

)

+a−k
(

u−
δ ,v−

)

=
∫

Ω
f v−dx, (3.1b)
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where the bilinear forms

a+ (δ,u,v)=
∫

Γ×(0,1)
αδ

[

(

1+
tδ

R(s)

)−1

∂su∂sv+
1

δ2

(

1+
tδ

R(s)

)

∂tu∂tv

]

dsdt, (3.2)

b+ (δ,u,v)=−k2
∫

Γ×(0,1)
βδ

(

1+
tδ

R(s)

)

uvdsdt, (3.3)

a−k (u,v)=
∫

Ω
∇u∇vdx−k2

∫

Ω
uvdx+

〈

Sk,ρu,v
〉

− 1
2 , 1

2 ,Σ
(3.4)

are defined on the Hilbert space

XN =
{

(

v+,v−
)

∈H1(Γ×(0,1))×H1(Ω) : v+ (.,0)=v− Γ
}

.

Σ is the truncation circle of radius ρ and Ω the bounded annular domain delimited by Σ

and Γ. R(s) is the curvature radius of Γ at s. Finally, αδ (s,t) = α(s,t,s/δ) and βδ (s,t) =
β(s,t,s/δ) are some δ-periodic coefficients, i.e. α and β are two functions 1-periodic with
respect to the third variable y=s/δ. Following the authors in [2,9,10], one writes formally
the expansion:

u−
δ (x)=u−

0 (x)+δu−
1 (x)+···+δju−

j (x)+··· , (3.5)

u+
δ (s,t)=u+

0

(

s,t,
s

δ

)

+δu+
1

(

s,t,
s

δ

)

+···+δju+
j

(

s,t,
s

δ

)

+··· , (3.6)

where the terms u+
j are expected to be in the space H1

(

Γ×(0,1) ,H1
# (0,1)

)

, such that the

following mean transmission condition holds:

∫ 1

0
u+

j (.,0,y)dy=u−
j (·) . (3.7)

Let H1
# (0,1)/R

be the space of functions φ in H1(0,1) 1-periodic with respect to y = s/δ

such that
∫ 1

0 φdy = 0. From now on, one will denote by 〈·〉η the arithmetic mean in the

variable η∈ (0,1) of a function, i.e. 〈·〉η =
∫ 1

0
·dη. The main idea in the construction of the

periodic ansatz (3.6) consists in the superposition principle through the splitting

u+
j

(

s,t,
s

δ

)

= û+
j (s,t)+ǔ+

j

(

s,
s

δ

)

(3.8)

in such a way that the cross derivative ∂t∂yu+
j =0. Thus, test functions on Γ×(0,1) must

behave like

v+
δ (s,t)=v+(s,t)+δv+

1 (s,
s

δ
), (3.9a)

v+∈X;v+
1 ∈H1

(

Γ,H1
# (0,1)/R

)

. (3.9b)
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The inverse of (1+tδ/R) can be expanded by the exact relation

(

1+
tδ

R

)−1

=1−δ

(

t

R

)

+···+δj

(

−
t

R

)j

+δj+1

(

− t
R

)j+1

1+ tδ
R

, (3.10)

and plugging formally (3.5), (3.6) and (3.9) in Eq. (3.1), one obtains by taking the mean
on the variable y in (0,1) and matching increasing powers of δ a hierarchy of variational
equations. In so doing, it will be shown that u−

j is the unique solution of the following

scattering problem at order j






























u−
j ∈H1

loc(Ω̄∞),

∆u−
j +k2u−

j =− f j : D′(Ω∞),

∂nu−
j = Nj

(

u−
0 ,u−

1 ,··· ,u−
j−1

)

: D′(Γ),

S.R.C
(

u−
j

)

,

(3.11)

where f0 = f and f j = 0 for j ≥ 1. The operators Nj involves tangential derivatives and
will be determined (see [9] for the non periodic case) with the help of the following two
lemmas.

Lemma 3.1. Let, p,g∈ L2 (Γ×(0,1)) such that ∂sg∈ L2 (Γ×(0,1)). Then the solution l of the
following variational equation:







Lφ+ =
∫

Γ×(0,1) l∂tφ
+dsdt+

∫

Γ×(0,1)(g∂sφ
++pφ+)dsdt=0,

∀φ+∈H1
0,Γ(Γ×(0,1))

dé f
=
{

φ+∈H1(Γ×(0,1)) : φ+(.,0)=0, Γ
}

is given explicitly by

l(s,t)=−
∫ 1

t
(p(s,ξ)−∂s g(s,ξ))dξ. (3.12)

In addition, if φ+(.,0) 6=0, then

Lφ+ =−
∫

Γ
l(s,0)φ+(s,0)ds. (3.13)

Lemma 3.2. Let p1,g1∈L2
(

Γ,L2
#(0,1)/R

)

such that ∂sg1∈L2
(

Γ,L2
#(0,1)/R

)

. Then the solution
l1 of the following variational equation:

Lφ+
1 =

∫

Γ×(0,1)
l1∂yφ+

1 dsdy+
∫

Γ×(0,1)
(g1∂sφ

+
1 +p1φ+

1 )dsdy=0 :∀φ+
1 ∈H1

(

Γ,H1
# (0,1)/R

)

is given explicitly by

l1(s,y)= l1(s,0)+
∫ y

0
(p1(s,ξ)−∂s g1(s,ξ))dξ−y〈p1(s,.)−∂sg1(s,.)〉y (3.14)

and l1∈L2
(

Γ,H1
# (0,1)

