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Abstract. In this paper we analyze a long standing problem of the appearance of spu-
rious, non-physical solutions arising in the application of the effective mass theory to
low dimensional nanostructures. The theory results in a system of coupled eigenvalue
PDEs that is usually supplemented by interface boundary conditions that can be de-
rived from a variational formulation of the problem. We analyze such a system for the
envelope functions and show that a failure to restrict their Fourier expansion coeffi-
cients to small k components would lead to the appearance of non-physical solutions.
We survey the existing methodologies to eliminate this difficulty and propose a simple
and effective solution. This solution is demonstrated on an example of a two-band
model for both bulk materials and low-dimensional nanostructures. Finally, based on
the above requirement of small k, we derive a model for nanostructures with cylindri-
cal symmetry and apply the developed model to the analysis of quantum dots using
an eight-band model.
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1 Introduction

The electronic structure calculation is among the most fundamental problems in modern
science and engineering. While achieving a higher accuracy in the methods for such
calculations remains an important issue, our ability to construct simpler computational
algorithms that would allow us to obtain reliable results in a more efficient and cost-
effective manner is paramount for our progress at the practical level with far reaching
ramifications in technological applications.

From a mathematical point of view, most methodologies for the construction of such
algorithms are based on effective theories where we attempt to reduce the degrees of
freedom and to bridge modelling scales [58, 67]. One such theory, derived with the ap-
plication of the effective mass theorem [84] and known as the multiband effective mass
approximation, provides a fundamental tool in predicting electronic properties of struc-
tures. We are interested in the development of an efficient computational tool for pre-
dicting electronic properties of quantum heterostructures, that is the low-dimensional
(semiconductor) nanostructures where the motion of electrons is restricted, forcing them
into a quantum confinement [33–35, 100]. Examples of such structures include quantum
wells, quantum wires, or quantum dots, where the motion of electrons is restricted in
one, two, or all three directions, respectively. Properties of these small nanocrystals, con-
taining often from a few hundred to a few thousand atoms, are very different from the
same material in bulk, which results in a wide range of their current and potential appli-
cations, from biological tags for proteins to applications in quantum computing, and to a
new generation of optoelectronic devices [63, 65, 66].

The reason for our undertaking stems from the fact that typical characteristic dimen-
sions of nanostructures is ranging between 1 to 100 nm while the characteristic dimen-
sions of atoms are between 0.1 to 0.7nm. Over the last decade, a substantial progress in
the development of atomistic methodologies for handling such structures (including the
device level) has been achieved and we discuss some of the major highlights of this devel-
opment in Section 2.2. However, it is widely understood in the research community that
in many practical situations atomistic approaches remain computationally prohibitive
and the development of simple, often continuum-based, mathematical models and their
efficient computational implementations become very important. This is particularly true
when we have to account for a multiscale nature of the problem (e.g., [28, 59, 61, 64, 67])
and its multiphysics character where several physical fields, such as mechanical, elec-
tric, and/or thermal act simultaneously and we have to deal with coupled problems
(e.g., [29, 40–43, 49–58, 75, 76, 82, 83, 90–94, 101]).

Coupled problems arise frequently in the applications to nanoscience and nanotech-
nology and they bring new challenges at the level of the development of mathematical
models and efficient numerical methodologies for their solution. Such problems are in-
trinsic to the multiband effective mass theory, a major focus of the present paper. In
dealing with (nano)crystals we use the fact of crystal symmetry characterized by the
transformations which in the bulk case leave the structure, and hence its Hamiltonian
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(the energy operator), invariant. The representations of the translation group are charac-
terized by a vector k in the first Brillouin zone of the crystal. The relevance of the k vector
is clearly seen from the Bloch theorem, stating that any solution for a periodic structure
(bulk material) can be represented in the form:

ψnk(r)=exp(ikr)un,k(r), (1.1)

where un,k has the given periodicity. The n in Eq. (1.1) reflects a multiband nature of
the energy operator spectrum and the basic task in the k-space can be formulated as the
determination of this spectrum throughout one Brillouin zone (usually, the first Brillouin
zone). In the case of a nanocrystal this theorem does not apply anymore. Instead, the
wave function can be expanded in terms of Bloch solutions:

ψ(r)=∑
n

∫

cn(k)exp(ikr)un,k(r)d3k, (1.2)

where the integral is over the first Brillouin zone. It turns out that it is advantageous
to rewrite the expansion in term of a specific set of periodic solutions, and the zone-
center solutions un,0 are usually chosen for this purpose. Hence, by using un,k(r) =

∑n′ dnn′(k)un′,0(r), we get:

ψ(r)=∑
n

∫

F̃n(k)exp(ikr)d3kun,0(r)=∑
n

Fn(r)un,0(r), (1.3)

where F̃n(k) = ∑n′ cn′(k)dn′n(k). The idea of the envelope function (EF) based on the
representation (1.3) is a key to a substantial simplification of the original problem in de-
termining properties of the heterostructures. This representation leads to a major ad-
vantage of the EF multiband effective mass methodologies compared to computation-
ally intensive ab initio and atomistic approaches and allows us to extend the energy-
band theory beyond perfectly periodic crystals. Known for bulk materials since 50-ies
(e.g., [2,10,39,81]), this methodology has successfully been extended to situations that al-
low us to treat efficiently lattice-mismatched heterostructures where we frequently have
to deal with two (or more) materials with different properties, both theoretically and
computationally [4–6, 12, 27]. One of the main difficulties in implementing multiband
effective mass models is the appearance of spurious solutions. Although these solutions
are correct solutions of the multiband model in question, they have nothing to do with
the physics of the problem as they are not solutions to the original problem (e.g., [30,31]).

The goal of this paper is twofold. First, we want to highlight the reason for the ap-
pearance of spurious solutions using a simple one dimensional two band model and
give an overview of different approaches for the removal of spurious solutions. Second,
within one of the approaches, the so-called cut-off method, we show how additional sym-
metries can be taken into account. More specifically, we show how a three dimensional
cylindrical symmetric problem can be simplified and demonstrate the effectiveness of the
developed multiband model in applications to quantum dots.



702 B. Lassen, R. V. N. Melnik and M. Willatzen / Commun. Comput. Phys., 6 (2009), pp. 699-729

The structure of the rest of the paper is as follows. In the next section we explain
the main difficulties in applying the effective mass theory to the analysis of nanostruc-
tures and provide an overview of existing methodologies directed to the elimination of
spurious solutions. In this section we also provide the reader with a discussion of the
main approaches in this field to the treatment of interface boundary conditions not only
in the context of effective mass k·p theory, but also for other computationally promising
methods. In Section 3 we give details of the basic model obtained from the generalized
envelope function theory in one dimension, followed by two examples. The first example
is concerned with a stepwise constant crystal potential and deal with the bulk situation.
The second example is concerned with the treatment of a heterostructure where we have
to deal with abrupt interface conditions. This example demonstrates difficulties in the
application of the envelope function theory in practice, connected with the spurious so-
lution phenomenon. We highlight the physical roots of this problem and a computational
procedure to circumvent arising difficulties. In Section 4 we demonstrate this procedure
on an example of cylindrically symmetric systems. The developed multiband model is
applied to the analysis of symmetric quantum dot nanostructures. Conclusions and fu-
ture directions are presented in Section 5.