)

.
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3.1 The hierarchy of variational equations

3.1.1 Determination of u0

Matching terms in δ−1, one gets for any v+∈H1(Γ×(0,1))
∫

Γ×(0,1)
〈α〉y ∂tu

+
0 ∂tv

+dsdt=0. (3.15)

As for the homogeneous case [9], Lemma 3.1 shows with the choice l=〈α〉y ∂tu
+
0 , p=g=0

that
∂tu

+
0 =0. (3.16)

Next, matching the terms in δ0 gives for any (v+,v−)∈XN , v+
1 ∈H1

(

Γ,H1
# (0,1)/R

)

:

∫

Γ×(0,1)

∫ 1

0
α
[

∂tu
+
1 ∂tv

++∂yu+
0

(

∂sv
++∂yv+

1

)]

dydsdt+a−k
(

u−
0 ,v−

)

=
∫

Ω
f v−dx. (3.17)

Choosing test functions v+ =v−=0, one obtains:

∫

Γ

∫ 1

0
〈α〉t ∂yu+

0 ∂yv+
1 dyds=0. (3.18)

Now, Lemma 3.2 gives with the choice l1 = 〈α〉t ∂yu+
0 , p1 = g1 =0:

∂y

(

〈α〉t ∂yu+
0

)

=0 (3.19)

and using the y-periodicity of l1 one obtains the second expected result:

∂yu+
0 =0. (3.20)

Consequently, (3.20) and (3.18) lead to:

u+
0 (s,·,·)=u−

0 (s) :∀s∈Γ. (3.21)

As a result, u−
0 is the unique solution to the scattering problem (3.11) for j = 0 with the

Neumann boundary condition on Γ:

∂nu−
0 =0. (3.22)

Remark 3.1. As expected, at order 0 the effect of the thin layer is completely neglected.
From now on, one will use frequently the elliptic regularity (cf., e.g. [6]) for the Helmholtz

equation ∆v+k2v= g, i.e. for any s≥0, if g∈Hs (Ω) then v∈Hs+ 3
2 (Γ).

As a consequence, if f ∈ L2(Ω) then u−
0 ∈ H

3
2 (Γ) and by virtue of(3.21) one obtains

u+
0 ∈H1

(

Γ×(0,1) ,H1
# (0,1)

)

.
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3.1.2 Determination of u1

Applying Lemma 3.1 to (3.17) one obtains under (3.20) the identity 〈α〉y ∂tu
+
1 =0, i.e.,

∂tu
+
1 =0. (3.23)

As a result, matching terms in δ1 gives for any (v+,v−)∈XN and v+
1 ∈H1

(

Γ,H1
# (0,1)/R

)

∫

Γ×(0,1)

∫ 1

0
α
[

∂tu
+
2 ∂tv

++
(

∂su
−
0 +∂yu+

1

)(

∂sv
++∂yv+

1

)]

dydsdt

−k2
∫

Γ×(0,1)

∫ 1

0
βu−

0 v+dydsdt+a−k
(

u−
1 ,v−

)

=0. (3.24)

Thus, if v−=v+ =0 then
∫

Γ

∫ 1

0
〈α〉t

(

∂su
−
0 +∂yu+

1

)

∂yv+
1 dyds=0. (3.25)

Similarly, Lemma 3.2 shows with the choice l1=〈α〉t

(

∂su−
0 +∂yu+

1

)

, p1=g1=0 that l1(s,.)=
l1(s,0). Next, using the y periodicity of u+

1 and taking the mean in y one obtains directly
the first harmonic-moment in y of the arithmetic one in t of the contrast α, designated by

α0 = 〈1/〈α〉t〉
−1
y , such that

〈α〉t

(

∂su−
0 +∂yu+

1

)

=α0(s)∂su−
0 . (3.26)

Consequently, if v+
1 =0 in Eq. (3.24), then

∫

Γ×(0,1)
〈α〉y ∂tu

+
2 ∂tv

+dsdt+
∫

Γ×(0,1)

〈

α

〈α〉t

〉

y

α0∂su
−
0 ∂sv+dsdt

−k2
∫

Γ×(0,1)
〈β〉y u−

0 v+dsdt+a−k
(

u−
1 ,v−

)

=0. (3.27)

Thus, if v+∈H1
0,Γ (Γ×(0,1)) and v− =0, then

∫

Γ×(0,1)
〈α〉y ∂tu

+
2 ∂tv

+dsdt+
∫

Γ×(0,1)

〈

α

〈α〉t

〉

y

α0∂su
−
0 ∂sv+dsdt

−k2
∫

Γ×(0,1)
〈β〉y u−

0 v+dsdt=0. (3.28)

Hence, Lemma 3.1 with the choice l = 〈α〉y ∂tu
+
2 , p =−k2 〈β〉y u−

0 and g =
〈

α
〈α〉t

〉

y
α0∂su−

0

gives:

l(s,t)=
∫ 1

t

(

∂s

〈

α

〈α〉t

〉

y

α0∂su
−
0 +k2〈β〉y u−

0

)

dξ, (3.29)

l(s,0)=∂sα0∂su−
0 +k2β0u−

0 , (3.30)
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where α0 is recuperated, thanks to the identity 〈α/〈α〉t〉t = 1. The coefficient β0 = 〈β〉y,t

is the first arithmetic moment of β with respect to the two scales y and t. As a result, if
v+(.,0) 6=0, then Eq. (3.24) shows that u−

1 is the unique solution to the scattering problem
(3.11) for j=1 with the Neumann boundary condition on Γ:

∂nu−
1 =∂sα0∂su

−
0 +k2β0u−

0 . (3.31)

From Remark 3.1, if f ∈ H
1
2 (Ω) then u−

0 ∈ H2(Γ), i.e., ∂nu−
1 ∈ L2(Γ) and consequently

u−
1 ∈H1(Ω). The regularity of u+

1 is completed by Eq. (3.26) which gives

∂yu+
1 =

(

α0

〈α〉t

−1

)

∂su
−
0 (3.32)

and with the help of (3.23) u+
1 ∈H1

(

Γ×(0,1),H1
# (0,1)

)

.

Remark 3.2. As in homogenization technique [10], one can evaluates u+
1 in terms of ∂su

−
0

(according to (3.7) and (3.8)) through the decoupling relation u+
1 = u−

1 +w1(s,y)∂su
−
0

where w1 ∈ H1
(

Γ,H1
# (0,1)/R

)

is an auxiliary variable, unique solution of the following
so called basic cell equation at first order in the asymptotic analysis:

∂y

[

〈α〉t

(

1+∂yw1

)]

=0. (3.33)

Nevertheless, this cell equation is not necessary in our analysis since (3.32) gives the
desired decoupling.

3.1.3 Determination of u2

Matching terms in δ2 and using previous properties of u0 and u1 (essentially the relation
(3.26)) gives for any (v+,v−)∈XN and v+

1 ∈H1
(

Γ,H1
# (0,1)/R

)

∫

Γ×(0,1)
〈α〉y

(

t

R(s)
∂tu

+
2 +∂tu

+
3

)

∂tv
+dsdt

+
∫

Γ×(0,1)

∫ 1

0
α

(

−
t

R(s)

α0

〈α〉t

∂su
−
0 +

(

∂su
+
1 +∂yu+

2

)

)

∂sv
+dydsdt

−k2
∫

Γ×(0,1)

(

〈

βu+
1

〉

y
+

t

R(s)
〈β〉y u−

0

)

v+dsdt+a−k
(

u−
2 ,v−

)

+
∫

Γ

∫ 1

0

(

−
α0

R(s)

〈tα〉t

〈α〉t

∂su−
0 +〈α〉t

(

∂su
+
1 +∂yu+

2

)

)

∂yv+
1 dyds

−k2
∫

Γ

∫ 1

0
〈β〉t u−

0 v+
1 dyds=0. (3.34)

Similarly, if v−=v+ =0, then
∫

Γ

∫ 1

0

(

−
α0

R(s)

〈tα〉t

〈α〉t

∂su
−
0 +〈α〉t

(

∂su
+
1 +∂yu+

2

)

)

∂yv+
1 dyds

−k2
∫

Γ

∫ 1

0
〈β〉t u−

0 v+
1 dyds=0. (3.35)
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Now, Lemma 3.2 shows with the choice

l1 =−
α0

R(s)

〈tα〉t

〈α〉t

∂su
−
0 +〈α〉t

(

∂su
+
1 +∂yu+

2

)

, g1 =0, p1 =−k2 〈β〉t u−
0

that l1∈L2
(

Γ,H1
# (0,1)

)

and

l1(s,0)= l1(s,y)−

[

∫ y

0
(p1(s,ξ)−∂sg1(s,ξ))dξ−y〈p1(s,.)−∂sg1(s,.)〉y

]

= 〈α〉t

(

∂su
+
1 +∂yu+

2

)

−
α0

R(s)

〈tα〉t

〈α〉t

∂su
−
0 +k2

(

∫ y

0
〈β〉t dy′−yβ0

)

u−
0 . (3.36)

Moreover,
〈

∂su
+
1

〉

y
= ∂su

−
1 by virtue of (3.7) and (3.23). Then taking the mean in y of

l1(.,0)/〈α〉t gives easily (with the help of the y periodicity of u+
2 )

l1(.,0)

α0
=∂su−

1 −
α0

R(s)

〈

〈tα〉t

〈α〉2
t

〉

y

∂su
−
0 +k2

〈
∫ y

0 〈β〉t dy′−yβ0

〈α〉t

〉

y

u−
0 (3.37)

and with the help of (3.36) and (3.37) one obtains directly

(

∂su
+
1 +∂yu+

2

)

=
α0

〈α〉t

(

∂su
−
1 +

α̃

R(s)
∂su

−
0 −k2 β̃u−

0

)

, (3.38)

where the coefficients α̃ and β̃ are given by

α̃=
〈tα〉t

〈α〉t

−α0

〈

〈tα〉t

〈α〉2
t

〉

y

, (3.39)

β̃=

∫ y
0 〈β(s,·,y′)〉t dy′−yβ0

α0
−

〈
∫ y

0 〈β(s,·,y′)〉t dy′−yβ0

〈α〉t

〉

y

. (3.40)

In other hand,
〈

βu+
1

〉

y
is determined as follow: Integrating (3.32) one obtains u+

1 =u−
1 +

w1(s,y)∂su
−
0 , where

w1 =α0

∫ y

0

dy′

〈α〉t

−y−

〈

α0

∫ y

0

dy′

〈α〉t

−y

〉

y

.