2 Interface boundary conditions, spurious solutions, and exist-

ing methodologies

As a framework for the discussion we show in Fig. 1 a schematic representation of a
nanoscale heterostructure.

2.1 Regularity of the envelope function

The first question that arises in the context of the model we are considering here is about
the regularity of the envelope function at the interface (the abrupt heterojunction), in

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Barrier Material

Dot Material

Interface

Ω

Figure 1: Schematic picture of a nanoscale heterostructure.
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particular whether this function is continuous or discontinuous. If the Fourier com-
ponents of the envelope function are clustered around the center of the interval where
the problem is considered, then the model is reducible to the standard Sturm-Liouville
eigenvalue problem for the second order differential operator. Otherwise, a higher order
model needs to be considered. Connection rules (or the interface boundary conditions)
are needed to link the solutions from two different regions at the interface. Such rules can
be continuous and represented by certain phenomenological conditions with empirical
coefficients that play the role of material parameters characterizing the interface [86] or
discontinuous, in agreement with traditional concepts. In the first case, the regularity of
the envelope function must be relaxed. In the second case, we usually use bulk proper-
ties for an extrapolation across the interface defining the connection rules which are in
this case discontinuous with the interface width of the order of a lattice constant [14].
Both cases are physically equivalent. Furthermore, the envelope-function theory can be
applied to the analysis of nanostructures even in the latter case [5, 7, 12]. According to
this theory, the solution to the eigenvalue PDE problem

HF=EF, (2.1)

with H being the effective mass Hamiltonian, can be represented in terms of momentum
matrix elements and band gaps, including the interfaces. This is shown by deriving a
set of integro-differential equations for envelope functions and restricting our attention
to the behavior of such functions on the scale larger than the lattice constant by neglect-
ing nonlocal terms. From an experimental point of view, even in the case of large lattice
mismatches, many nanostructures, including nanowire heterostructures, exhibit defect-
free interfaces [11], making such an assumption well justified. In the general case, the
validity of such an approximation in a narrow region near the interface requires, strictly
speaking, linking the proposed approach to atomistic methodologies (these ideas result
in atomitic-to-continuum methods, see more in Section 2.3). Another approach, based on
an averaging procedure around the interface and valid to the order of around 1Å (the
distance between interface atoms) was proposed in [85]. It is important to emphasize
here that the problem of formulating correct interface boundary conditions is not lim-
ited to the effective mass theory and is debated in the literature in the context of other
models in the multiscale hierarchy of mathematical models for nanostructures, e.g. for
pseudopotential-based models as well as for tight-binding models [32] and we provide
more details on this issue in the next section.

As mentioned, the physical reason behind this debate is the fact that the internal struc-
ture of the heterointerface cannot be represented in terms of bulk parameters [86]. This
fact and the required reparametrization due to necessary fittings to experimental data
may lead to difficulties in the formulation of model (2.1) satisfying ellipticity proper-
ties [87]. On the other hand, it is exactly the internal structure of the heterointerface that
leads to unique properties of such nanostructures and lend them wide applicability. Sev-
eral recent approaches have been proposed to overcome the problem in the context of the
effective mass theory based on additional requirements. For example, in [77] the authors
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used the conservation property of probability density to derive boundary conditions for
the envelope functions from the conservation of the current normal to the interface. The
derivation of the variational principle for the effective mass theory model has recently
been discussed in [78] where phenomenological parameters, in addition to the bulk pa-
rameters, are required for the implementation.

2.2 Beyond the k·p theory and boundary conditions

Despite the ever-increasing computational capabilities, the k·p method continues to serve
as an important bandstructure tool and often so in combination with atomistic models for
solving problems of quantum-confined heterostructures. As of today, more than 1500 pa-
pers appear in the literature employing k·p method arguments [36]. Some of the more
recent applications to low-dimensional applications are related to spin-splitting investi-
gations in Si/SiGe quantum-well systems accounting for Rashba-type contributions [69],
computation of electromechanical field interactions in quantum-dot wetting-layer struc-
tures [37, 79], including nonlinear effects [58], and eight-band modelling of quantum-
confined Stark effect in Ge quantum-well structures with implications for electro-optics
[73], to name just a few.

Among other methodologies for bandstructure calculations, we have already men-
tioned here tight binding and empirical pseudopotential methods which often provide
computationally moderate cost alternatives to the k·p approximations. Proposed by
E. Fermi in early 1930s, the concept of pseudopotential has been developed to an impor-
tant bandstructure tool. It is usually based on an (orthogonalized) plane wave expansion
and, as a result, it is most suitable for periodic structures where periodic boundary con-
ditions are assumed. A substantial improvement was introduced in [95] where a ”linear
combination of bulk bands” method was developed. Although the method still requires
periodic supercell conditions in all spatial dimensions, it leads to a substantial compu-
tational speed-up compared to the conventional plane-wave methodologies, allowing to
deal with million atom nanostructures. Other more recent modifications that have further
advantages over the conventional plane-wave-based pseudopotentials for bandstructure
calculations include real-space methodologies [21]. They are often based on local nu-
merical discretizations such as finite differences [70], applied widely for bandstructure
calculations of low dimensional nanostructures [19], and periodic boundary conditions
are not necessary for their implementations [22,71]. First principles and DFT based meth-
ods that use pseudopotentials have been applied for both bandstructure calculations and
the analysis of properties of nanostructures [1,71,96,97]. The pros and cons of these more
refined methodologies have been recently highlighted in [23].

The application of tight-binding methods is computationally quite efficient in the case
of periodic (cyclic) boundary conditions [44], but in the general case the formulation of
boundary conditions is usually a compromise between the accuracy and convergence
properties of the developed method [32, 38].

Boundary conditions for multiband envelope function approximations are not limited
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to periodic. However, due to experimentally fitted parameters the ellipticity conditions
for the corresponding coupled systems of PDEs may be violated, leading to spurious
solutions and in the next section we highlight the main tools available to deal with this
phenomenon.

2.3 Experimental effective masses and spurious solutions

An accurate fit to all experimental effective masses in the multi-band effective mass
Hamiltonian H from model (2.1) may lead to spurious, non-physical solutions that con-
tradict one of the most fundamental physical observations, the existence of a band gap in
these semiconductor materials. It is a long standing problem known from the literature
for quite some time [98]. If all solutions are retained, there are repeated arguments in the
literature that spurious bands have a negligible effect on the bound-state eigenfunction
properties. However, it has been shown that this methodology may lead to the results
that contradict physical observations [13]. Recall that the premises of the effective mass
theory lies with the fact that the model Hamiltonian is accurate in the vicinity of k = 0.
Therefore, the main ideas for eliminating spurious solutions should rely either

• on the manipulations with higher order terms in the Hamiltonian, modifying the
model (e.g., by using k2 terms as in [26]), or

• on rejecting the larger-k solutions as non-physical from the outset (as in [20]).