Consequently,
〈

βu+
1

〉

y
= 〈β〉y u−

1 +〈βw1〉y ∂su
−
0 . (3.41)

Now, if v+
1 =0 in Eq. (3.34), then for any v=(v+,v−)∈XN

∫

Γ×(0,1)
〈α〉y

(

t

R(s)
∂tu

+
2 +∂tu

+
3

)

∂tv
+dsdt

+
∫

Γ×(0,1)

∫ 1

0
α

α0

〈α〉t

(

∂su
−
1 +

α′−t

R(s)
∂su

−
0 −k2β′u−

0

)

∂sv
+dydsdt

−k2
∫

Γ×(0,1)

(

〈β〉y u−
1 +〈βw1〉y ∂su

−
0 +

t

R(s)
〈β〉y u−

0

)

v+dsdt+a−k
(

u−
2 ,v−

)

=0. (3.42)
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This last equation is solved for v− =0 by Lemma 3.1 with the choice

l = 〈α〉y

(

t

R(s)
∂tu

+
2 +∂tu

+
3

)

,

p=−k2

[

〈β〉y

(

u−
1 +

t

R
u−

0

)

+〈βw1〉y ∂su−
0

]

,

g=α0

〈

α

〈α〉t

〉

y

∂su
−
1 +

α0

R

〈

(α′−t)α

〈α〉t

〉

y

∂su−
0 −k2α0

〈

αβ′

〈α〉t

〉

y

u−
0

and gives l(s,0)=−
∫ 1

0 (p(s,ξ)−∂s g(s,ξ))dξ, i.e.,

l(s,0)=∂sα0∂su−
1 +k2β0u−

1 +∂s

(

−
α1#

R

)

∂su
−
0 +k2

(

β1

R

)

u−
0

+k2
(

β#∂su
−
0 −∂s

(

Cαβ u−
0

))

, (3.43)

where the coefficients α1#, β1, β# and Cαβ are given by

α1#(s)=α0

〈

α(t− α̃)

〈α〉t

〉

y,t

,

β1(s)= 〈β〉y,t , β#(s)= 〈βw1〉y,t ,

Cαβ(s)=α0

〈

αβ̃

〈α〉t

〉

y,t

,

where α̃ and β̃ are defined in (3.39) and (3.40). As a result, if v− 6=0, then Eq. (3.42) shows
that u−

2 is the unique solution to the scattering problem (3.11) for j=2 with the Neumann
boundary condition on Γ:

∂nu−
2 =∂sα0∂su

−
1 +k2β0u−

1 +∂s

(

−
α1#

R

)

∂su
−
0

+k2

[(

β1

R
−∂sCαβ

)

+
(

β#−Cαβ

)

∂s.

]

u−
0 . (3.44)

Consequently, if f ∈H
3
2 (Ω) then u−

0 ∈H3(Γ), i.e., u−
1 ∈H2(Γ), which leads to ∂nu−

2 ∈L2(Γ).
Thus, u−

2 ∈H1(Ω) and by (3.38) and the regularity of the coefficients α and β, one obtains
u+

2 in H1
(

Γ×(0,1) ,H1
# (0,1)

)

.

Remark 3.3. It is easy to check that in the case of homogeneous layers [9], both Cαβ and
β# are vanishing while α1# and β1are reduced respectively to the first order moments in t
of α and β as obtained in [29]. They seem to outline a major difference, if one compares
(3.44) with the laminar case [16, 29], i.e., ǫ = o(δ). More precisely, one can see them as
memory terms (see magnetization effect in the case of electromagnetism). For example,
if one considers a thin multi-layered domain tangentially periodic, then β# captures the
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memory effect inside each layer while α1# deals with the variance in the periodicity be-
tween the different layers. The coefficient Cαβ represents a covariance term which exists
only when both α and β are periodic.

Remark 3.4. Following Remark 3.2, one can introduce a second order auxiliary vari-
able (according to the superposition principle and the mean transmission condition)
w2 ∈ H2

(

Γ,H1
# (0,1)/R

)

such that u+
2 = w2∂su+

1 +(1−t)u−
2 and w2 will be the solution of

a second order non-homogeneous differential equation so called basic cell equation at
second order in the asymptotic analysis. In fact, these equations are solved implicitly by
Lemma 3.2.

3.2 Convergence analysis for the Neumann case

Due to the unboundedness of the tangential derivatives, the convergence result for the
truncated ansatz

φ
j
δ =u0+δu1+···+δjuj (3.45)

will be stated in the larger Hilbert space

YN =
{

(

v+,v−
)

∈H1
(

0,1,L2(Γ)
)

×H1(Ω) : v+ (·,0)=v− Γ
}

and is based essentially on the stability argument of Bendali-Lemrabet [9].

Theorem 3.1. For any j =0,1,2, there exists a constant c independent of δ and the source term
f , such that:

∥

∥uδ−φ0
δ

∥

∥

Y
≤ cδ

1
2 ‖ f‖0,Ω , (3.46)

∥

∥

∥uδ−φ
j
δ

∥

∥

∥

Y
≤ cδj‖ f‖j− 1

2 ,Ω , j=1,2. (3.47)

Proof. The letter c will denote a generic constant for different estimations. Clearly, the
estimate (3.46) is simpler to establish. Indeed, it will be sufficient to estimate the linear
form defined on XN by

L
(0)
δ v=δa+

(

δ,u+
δ −u+

0 ,v+
)

+δb+
(

δ,u+
δ −u+

0 ,v+
)

+a−k
(

u−
δ −u−

0 ,v−
)

.