The first approach is not as easy to implement in practice as we might think. One
reason for that lies with the fact that Hamiltonian modifications should remain invariant
with respect to symmetry operations of the corresponding groups. In what follows, we
base our discussion on the second approach.

Before proceeding further, we mention that for efficient practical implementations it
is important also to choose a basis that is a good approximation to the Bloch waves of
the bulk materials the nanostructure is made of. This can be achieved in several different
ways. For example, we can use an averaging procedure around the interface valid to the
order of the distance between interface atoms and maintain the continuity of the enve-
lope function as we mentioned before [85]. Alternatively, we can keep the discontinuity
across the interface, defining it via the connection rules, and choose an appropriate basis
(by choosing appropriate transformation parameters) such that spurious non-physical
solutions are eliminated [13, 15]. The latter methodology has several advantages. For
example, the matrix of the resulting system of linear equations under this approach is
sparse allowing an efficient computational implementation. This methodology requires
an additional assumption on operator ordering in the Hamiltonian.

In its essence, the multi-band k·p approach, leading to coupled systems of eigenvalue
PDEs problems, is a continuum approach which can be combined with atomistic method-
ologies for complete nanostructure descriptions. Several efficient numerical procedures
for the coupling atomistic and continuum calculations have already been proposed in the
literature [25, 72]. Note also that when we reduce the original eigenvalue PDE problem
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such as (2.1) to an algebraic eigenvalue problem, several non-trivial numerical difficulties
may arise along the way [48]. Now, starting from the multiband effective mass theory in
one dimension, we develop and apply a methodology that allows us to overcome the
spurious solution phenomenon in a simple and efficient manner. Our final result is the
application of the developed multiband method to bandstructure calculations of cylin-
drical quantum dots.

3 Multiband effective mass theory in one dimension

Consider the eigenvalue PDE problem (2.1) for a one dimensional crystalline heterostruc-
ture described by the following Hamiltonian:

H =−
h̄2

2m

∂2

∂x2
+V(x), (3.1)

in some region Ω ⊆ R (see Fig. 1), where m is the free electron mass, h̄ = h/(2π), and
h is Planck’s constant. In this case, as we mentioned in the introductory part, we have
to deal with a multiscale problem where the two length scales are the atomistic and the
heterostructure scales. These scales are contained within the potential V(x) (see Section
3.2 for an example). The idea behind k·p theory is to replace one of these length scales,
namely the atomistic scale, with material specific parameters. In this paper we use the
envelope function theory developed by Burt [5] to achieve this.

Following [4] we start by expanding the wave function ψ in a complete set of periodic
and orthonormal functions Un:

ψ=∑
n

Fn(x)Un(x), (3.2)

where

Fn(x)=
∫ π/a

−π/a
F̃n(k)eikxdk, (3.3)

and a is the length of the period. The completeness of the set Un only relates to functions
with the given periodicity. In effective mass theory the periodicity is usually given by
the principal lattice cell (see Appendix) although this need not be the case. The Fourier
expansion is restricted to the first Brillouin zone only because this ensures uniqueness
of the envelope functions Fn as is seen from the expansion in periodic Bloch functions
in Eq. (1.2) (the first Brillouin zone is in the one dimensional case given by the interval
]−π/a,π/a]). The usual choice of basis is the zone-center solutions un,0 as indicated
in Section 2. Based on this expansion the following infinite set of coupled differential
equations can be derived for the envelope functions [4]:

−
h̄2

2m

∂2Fn

∂x2
(x)+∑

n′

−ih̄

m
pnn′

∂Fn′

∂x
(x)+∑

n′

∫

Ω
Hnn′(x,x′)Fn(x′)dx′ =EFn(x), (3.4)
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where

pnn′ =−ih̄
∫

Ωa

U∗
n(x)

∂Un′

∂x
(x)dx, (3.5)

Hnn′(x,x′)=Knn′δ(x−x′)+Vnn′(x,x′), (3.6)

Knn′ =−
h̄2

2m

∫

Ωa

U∗
n(x)

∂2Un′

∂x2
(x)dx, (3.7)

Vnn′(x,x′)= aU∗
n(x′)V(x′)Un′(x′)∆(x−x′), (3.8)

∆(x)=
1

2π

∫ π/a

−π/a
eikxdk. (3.9)

Here Ωa denotes the region of one period, e.g., ]0,a]. It is worth noting that the non-local
term (the last term on the left of Eq. (3.4)) is a direct consequence of the first Brillouin
zone cut-off. This is most easily seen by writing the set of equations in k-space instead of
real space:

h̄2

2m
k2 F̃n(k)+∑

n′

h̄

m
pnn′kF̃n′(k)+∑

n′

∫ π/a

−π/a
H̃nn′(k−k′)F̃n(k′)dk′ =EF̃n(k), (3.10)

where

H̃nn′(k−k′)=Knn′δ(k−k′)+
a

2π

∫

Ω
U∗

n(x)V(x)Un′(x)e−i(k−k′)xdx. (3.11)

If the integral in the third term on the left of Eq. (3.10) was not restricted to the first
Brillouin zone the equations would be local in real space.

Either of these infinite sets of equations (Eq. (3.4) or Eq. (3.10)) can not be solved
in general so we need to reduce the infinite set to a finite set of equations. This can
in principle be achieved by finding a unitary operator W which block diagonalizes the
problem. To be more specific, let us write Eq. (3.10) in a slightly different form:

∫ π/a

−π/a
Ĥnn′(k,k′)F̃n′(k′)dk′ =EF̃n(k), (3.12)

where

Ĥnn′(k,k′)=

[

h̄2

2m
k2δnn′+

h̄

m
pnn′k

]

δ(k−k′)+H̃nn′(k−k′). (3.13)

We now divide the set Un into two groups, a finite group denoted A which we want to
solve for, and the rest we denote with R, these are called remote bands. We want to find a
unitary operator W so that Hnn′(k,k′)= [W†ĤW]nn′(k,k′)=0 for all k,k′ whenever Un ∈ A
and Un′∈R, where operator multiplication is given by:

[MN]nn′(k,k′)=∑
l

∫ π/a

−π/a
Mnl(k,k′′)Nln′(k′′,k′)dk′′ . (3.14)
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We assume that [MN]nn′(k,k′)<∞ for all n,n′ and k,k′ . In Section 3.2 we give an example
where this requirement is easily seen to be fulfilled. Under the assumption that such a
unitary matrix W exists we can reduce the problem to a finite set of equations. Although
in the general case it is impossible to find W, this procedure suggests an approximation
scheme. We first write W in terms of an operator S given so that W = eS. We then expand
S in terms of a power series with respect to a part of Ĥ assumed to be small. More
specifically, we split Ĥ into two parts, a part assumed to be the main part of Ĥ:

Ĥ0
nn′(k,k′)= H̃nn(0)δnn′δ(k−k′), (3.15)

and the rest Ĥ1
nn′(k,k′)= Ĥnn′(k,k′)−Ĥ0

nn′(k,k′), which is assumed to be small compared
to Ĥ0. For each specific application it is important to verify that Ĥ1 is indeed small com-
pared to Ĥ0. This turns out to be the root of the problem with spurious solutions. We
will come back to this in Section 3.2. Now, we make an expansion around the center of
the first Brillouin zone and write S as:

S=S1+S2+S3+··· , (3.16)

where Si is the term of order i with respect to elements of Ĥ1. Using

e−SHeS = H+[H,S]+
1

2
[[H,S],S]+··· , (3.17)

we can write H in terms of Si collecting terms of a given order in Ĥ1, e.g., to the second
order in Ĥ1:

H = Ĥ0+Ĥ1+[Ĥ0,S1]+[Ĥ1,S1]+[Ĥ0,S2]+
1

2
[[Ĥ0,S1],S1]+··· . (3.18)

We can now choose S1 so that H is block diagonal to the second order in Ĥ1, i.e., we
choose S1 so that:

[Ĥ0,S1]nn′ =−Ĥ1
nn′ , (3.19)

for Un∈A and Un′ ∈R, i.e.,

S1
nn′(k,k′)=

{

Ĥ1
nn′

(k,k′)

H̃n′n′(0)−H̃nn(0)
, for Un∈A and Un′ ∈R,

0, else.
(3.20)

We then choose S2 so that H is block diagonal to the third order in Ĥ1 and so on. Using
this procedure we can reduce the problem to the finite set A to any order in Ĥ1. It is
usual to disregard terms of third and higher orders in Ĥ1 resulting in the following set of
equations:

Hnn′(k,k′)=

[

h̄2

2m
k2δnn′+

h̄

m
pnn′k

]

δ(k−k′)+H̃nn′(k−k′)

+
1

2 ∑
r∈R

(

1

H̃nn(0)−H̃rr(0)
+

1

H̃n′n′(0)−H̃rr(0)

)

∫ π/a

−π/a
Ĥ1

nr(k,k′′)Ĥ1
rn(k′′,k′)dk′′, (3.21)
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Figure 2: Bulk potential.

for Un,Un′∈A, where r∈R stands for Ur∈R. These types of equations are called multiband
equations although they are usually formulated in the form of PDEs, see Section 3.2.

Our final remark here is due to the fact that for problems like ours, we often have
to deal with highly oscillatory integrals. For example, such integrals may arise in the
context of Bessel functions factored in the integrands (see Section 4). Efficient numeri-
cal methodologies for dealing with such highly oscillatory integrals are available in the
literature in both one-dimensional and multi-dimensional cases [24, 45–47, 103, 105].

We will now give two examples of the application of the theory presented in this
section. In the first example we study bulk properties, i.e., we study the simple situation
where the potential is periodic. This serves as a good test example for the application of
mulitband equations as the results can be compared to exact (semi-analytical) solutions.
It also serves as a framework for more difficult problems with heterostructures. In the
second example we investigate a heterostructure for the explicit purpose of showing why
spurious solutions appear. We also provide an example of how such spurious solutions
can be removed.

3.1 Stepwise constant crystal potential in the bulk case

Let us first consider the case where we have a completely periodic potential V(x) given
by a stepwise constant potential (Fig. 2):

V(x)=V0+V1θ(x), (3.22)

where

θ(x)=

{

− 1
2 for a

4 < x< 3a
4 ,

1
2 else,

(3.23)

for x∈[0,a] and then repeated throughout R, i.e., in this example Ω=R. The problem can
in this case be solved semi-analytically in the sense that the solutions are given by zeros
of a transcendental function. The exact solutions are found by using Bloch’s theorem
which in this case states that solutions are given by eikxun,k(x) where un,k(x) are periodic
solutions to the equation:

−
h̄2

2m

∂2un,k

∂x2
(x)−

ih̄2

m
k

∂un,k

∂x
(x)+

h̄2

2m
k2un,k+V(x)uk,n(x)=En,kun,k, (3.24)
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Figure 3: The solid lines show the three first exact dispersion curves and the dots show the dispersion curves
found using the two band model. All results are with V0 =0 eV, V =5 eV and a=5 Å.

the index n is an integer and k is a continuous parameter. This equation can easily be
solved by setting up a set of linear equations for the coefficients of the general solutions
e±ikix in each region with constant potential resulting in a transcendental equation for
the energies En,k. In Fig. 3 we show the band structure for a specific example, i.e., a plot
showing eigen energies as a function of k.

Although we can easily find the exact solutions to this problem, there is still a lot to
be learned by applying the above method. In the case of a periodic potential Eq. (3.11)
reduces to:

H̃nn′(k−k′)=δ(k−k′)
∫ a

0
U∗

n(x)HUn′(x)dx. (3.25)

This suggests that periodic zone center eigen solutions to H will be a good choice for
the periodic basis, i.e., Un =un,0. With this choice H̃nn′(k,k′) is diagonal and the diagonal
elements are given by the periodic eigen energies, i.e.,

H̃nn′(k−k′)=En,0δnn′δ(k−k′), (3.26)

and

Ĥ1
nn′(k,k′)=

[

h̄2

2m
k2δnn′+

h̄

m
pnn′k

]

δ(k−k′). (3.27)

It is clear from this that the elements of Ĥ1
nn′ will be small as long as k is small. In the

general case, the question of how small is a currently unresolved non trivial issue. A
rule of thumb is that k should be within the first 20% of the first Brillouin zone. Using
Eq. (3.27), the multiband equation Eq. (3.21) takes on the simple form:

Hnn′(k,k′)=

[

h̄2

2m
γnn′k2+

h̄

m
pnn′k+En,0δnn′

]

δ(k−k′), (3.28)

where

γnn′ =δnn′+
1

m ∑
r∈R

pnr prn

(

1

En,0−Er,0
+

1

En′,0−Er,0

)

. (3.29)
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If we choose the second and third zone center solutions, i.e., U2 =u2,0 and U3 =u3,0 from
Eq. (3.24), as our set A we get:

(

h̄2

2m γ22k2+E2,0
h̄
m p23k

h̄
m p32k h̄2

2m γ33k2+E3,0

)

(

F̃2(k)
F̃3(k)

)

=E

(

F̃2(k)
F̃3(k)

)

. (3.30)

This would correspond to the valence and conduction band in a semiconductor. The
above multiband equation has the solutions:

E(k)=
1

2

(

h̄2

2m
(γ22+γ33)k2+E2,0+E3,0

)

±
1

2

√

(
h̄2

2m

(

γ22−γ33)k2+E2,0−E3,0

)2
−4

h̄2

m2
p23 p32k2. (3.31)

From the dispersion curves in Fig. 3 we see that the two band model is quite accurate
within most of the first Brillouin zone, although this is by no means always the case,
see, e.g., [15]. Note also that it is not generally possible to evaluate the infinite sum in
Eq. (3.29), so we truncate it to a sufficient set of remote bands (elements of R). Usually we
do not need to include that many remote bands as the denominator ensures that we can
disregard remote bands sufficiently far away in energy from the energies of the set A.

3.2 Heterostructure example

In this section we study the example of a heterostructure consisting of Nb periods of one
material, called the barrier material, and Nw periods of another material, called the well
material, i.e., the potential is given by:

V(x)=(1−θh(x))Vb(x)+θh(x)Vw(x), (3.32)

where Vb(x) and Vw(x) are bulk potentials with different V0 and V values but the same
period length a and

θh(x)=

{

1 for −aNb/2< x< aNb/2,
0 else,

(3.33)

for x ∈ [−a(Nb +Nw)/2,a(Nb +Nw)/2], see Fig. 4 for an example. We impose periodic
boundary conditions on the outside of our structure, i.e., we extend V to Ω=R periodi-
cally and impose Fn(x+NL)= Fn(x) for all N =Z, where L = a(Nb +Nw). Alternatively,

Figure 4: An example of the potential of a heterostructure.
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we could use Dirichlet boundary conditions, however, we are mainly interested in bound
states and they are unaffected (or weakly affected) by boundary conditions sufficiently
far away from the well region. We use periodic boundary conditions in this case because
they are natural for periodic structures as they would ensure translational invariance.

3.2.1 The k·p theory in practice and the appearance of spurious solutions

One of the major reasons for using k·p theory is to be able to use bulk values also in the
case of a heterostructure. The bulk parameters are much easier to determine (either by
ab initio calculations or experiments) than parameters appearing in the equations for a
heterostructure derived above. Also, if bulk parameters can be used, we do not need
to determine heterostructure parameters for each specific structure. For this reason, we
would like to treat each material as a bulk material. This corresponds to working with
different sets of periodic bases for each material and, as a result, the derivation of multi-
band equations needs to be modified, see [18]. Alternatively, bulk multiband models for
the different materials can be used and connected via interface boundary conditions as
discussed in Section 2. Which interface boundary conditions to use is still an active area
of research and we do not enter this discussion here. Instead, we choose to use interface
boundary conditions found using a symmetrization procedure as they serve to highlight
why spurious solutions appear.

The multiband equation that we use is given by:

∑
n′

[

−
h̄2

2m

∂

∂x

(

γnn′(x)
∂

∂x

)

−i
h̄

m

(

δn<n′ pnn′(x)
∂

∂x
+δn′<n

∂

∂x
pnn′(x)

)

+Vn(x)δnn′

]

Fn′(x)

=EFn(x), (3.34)

where δn<n′ = 1 for n < n′ and zero otherwise, n,n′ ∈ A and all parameters are stepwise
constants with the bulk value in each material. Note that for our setup pnn = 0 as the
periodic functions are either even or odd. There is no rigorous way of deriving this
equation and the only arguments for using this specific form is that the set of equations
are Hermitian (ensuring real eigen energies) and it reduces to the bulk equations in the
case of a homogeneous material. There are other ways of deriving multiband equations,
e.g. by using the quadratic response theory [16], however, this is outside the scope of this
article. We only note that under these approaches the problem and the origin of spurious
solutions remain the same as we address here. There are also other forms/choices which
satisfy the same requirements (Hermitian system and reduction to the bulk system for
homogeneous structures) and they are closely linked to the choice of interface boundary
conditions. The interface boundary conditions can be found by integrating over a small
volume around the interface and letting that volume go to zero. In our case the interface
boundary conditions are continuity of

Fn(x) and ∑
n′

[

h̄2

2m

(

γnn′(x)
∂

∂x

)

+i
h̄

m
δn′<n pnn′(x)

]

Fn′(x) (3.35)
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at the interface (continuity of Fn(x) is necessary for the existence of the normal derivative
at the interface). A different choice for the form of Eq. (3.34) would result in different
interface boundary conditions.

Our two band model for a heterostructure is given by:

(

− h̄2

2m
∂

∂x γ22(x) ∂
∂x +V2(x) −i h̄

m p23(x) ∂
∂x

−i h̄
m

∂
∂x p32(x) − h̄2

2m
∂

∂x γ33(x) ∂
∂x +V3(x)

)

(

F2(x)
F3(x)

)

=E

(

F2(x)
F3(x)

)

, (3.36)

where V2 and V3 are given by the zone-center energies. In Fig. 5 we show a sketch of γ22

(the other parameters have a similar x dependence).

It turns out that in some cases the solutions to this kind of multiband equations are
completely incorrect solutions in terms of the original problem (even in the cases where
more accurate interface boundary conditions are used). In Fig. 6a) the energy spectrum
is shown for a specific example. In between the solid lines is the band gap for the well
material, i.e., the region in between bulk zone center energies E2,0 and E3,0. We do not
expect to see solutions in the band gap, so this suggests that the energies highlighted by
a circle are incorrect. In order to check that these solutions are wrong indeed, we have
carried out calculations for the case where a finite but a large number of periodic func-
tions have been used without treating the rest as remote bands, that is we have solved Eq.
(3.10) including a large but finite Un set. We have checked the accuracy of this approach
by doubling the number of Un states and comparing the eigen energies. It turns out that
with a choice of the 10 lowest (in terms of energy) Un, the error in the energies of interest
is less than 0.1% (we refer further to these values, obtained with sufficient accuracy, as
correct). The correct eigen energies are shown in Fig. 6b). From the two figures it is clear
that the energies with a circle around are incorrect solutions. These solutions are known
as spurious solutions as they have nothing to do with the original problem, although they
are correct solutions to the multiband equation.