Equations verified by uδ and u0 lead directly to

L
(0)
δ v=−δ

∫

Ω+
αδ

(

1+
tδ

R(s)

)−1

∂su
−
0 ∂sv

+dsdt+δk2
∫

Ω+
βδ

(

1+
tδ

R(s)

)

u−
0 v+dsdt. (3.48)

Note that if f ∈L2(Ω) then u0∈XN . Hence, under the uniform estimations (2.8) and (2.9),
there exists a constant c independent of δ (small enough) and f ∈L2(Ω) such that:

∣

∣

∣
L

(0)
δ v
∣

∣

∣
≤ c‖ f‖0,Ω

(

δ
∥

∥∂sv
+
∥

∥

0,Γ×(0,1)
+δ
∥

∥v+
∥

∥

0,Γ×(0,1)

)

. (3.49)
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Afterward, by the following standard argument

∥

∥v+
∥

∥

0,Γ×(0,1)
≤ c
(

∥

∥∂tv
+
∥

∥

0,Γ×(0,1)
+
∥

∥v−
∥

∥

1,Ω

)

, (3.50)

one obtains the desired estimation for j=0, i.e.,
∣

∣

∣
L

(0)
δ v
∣

∣

∣
≤ c‖ f‖0,Ω δ

1
2

(

δ
1
2
∥

∥∂sv
+
∥

∥

0,Γ×(0,1)
+δ−

1
2
∥

∥∂tv
+
∥

∥

0,Γ×(0,1)
+
∥

∥v−
∥

∥

1,Ω

)

. (3.51)

Finally, the proof of (3.46) is achieved by the stability theorem in [9].
Similarly, the inequality (3.47) for j = 1 holds if one estimates the following linear

form defined on XN by

L
(1)
δ v=δa+

(

δ,u+
δ −u+

0 −δu+
1 ,v+

)

+δb+
(

δ,u+
δ −u+

0 −δu+
1 ,v+

)

+a−k
(

u−
δ −u−

0 −δu−
1 ,v−

)

= L
(0)
δ v−δ2a+

(

δ,u+
1 ,v+

)

−δ2b+
(

δ,u+
1 ,v+

)

−δa−k
(

u−
1 ,v−

)

.

Thus, based on the derivation rule ∂s →∂s +
1
δ ∂y and the equations satisfied by uδ, u0 and

u1 (essentially the decoupling relation (3.32)), one obtains

L
(1)
δ v=δ





−
∫

Ω+ αδ

(

1− tδ
R(s)

+···
)

(

∂su
−
0 +∂yu+

1

(

s,t, s
δ

))

∂sv
+dsdt

+k2
∫

Ω+ βδ

(

1+ tδ
R(s)

)

u−
0 v+dsdt−a−k

(

u−
1 ,v−

)





+δ2





−
∫

Ω+ αδ

(

1− tδ
R(s)

+···
)

∂su
+
1

(

s,t, s
δ

)

∂sv
+dsdt

+k2
∫

Ω+ βδ

(

1+ tδ
R(s)

)

u+
1

(

s,t, s
δ

)

v+dsdt



. (3.52)

In the homogeneous case [9], the terms weighted by δ in L
(1)
δ v are reduced to zero because

∂su
−
0 is not coupled with ∂yu+

1 . Nevertheless, although one can control them by the weak
convergence property of oscillating functions to their mean values (cf., e.g., [2]), they
must decrease the rate of convergence of the solution with a loss of a half power in δ as

follow: Let us denote these bad terms of order δ remaining in L
(1)
δ v by

B
(1)
δ v=δ

(

−
∫

Ω+
αδ

(

∂su
−
0 +∂yu+

1

(

s,t,
s

δ

))

∂sv
+dsdt+k2

∫

Ω+
βδu−

0 v+dsdt−a−k
(

u−
1 ,v−

)

)

.

(3.53)
Then, the y-derivative of u+

1 can be handled by writing:

αδ

(

∂su
−
0 +∂yu+

1

(

s,t,
s

δ

))

=
αδ

〈αδ〉t

[

〈αδ〉t

(

∂su−
0 +∂yu+

1

(

s,t,
s

δ

))]

which with the help of relation (3.32) becomes

αδ

(

∂su
−
0 +∂yu+

1

(

s,t,
s

δ

))

=
αδ

〈αδ〉t

α0∂su−
0 .
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Hence

B
(1)
δ v=δ

(

−
∫

Ω+

αδ

〈αδ〉t

α0∂su
−
0 ∂sv

+dsdt+k2
∫

Ω+
βδu−

0 v+dsdt−a−k
(

u−
1 ,v−

)

)

(3.54)

and Eq. (3.27) leads to the compensation rule

B
(1)
δ v=δ

∫

Ω+
〈α〉y ∂tu

+
2 ∂tv

+dsdt+δ
∫

Ω+

[

〈

α

〈α〉t

〉

y

−
αδ

〈αδ〉t

]

α0∂su
−
0 ∂sv

+dsdt

−k2δ
∫

Ω+

[

〈β〉y−β
(

s,t,
s

δ

)]

u−
0 v+dsdt. (3.55)

Now, thanks to the weak convergence of βδ = β(s,t,s/δ) to its mean 〈β〉y and of αδ/〈αδ〉t

to 〈α/〈α〉t〉y in L2(Ω+) and the regularity assumption f ∈ H
1
2 (Ω) which leads to u−

0 in

H1(Γ) and 〈α〉y ∂tu
+
2 in L2(Ω+) (see relation (3.29)), one obtains

∫

Ω+

[

〈

α

〈α〉t

〉

y

−
αδ

〈αδ〉t

]

α0∂su
−
0 ∂sv

+dsdt→0, as δ→0, (3.56)

∫

Ω+

[

〈β〉y−βδ

]

u−
0 v+dsdt→0, as δ→0. (3.57)

Consequently, there exists c>0 such that for any v+∈H1(Ω+), for any ε>0, the following
estimation holds for any δ (sufficiently small):

∣

∣

∣B
(1)
δ v
∣

∣

∣≤ c‖ f‖ 1
2 ,Ωδ

∥

∥∂tv
+
∥

∥

0,Ω+ +ǫδ. (3.58)

Then, taking ε= c‖ f‖ 1
2 ,Ω‖v+‖0,Ω+ strictly positive, one obtains:

∣

∣

∣
B

(1)
δ v
∣

∣

∣
≤ cδ‖ f‖ 1

2 ,Ω

(

∥

∥∂tv
+
∥

∥

0,Ω+ +
∥

∥v+
∥

∥

0,Ω+

)

. (3.59)

The remaining step is straightforward and leads with the help of (3.50) to the estimation:

∣

∣

∣L
(1)
δ v
∣

∣

∣≤ c‖ f‖ 1
2 ,Ω

(

δ2
∥

∥∂sv
+
∥

∥

0,Ω+ +δ
∥

∥∂tv
+
∥

∥

0,Ω+ +δ
∥

∥v−
∥

∥

1,Ω

)

. (3.60)

At this stage, one can see why the rate of convergence is only in δ. Indeed, (3.60) can not
give more than the first order estimation

∣

∣

∣L
(1)
δ v
∣

∣

∣≤ c‖ f‖ 1
2 ,Ω δ

(

δ
1
2

∥

∥∂sv
+
∥

∥

0,Ω+ +δ−
1
2

∥

∥∂tv
+
∥

∥

0,Ω+ +
∥

∥v−
∥

∥

1,Ω

)

(3.61)

which, in fact, achieves the proof of (3.47) for j=1 by the stability theorem in [9]. Finally,
let us sketch the proof of (3.47) for j = 2. As formerly, one must estimate the following
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linear form defined on XN by

L
(2)
δ v=δa+

(

δ,u+
δ −u+

0 −δu+
1 −δ2u+

2 ,v+
)

+δb+
(

δ,u+
δ −u+

0 −δu+
1 −δ2u+

2 ,v+
)

+a−k
(

u−
δ −u−

0 −δu−
1 −δ2u−

2 ,v−
)

= L
(1)
δ v−δ3a+

(

δ,u+
2 ,v+

)

−δ3b+
(

δ,u+
2 ,v+

)

−a−k
(

u−
2 ,v−

)

.

In addition to the results obtained in the previous case, one adds the properties and
equations related to the term u2, uses the derivation rule ∂s → ∂s +

1
δ ∂y for the terms in

(s,t,s/δ) and obtains

L
(2)
δ v= L

(1)
δ v−δ3

∫

Ω+
αδ

(

1−
tδ

R(s)
+···

)(

∂su+
2 +

1

δ
∂yu+

2

)

∂sv
+dsdt

−δ
∫

Ω+
αδ

(

1+
tδ

R(s)

)

∂tu
+
2 ∂tv

+dsdt

+δ3k2
∫

Ω+
βδ

(

1+
tδ

R(s)

)

u+
2 v+dsdt−δ2a−k

(

u−
2 ,v−

)

.

Now, the terms in δk for k<3 (essentially those containing tangential derivatives) become
the bad ones in the case of periodic layers. Fortunately, they are compensated as in (3.55)
in the hierarchy of equations by the weak convergence property but once more at the cost
of a half power of δ in the rate of convergence. At least, it is not worse to take advantage
of this weak convergence together with the properties of u1 and u2 (essentially (3.42) and

(3.43)) and the regularity assumption f ∈H
3
2 (Ω) in order to check that ‖v+‖0,Ω+ still be

weighted by only the lower power δ2 and not more. Doing so and with the help of (3.50)
one obtains the estimation

∣

∣

∣
L

(2)
δ v
∣

∣

∣
≤ c‖ f‖ 3

2 ,Ω

(

δ3
∥

∥∂sv+
∥

∥

0,Ω+ +δ2
∥

∥∂tv
+
∥

∥

0,Ω+ +δ2
∥

∥v−
∥

∥

1,Ω

)

(3.62)

which in turn gives the expected one:
∣

∣

∣
L

(2)
δ v
∣

∣

∣
≤ c‖ f‖ 3

2 ,Ω δ2
(

δ
1
2

∥

∥∂sv
+
∥

∥

0,Ω+ +δ−
1
2

∥

∥∂tv
+
∥

∥

0,Ω+ +
∥

∥v−
∥

∥

1,Ω

)

. (3.63)

Consequently, the proof is terminated by the stability theorem in [9].