Our model is, in reality, over-specified. Indeed, the two band model (Eq. (3.36)) to-
gether with periodic boundary conditions and interface boundary conditions (Eq. (3.35))
result in 8 linear independent equations for the 8 unknown coefficients of the general
solutions (4 general solutions in each material region). However, we also have the re-
quirement that the Fourier expansion should be restricted to small k components. It is
this last requirement which is not satisfied for the spurious solutions. In Fig. 7 we show
the envelope function F2 and its Fourier coefficients. We see that the major Fourier com-
ponents are outside the first Brillouin zone. There are two separate issues here. First,
from the exact envelope function theory we have the requirement that the Fourier ex-
pansion of the envelope function should be restricted to the first Brillouin zone to ensure
uniqueness. This is not a major problem, however, as relaxing uniqueness requirements
has been discussed in the literature, see [6]. Second, the assumption that Ĥ1 is small re-
lies heavily on the assumption that only small k components of the envelope functions
are non-zero. This can be seen from the bulk expression (Eq. (3.27)) that is used to de-
rive the differential equations for each separate material (the first and second terms grow
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Figure 5: A schematic picture showing the spatial dependence of γ22.
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Figure 6: The bound states (the energies in the band gap of the barrier material) for a heterostructure consisting
of 20 well and 20 barrier periods. The solid lines show the location of the bulk zone center energies E2,0 and
E3,0 of the well material. The barrier potential is given by Vb0 =0 eV, Vb =5 eV, the well potential is given by

Vw0 = 0 eV, Vw = 3 eV and a = 5 Å. a) The energies calculated using the heuristic two band model. b) The
correct energies.
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Figure 7: a) The real part of the envelope function F2 (the imaginary part is zero). The solid vertical black
lines show the location of the interfaces. b) The real part of the Fourier coefficients of the F2 (the imaginary
part is zero), the solid vertical lines show the boundary of the first Brillouin zone. The same parameters as in
Fig. 6 have been used.
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quadratically and linearly with k, respectively). So if we have non-zero components for
large k values, the procedure used to derive multiband equations breaks down. The rea-
son why the spurious solutions appear is that large k components are needed to satisfy
the interface boundary conditions. So the problem with spurious solutions is that what
would normally be considered a complete set of interface boundary conditions, i.e., 2N
boundary conditions for a N band model, results in an over-specified problem, hence a
reduced set of interface boundary conditions is needed. For approaches along these lines
see, e.g., [20, 77].

Table 1: The energies of the bound states. All energies are in eV. The same parameters as in Fig. 6 have been
used.

Exact Two Band Two Band
with Cut-Off

5.7292
5.8325
5.8405

5.8690 5.8723 5.8723
6.1151
6.1229

6.3643 6.3681 6.3682
6.4042
6.4115

6.5501 6.5546 6.5546
6.6995
6.7062

Another way of getting around this problem is to reformulate the set of coupled equa-
tions in k space and to restrict the problem to the first Brillouin zone (or in some cases
to a smaller region in k space, see [104]). In order to implement this idea, we expand
the solutions in plane waves and make a cut-off beyond a small neighborhood of k = 0,
see, e.g., [104]. In Table 1 we show the energy spectrum found using this approach to-
gether with both the correct energy spectrum and the energy spectrum found using the
two band model. We see that energies found using the cut-off approach have an error of
less than 0.1% compared to the correct energies. This shows that the present approach
combined with plane wave cut-off removes the spurious solutions and gives quite accu-
rate results. In general there are no fixed rules as to choosing the cut-off point. A good
rule of thumb is to make the cut-off before the bulk dispersion curves enter the band gap.
However, this does not ensure that the solutions are accurate as the assumptions behind
k·p theory still fail for large k components even if there are no spurious solutions. In our
case we made the cut-off at the edge of the first Brillouin zone. For more complicated
multiband models, e.g., the eight-band model, the cut-off should be made much sooner.
We will look at this issue further in Section 4.1. In Fig. 8a) we show the correct wave
function together with the wave function found using the two band model with plane
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Figure 8: a) The wave function found using the exact approach (20 bands included) together with the wave
function found using the two band model with plane wave cut-off. b) The difference between the two wave
functions. The same parameters as in Fig. 6 have been used.

wave cut-off. The wave function of the two band model is given by

ψTwoBand(x)=
3

∑
n=2

Fn(x)
[

un,0,b(x)(1−θh(x))+θh(x)un,0,w(x)
]

, (3.37)

where un,0,b(x) are the zone-center solutions for the barrier and un,0,w(x) are the zone-
center solutions for the well. That is, we have taken into account that the periodic bases
are different in the well and the barrier. The correct wave function is given by

ψCorrect(x)=
N

∑
n=1

Fn(x)un,0,b(x), (3.38)

where N is the number of periodic solutions included in the calculations. From Fig. 8a)
it is not easy to see any difference between the two solutions. Hence, in order to quantify
the error introduced by using the two band model with cut-off we also show the differ-
ence between the two (Fig. 8b)). These figures show that the wave function too is well
captured by the two band model with plane wave cut-off. We also note that the difference
between the two solutions is largest close to the interfaces. We have made no attempt to
model the interface more accurately, so this is not surprising. Using a more correct pro-
cedure to model the interface would result in increased accuracy of the two band wave
function around the interfaces.

We point out that by using the cut-off approach we are actually solving a slightly dif-
ferent problem compared to the original two band differential equation (Eq. 3.36). This
is most easily seen by noting that the original interface boundary conditions are not sat-
isfied anymore as the envelope functions within the cut-off approach are smooth and
the interface boundary conditions give rise to discontinuities in the first derivative of the
envelope functions. The ordering of the material dependent parameters, i.e., the inter-
face boundary conditions, is still an issue, however, as different orderings will result in
different k space equations. For example, a term like

−
h̄2

2m

∂

∂x
γ22(x)

∂

∂x
(3.39)
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gives in k space rise to

h̄2

2m
kγ̃22(k−k′)k′, (3.40)

and a term like

−
h̄2

2m
γ22(x)

∂2

∂x2
(3.41)

gives in k space rise to

h̄2

2m
γ̃22(k−k′)k′k′. (3.42)

A disadvantage of using plane wave expansions is that the resulting matrix eigen-
value problem is a problem where most of the elements of the matrix will be non-zero, as
opposed to such approaches as finite element methods, which give rise to sparse prob-
lems and lead to the efficient analysis of low dimensional nanostructures [62, 99]. From
a computational point of view, it is a concern because the full problem becomes more
computationally demanding and hard to parallelize.

Another issue in working with plane waves with cut-off is that it is not obvious how
to reduce the complexity of a problem using symmetries of the system. For example, if
we have a three dimensional cylindrically symmetric problem, it is not obvious how to
use this symmetry and at the same time to restrict the Fourier component to small k. This
latter issue can be resolved and we do this in the next section.