4 Neumann approximate boundary conditions

In the truncated ansatz at order j given by (3.45) one replaces each term u−
l by δj−luEN

j

and obtains for the Neumann condition case the following scattering problem for the
unknown uEN

j (referred to Engquist-Nédélec [17])






















uEN
j ∈H1(Ω),

∆uEN
j +k2uEN

j =− f : D′(Ω),

∂nuEN
j +Z

(j)
δ uEN

j =0 : D′(Γ),

∂nuEN
j +SkuEN

j =0 : D′(Σ),

(4.1)
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where
Z

(j)
δ =Z(0)+δZ(1)+···+δjZ(j) (4.2)

is the approximate Dirichlet-Neumann (or impedance boundary) operator at order j re-
lated to the thin periodic layer such that

Z(0) =0, (4.3)

Z(1) =−
(

∂sα0∂s.+k2β0.
)

, (4.4)

Z(2) =∂s

(α1#

R

)

∂s.−k2

[(

β1

R
−∂sCαβ

)

.+
(

β#−Cαβ

)

∂s.

]

(4.5)

and α0, β0, α1#, β1 and β# are the effective-homogenized coefficients of the layer. The

rationale of this model is that the truncated ansatz φ
j−
δ satisfies the same problem (4.1)

excepted for the boundary condition on Γ which is not homogeneous and reads as follows

∂nφ
j−
δ +Z

(j)
δ φ

j−
δ =δj+1ρ

j
δ : D′(Γ), (4.6)

where the right hand side is given by:

ρ0
δ =0, ρ1

δ =−Z(1)u−
1 ,

ρ2
δ =−Z(1)u−

2 −Z(2)
(

u−
1 +δu−

2

)

.
(4.7)

The variational formulation of (4.1) reads as follows (cf., e.g., [19])











uEN
j ∈V(m); ∀v∈V(m),

a−k

(

uEN
j ,v

)

+
j

∑
l=0

δl
(

al
Γ

(

uEN
j ,v

)

+bl
Γ

(

uEN
j ,v

))

=
∫

Ω
f vdx,

(4.8)

where V(m) is the Hilbert space defined by

V(m) =
{

v∈H1(Ω); v|Γ ∈Hm (Γ)
}

: m=0,1 (4.9)

such that m=0,1,1 according to j=0,1,2 and a
(j)
Γ , b

(j)
Γ are some continuous bilinear forms

defined on V(m) as follows

a
(0)
Γ =b

(0)
Γ =0, (4.10)

a
(1)
Γ (u,v)=

∫

Γ
α0∂su∂svds, (4.11)

b
(1)
Γ (u,v)=−k2

∫

Γ
β0uvds, (4.12)

a
(2)
Γ (u,v)=−

∫

Γ

α1#

R
∂su∂svds−k2

∫

Γ

(

β#−Cαβ

)

(∂su)vds, (4.13)

b
(2)
Γ (u,v)=−k2

∫

Γ

(

β1

R
−∂sCαβ

)

uvds. (4.14)
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Remark 4.1. Standard techniques using Rellich Lemma and Fredholm alternative (cf., e.g.
[23,30]) lead (for δ small enough) to the existence and uniqueness of a solution to problem
(4.8). Indeed, the only new term with respect to [9] (in the case of an homogeneous layer)

is the non symmetric one contained in the bilinear form a
(2)
Γ . Fortunately, a dominating

power of δ weights this bilinear form and consequently does not affect the dominant
coercive part in the Fredholm alternative for δ sufficiently small. As a result, the stability
argument in [9] for the problem (4.8) remains true. Consequently, the following theorem
holds.

Theorem 4.1. There exists a constant c independent of δ and the source term f such that the
solution uδ of the variational problem (3.1) and the solution uEN

j of (4.8) satisfies

∥

∥

∥u−
δ −uEN

0

∥

∥

∥

1,Ω
≤ cδ

1
2 ‖ f‖0,Ω , (4.15)

∥

∥

∥
u−

δ −uEN
j

∥

∥

∥

1,Ω
≤ cδj‖ f‖j− 1

2 ,Ω : j=1,2. (4.16)

Proof. Since φ0−
δ =uEN

0 =u−
0 , i.e., ω0

δ =0, (4.15) is a direct consequence of (3.46) obtained
in Theorem 3.1. Next, with the help of (3.47)it will be sufficient to estimate the difference

ω
j
δ =φ

j−
δ −uEN

j for j=1 or 2. Thus, (4.8) and (4.6) give:

a−k

(

ω
j
δ,v
)

+
j

∑
l=0

δl
(

a
(l)
Γ

(

ω
j
δ,v
)

+b
(l)
Γ

(

ω
j
δ,v
))

=ℜ
(j)
δ v, (4.17)

where ℜ
(j)
δ v=δj+1

∫

Γ
ρ

j
δvdx and from the definition of ρ

j
δ in (4.7)

ℜ
(1)
δ v=−δ2

∫

Γ
Z(1)u−

1 vdx,

ℜ
(2)
δ v=−δ3

∫

Γ

[

Z(1)u−
2 +Z(2)

(

u−
1 +δu−

2

)

]

vdx.