4 Reduction of 3D models for nanostructures with cylindrical

symmetry

In this section we consider three dimensional problems with cylindrical symmetry. The
theory of Section 3 can easily be extended to three dimensions, see [5]. The focus of
this section is on how to reduce the problem to a two dimensional problem and at the
same time to ensure that the envelope functions are restricted to small k components. To
simplify matters we choose to use the one band model for a cubic heterostructure:

Ĥψ=[−〈∇,A(~r)∇〉+V(~r)]ψ(~r)=Eψ(~r), (4.1)

where A(~r)= h̄2

2m∗(~r) , m∗ is the effective mass, V is the effective potential (the conduction

band edge), ∇ is the gradient. The effective mass is, in terms of the γ parameters of
Section 3.1, given by 1/m∗ = γSS/m, where S denotes the periodic zone-center solution
for the conduction band. The gradient of f is defined by:

〈~v,∇ f 〉= D~v f , (4.2)

where 〈·,·〉 is the Euclidean inner product in R
3. The problem is cylindrically symmetric

as long as the effective mass m∗, the effective potential V and the domain of our system
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Ω are cylindrically symmetric. For simplicity we assume that Ω=R
3. We are looking for

solutions in the form:

ψ(~r)=
∫

Ωk

ψ̂(~k)ei〈~k,~r〉d3k, (4.3)

where Ωk is a small neighborhood of ~k = 0 to be defined later (it needs to reflect the
cylindrical symmetry). Using

∇ei〈~k,~r〉= i~kei〈~k,~r〉, (4.4)

we can reformulate the one band model in k space as follows:
∫

Ωk

[〈~k′ , Â(~k′,~k)~k〉+V̂(~k′,~k)]ψ̂(~k)d3k=Eψ̂(~k′), (4.5)

where

Â(~k′,~k)=
1

(2π)3

∫

Ω
A(~r)ei〈~k−~k′,~r〉d3r and V̂(~k′,~k)=

1

(2π)3

∫

Ω
V(~r)ei〈~k−~k′,~r〉d3r. (4.6)

Due to the cylindrical symmetry we know that

[Ĥ,Ŝθ]=0, (4.7)

where [·,·] is the commutator, Ŝθ f (~r)= f (Sθ~r) for any function f and Sθ is the operator that
rotates R

3 by the angle θ around the symmetry axis. Choosing the Cartesian coordinates
(~r =(x,y,z)) where the third axis points along the symmetry axis, we have:

Sθ =





cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1



. (4.8)

Because of the commutation relation (4.7) we can find wave functions ψ which are simul-
taneous eigen solutions of Ŝθ, i.e., we can find solutions ψl so that:

Ŝθψl = eilθψl , (4.9)

where l is an integer. This can be verified by differentiating the eigenvalue problem
Ŝθψ = λθψ with respect to θ, evaluating it at θ = 0, and using the periodicity condition
Sθ =Sθ+2π. Using the Fourier expansion we have:

eilθψl(~r)= Ŝθψl(~r)

=ψl(Sθ~r)

=
∫

Ωk

ψ̂l(~k)ei〈~k,Sθ~r〉d3k

=
∫

Ωk

ψ̂l(~k)ei〈S−θ
~k,~r〉d3k

=
∫

Ωk

ψ̂l(Sθ
~k)ei〈~k,~r〉d3k. (4.10)
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From this it is easily seen that:

eilθψ̂l(~k)= ψ̂l(Sθ
~k). (4.11)

This equation has the solution:

ψ̂l(~k)= eilθk ψ̃(k,kz), (4.12)

where

kx = kcos(θk) and ky = ksin(θk). (4.13)

Using cylindrical coordinates

x= rcos(θr) and y= rsin(θr) (4.14)

and using the fact that A is a function of r and z only we find:

Â(~k′,~k)=
1

(2π)3

∫

A(r,z)ei(krcos(θk−θr)−k′rcos(θk′−θr)+(kz−k′z)z)rdrdθr dz

=
1

(2π)3

∫

A(r,z)∑
n,n′

(i)n+n′
Jn(kr)Jn′ (−k′r)ein(θk−θr)e−in′(θk′−θr)ei(kz−k′z)zrdrdθr dz

=
1

(2π)3

∫

A(r,z)∑
n,n′

(i)n+n′
(−1)n′

Jn(kr)Jn′ (k′r)ei(nθk−n′θk′ )ei(n′−n)θrei(kz−k′z)zrdrdθr dz

=
1

(2π)2

∫

A(r,z)∑
n

Jn(kr)Jn(k′r)ein(θk−θk′ )ei(kz−k′z)zrdrdz, (4.15)

where we have used that:

eixcos(φ) =∑
n

in Jn(x)eiφn, (4.16)

and the domain of integration is

0≤ r< rmax(z), zmin < z< zmax, 0≤ θ <2π.

Here zmin, zmax and rmax(z) are determined by Ω. In the case where Ω = R
3 we have

zmin =−∞, zmax =∞ and rmax(z)=∞. The same arguments apply to V̂:

V̂(~k′,~k)=
1

(2π)2

∫

V(r,z)∑
n

Jn(kr)Jn(k′r)ein(θk−θk′)ei(kz−k′z)zrdrdz. (4.17)

We are now in a position to integrate out all angle dependent terms in the one band
model, Eq. (4.5). Assuming that the region in k space Ωk is given by kz,min < kz < kz,max,
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0≤ k< kmax and 0≤ θk <2π we get:

2πEψ̃(k′,k′z)

=
∫

[

Â(~k′,~k)(kk′cos(θ′k−θk)+k′zkz)
]

eilθk ψ̃(k,kz)e−ilθk′ kdkdθk dkzdθk′

+
∫

V̂(~k′,~k)eilθk ψ̃(k,kz)e−ilθk′ kdkdθk dkzdθk′

=
1

(2π)2

∫

A(r,z)∑
n

Jn(kr)Jn(k′r)ein(θk−θk′)ei(kz−k′z)zr

×
[

kk′cos(θk′−θk)+k′zkz

]

eilθk ψ̃(k,kz)e−ilθk′ kdrdzdkdθk dkzdθk′

+
1

(2π)2

∫

V(r,z)∑
n

Jn(kr)Jn(k′r)ein(θk−θk′)ei(kz−k′z)zr

×eilθk ψ̃(k,kz)e−ilθk′ kdrdzdkdθk dkzdθk′

=
1

2

∫

A(r,z)(kk′
[

J−l−1(kr)J−l−1(k′r)+ J−l+1(kr)J−l+1(k′r))+k′zkz J−l(kr)J−l(k′r)
]

×ei(kz−k′z)zψ̃(k,kz)krdrdzdkdkz

+
∫

V(r,z)J−l(kr)J−l(k′r)ei(kz−k′z)zψ̃(k,kz)krdrdzdkdkz . (4.18)

All in all, we have:

Eψ̃(k′,k′z)=
∫ kz,max

kz,min

∫ kmax

0

Ãl+1(k′,k′z,k,kz)+ Ãl−1(k′,k′z,k,kz)

2
k′kψ̃(k,kz)dkdkz

+
∫ kz,max

kz,min

∫ kmax

0
Ãl(k′,k′z,k,kz)k′zkzψ̃(k,kz)dkdkz

+
∫ kz,max

kz,min

∫ kmax

0
Ṽl(k′,k′z,k,kz)ψ̃(k,kz)dkdkz , (4.19)

where

Ãl(k′,k′z,k,kz)=
k

2π

∫ zmax

zmin

∫ rmax(z)

0
A(r,z)Jl(kr)Jl(k′r)ei(kz−k′z)zrdrdz, (4.20)

Ṽl(k′,k′z,k,kz)=
k

2π

∫ zmax

zmin

∫ rmax(z)

0
V(r,z)Jl(kr)Jl(k′r)ei(kz−k′z)zrdrdz, (4.21)

and we have used J−l(x)=(−1)l Jl(x).

We have now reduced the problem to a two dimensional problem while ensuring
that the Cartesian plane wave expansion is restricted to small k components. It is not
surprising that the radial part should be expanded in Bessel functions as these functions
are the radial solutions to the Laplace eigenvalue equation in cylindrical coordinates.
It is, however, not initially obvious that restricting to small k components of the Bessel
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Figure 9: The cylindrical InAs quantum dot under consideration. The matrix material is GaAs.

functions (and kz components) is equivalent to the restriction to small k components. But
this is indeed the case as can be seen from Eq. (4.13).

This approach can easily be extended to multiband models as long as they are cylin-
drically symmetric. In the next section we will present results for a cylindrical InAs quan-
tum dot imbedded in a GaAs matrix.

4.1 The eight-band model results

Here we consider an InAs cylindrical quantum dot surrounded by GaAs (see Fig. 9).
For a discussion on the cylindrically symmetric eight-band model for zincblende nanos-
tructures we refer the reader to [74]. In what follows, the material parameters are taken
from [88] and they are reproduced here for convenience in Table 2. In Fig. 10b) we show
the energy spectrum as a function of the k space cut-off for a quantum dot with height
H = 10 nm and diameter D = 10 nm. In this figure we see that the first couple of con-
duction and valence band states are well captured with a cut-off 25% out in the Brillouin
zone. If we compare this to what happens for a quantum dot with a height and diameter
of 5 nm (shown in Fig. 10a)), we see that we need to use a cut-off 60% out in the Brillouin
zone to get convergence of the conduction band states. However, spurious solutions start
to appear in the valence band before this. That is, we cannot capture both conduction and
valence band states for such small dots using the cut-off approach. If we instead used the
approach proposed in [13] we do not need to use a cut-off and we could get the states to
converge. However, this does not ensure that the solutions are meaningful as the states
have Fourier components far away from the zone center and we know that the accuracy
of k·p methods using a zone center expansion basis decreases as we move away from the
zone center.

Table 2: k·p parameters used. me is the free electron mass.

mc [me] γ1 γ2 γ3 Eg [eV] ∆so [eV] Ep [eV] VBO

InAs 0.026 20.0 8.5 8.5 0.417 0.39 21.5 −0.59
GaAs 0.067 6.98 2.06 2.06 1.519 0.341 28.8 −0.8
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Figure 10: Energy spectra as a function of k space cut-off for a) H = D = 5 nm and b) H = D = 10 nm. The
black lines are the valence and conduction band edges of InAs.

4.2 Gap states and spurious solutions

Finally, we note that the above discussion is related to the issue of finding gap states in
quantum-confined structures using the k·p method, and we will now briefly address this
issue. Recall that in the past multiband k·p Hamiltonian calculations have been carried
out to find the S and P states representing the lower conduction band and the upper
valence band (e.g., [80, 89]). The Hamiltonian problem in this case has been solved as a
coupled system of PDEs (see [80, 89]), and there is no a priori guarantee that the result-
ing solutions contain only wavevector components in the first Brillouin zone. In actual
fact, the non-physical gap states produced by solving such coupled system of PDEs (as
in [80,89]) contain out-of-first Brillouin-zone wavevector components and hence must be
rejected as non-physical solutions [5]. A secure way to circumvent this problem in k·p
calculations is to use a plane-wave expansion set containing first Brillouin-zone compo-
nents only. This is exactly what has been proposed in the present work.

5 Conclusions and future directions

In this paper we focused on a long standing problem in the application of the multiband
effective mass theory to low dimensional nanostructures that manifests itself in the ap-
pearance of non-physical (spurious) solutions. Due to its fundamental significance and
a wide range of applications in science and engineering, there have been a substantial
number of attempts to resolve this problem. We reviewed some of such approaches to-
gether with available techniques for formulating interface boundary conditions for the
associated model for the envelope functions and discussed this issue in a broader context
of other computationally efficient methods for bandstructure calculations. Next, based
our discussion of the generalized envelope function theory, we derived multiband equa-
tions for the one dimensional case. We demonstrated that a failure to restrict the Fourier
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expansion of the envelope functions to small k components, which is in the heart of the
multiband model derivation, may lead to spurious solutions with no physical meaning.
On an example of a heterostructure, we provided details of a procedure of how such non-
physical solutions can be removed and evaluated the accuracy of the results obtained. We
exemplified this approach by a reduction of a three dimensional cylindrically symmet-
ric problem to a two dimensional problem within the plane wave cut-off approach. The
resulting model provides a computationally efficient framework for the analysis of cylin-
drical symmetric systems and we demonstrated the efficiency of our developed multi-
band model in applications to cylindrically symmetric quantum dots.

Finally, we note that an appropriate choice of the basis for our multiband model may
bring further computational advantages leading to the effect of the Gibbs phenomenon
being minimized while moving from the k-space to the real physical space. The resulting
systems of linear equations will be sparse, as we pointed out in Section 2, reducing fur-
ther the computational cost and providing additional advantages of this methodology as
compared to ab initio and atomistic techniques. This issue deserves further discussion in
a separate publication.
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Appendix

As we pointed out in the introductory part, the determination of the energy operator
spectrum is formulated throughout one Brillouin zone and the first Brillouin zone is usu-
ally taken for this purpose. Any periodic lattice is completely specified by its principle
lattice vectors a1,a2 and a3 defined such that any translation vector R (a vector connecting
two lattice points) can be written as:

R=m1a1+m2a2+m3a3, (A.1)

for some m1,m2,m3∈Z. Based on the principle lattice vectors, the reciprocal lattice can be
defined as those vectors b that satisfy:

exp(ibR)=1. (A.2)

It can be shown that any reciprocal lattice vector is given by:

b=n1b1+n2b2+n3b3, (A.3)
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for some n1,n2,n3∈Z, where

b1 =2π/Ω0[a2×a3], b2 =2π/Ω0[a3×a1],

b3 =2π/Ω0[a1×a2], Ω0 =a1[a2×a3].

Of course, there are many reasons for the construction of the reciprocal lattice, but the one
we focus on here is its relation to irreducible representations of the translational group
related to the translation vectors R (that is the translational symmetry of the system). It
can be shown that any irreducible representation of the translational group is completely
determined by

λ1 =exp(−ika1), λ2 =exp(−ika2), λ3 =exp(−ika3),

where vector k is determined up to an arbitrary reciprocal lattice vector, see [3]. The
ambiguity in k is completely removed by restricting our attention to the first Brillouin
zone (the Wigner-Seitz cell of the reciprocal lattice).
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