Note that if f ∈H j− 1
2 (Ω) then u−

j ∈H1(Γ). Thus, integrating by part on Γ one obtains

ℜ
(1)
δ v=δ2

[

a
(1)
Γ

(

u−
1 ,v
)

+b
(1)
Γ

(

u−
1 ,v
)

]

,

ℜ
(2)
δ v=δ3

[

a
(1)
Γ

(

u−
2 ,v
)

+b
(1)
Γ

(

u−
2 ,v
)

+a2
Γ

(

u−
1 +δu−

2 ,v
)

+b2
Γ

(

u−
1 +δu−

2 ,v
)

]

.

Then, since the bilinear forms a
(j)
Γ and b

(j)
Γ are continuous on V(m), there exists a constant

c independent of δ (small enough) such that:

∣

∣

∣
ℜ

(j)
δ v
∣

∣

∣
≤ cδj+1‖ f‖j− 1

2 ,Ω‖v‖1,Γ .
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Now, following Remark 4.1 one concludes with the help of the stability theorem in [9]

that ω
j
δ satisfies the estimation:

∥

∥

∥
ω

j
δ

∥

∥

∥

1,Ω
≤ cδj+ 1

2 ‖ f‖j− 1
2 ,Ω . (4.18)

Consequently, by the convergence result Theorem 3.1 and the following decomposition:

u−
δ −uEN

j =u−
δ −φ

j−
δ +ω

j
δ, (4.19)

the proof is achieved.

Remark 4.2. Surprisingly, the error estimate (4.18) between the approximate solution

uEN
j and the truncated ansatz φ

j−
δ is optimal then the one obtained in Theorem 3.1 where

a loss of half power in δ was observed in the rate of convergence. This is actually an
advantage for optimizing the error estimate stated in the previous Theorem 4.1 providing
only the existence of the asymptotic expansion at order j+1 (cf., e.g., [28]). For example,
at order j=1 one writes

∥

∥u−
δ −

(

u−
0 +δu−

1

)∥

∥

1,Ω
=
∥

∥u−
δ −

(

u−
0 +δu−

1 +δ2u−
2

)

+δ2u−
2

∥

∥

1,Ω

≤
∥

∥u−
δ −

(

u−
0 +δu−

1 +δ2u−
2

)∥

∥

1,Ω
+δ2

∥

∥u−
2

∥

∥

1,Ω

and consequently, the existence of u−
2 in H1(Ω) (providing, of course, more regularity on

f , i.e. f ∈H
3
2 (Ω)) leads with the help of (3.47) (for j=2) and the independence of

∥

∥u−
2

∥

∥

1,Ω
on δ to the following optimal estimation at order j=1:

∥

∥u−
δ −

(

u−
0 +δu−

1

)∥

∥

1,Ω
≤ cδ2‖ f‖ 3

2 ,Ω .

As a result, (4.16) and (4.19) leads to the optimal error estimate

∥

∥

∥
u−

δ −uEN
1

∥

∥

∥

1,Ω
≤ cδ

3
2 ‖ f‖ 3

2 ,Ω ,

where the half power of δ lost in the rate of convergence in Theorem 3.1 estimation (3.47)
is recuperated.

Remark 4.3. The construction of approximate boundary conditions in the Dirichlet’s case
is more straightforward because of the shifting in the determination of the terms uj (in

fact, matching terms in δj−1 determines completely uj while the next power δj was neces-
sary to achieve this term in the Neumann case). Thus, the new terms involving memory
and variance-covariance effect are not observed until order j=3.
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5 Conclusion

This work is a 2D illustration of the efficiency of the two-scale asymptotic analysis to
deal with a double singular perturbation problem. As a result, this affects the rate of
convergence by a loss of a half power of δ in the case of thin periodic layers. Further-
more, new terms like memory effects and variance-covariance ones are taken into ac-
count within such an approach. The case of an infinite number of thin periodic layers is
self-contained in our analysis. However, the treatment of a thin periodic layer with high
contrast (for example α = o

(

δ−1
)

) requires more investigations, as it is known, even in
the homogeneous case. Nevertheless, the techniques discussed here are useful to derive
effective-homogenized boundary conditions in the case of composite materials, grating,
chirality, etc··· , (cf., [4,5]). Finally, the 3D systems (like full Maxwell’s equations) seems to
be nontrivial and consequently needs to be handled rigorously using such a multi-scale
analysis.
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[5] H. Ammari and J. C. Nédélec, Time-harmonic electromagnetic fields in thin chiral layers,
SIAM J. Math. Anal., 29 (1998), 395-423.

[6] S. Agmon, A. Douglis and L. Niremberg, Estimates near the boundary for solutions of el-
liptic partial differential equations satisfying general boundary conditions. Part II, Comm.
Pure Appl. Math., 25 (1964), 35-92.

[7] G. Alaire, Homogenization and two scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-
1518.

[8] N. Bartoli and A. Bendali, Robust and high order effective boundary conditions for perfectly
conducting scatterers coated by a thin dielectric layer, IMA J. Appl. Math., 67(5) (2002), 479-
508.

[9] A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time harmonic
wave for the Helmholtz equation, SIAM J. Appl. Math., 6(5) (1996), 1664-1693.

[10] A. Bensoussan, J. L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Struc-
tures, North-Holland, Amsterdam, 1978.



776 M. Tlemcani / Commun. Comput. Phys., 6 (2009), pp. 758-776

[11] M. Berger and B. Gostiaux, Differential Geometry: Manifolds, Curves, and Surfaces,
Springer Verlag, New York, 1988.
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