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Abstract. Finite difference computations that involve spatial adaptation commonly
employ an equidistribution principle. In these cases, a new mesh is constructed such
that a given monitor function is equidistributed in some sense. Typical choices of the
monitor function involve the solution or one of its many derivatives. This straightfor-
ward concept has proven to be extremely effective and practical. However, selections
of core monitoring functions are often challenging and crucial to the computational
success. This paper concerns six different designs of the monitoring function that tar-
gets a highly nonlinear partial differential equation that exhibits both quenching-type
and degeneracy singularities. While the first four monitoring strategies are within the
so-called primitive regime, the rest belong to a later category of the modified type, which
requires the priori knowledge of certain important quenching solution characteristics.
Simulated examples are given to illustrate our study and conclusions.

AMS subject classifications: 65K20, 65M50, 35K65

Key words: Degeneracy, quenching singularity, adaptive difference method, arc-length, monitor-
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1 Introduction

Temporal and spatial adaptations have been playing an important role for computing the
numerical solution of singular or near singular differential equations. Commonly, adap-
tations stem from the equidistribution of a particular monitor function [3]. For singular
problems, the appropriate choice of a monitor function is not clear, as say for blow-up
problems where the monitor function is chosen to minimize the local truncation error.
Still the ultimate goal of the employed strategy is to optimize discretization steps for
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matching key physical properties of solutions, or easing the domain geometric sophis-
tication. Adaptive mechanisms are often achieved through monitoring closely the most
sensitive features of the multi-physical system anticipated, such as the velocity of fluids,
location of wave fronts, and evidence of potential singularities. In this paper, through a
frequently used two-dimensional reaction-diffusion equation of the quenching type, we
discuss several effective adaptation designs. The exploration brings to the surface subtle
issues in quenching computations and offers a cautionary reminder that a particularly
tailored adaptation must be carefully screened prior to employment.

Let Ω be an open unit square. A typical two-dimensional degenerate quenching
model can be comprised as

φ(x,y)ut=αuxx+βuyy+ f (u), (x,y)∈Ω, t>0, (1.1a)

u(x,y,t)=0, (x,y)∈Γ, t>0, (1.1b)

u(x,y,0)=u0(x,y), (x,y)∈Ω, (1.1c)

where Γ is the boundary of Ω, α≥β>0 are constants, and φ(x,y)=φ(y,x)>0, (x,y)∈Ω.
A degeneracy occurs if φ diminishes at certain points on Γ. The source term f is highly
nonlinear, positive, and approaches infinity as u → 1−. We adopt the standard nomen-
clature for quenching, first proposed by [7], that is, the solution u is said to quench if the
time derivative ut becomes unbounded in finite time. That time is called the quenching
time. As discussed in [1, 5], a single point quenching singularity of (1.1a)-(1.1c), if occurs,
must locate on the line segment of y= x, 0< x < 1. An interesting nuance of higher di-
mensional quenching problems is that depending on the size and shape of the domain
the solution may or may not quench. Calculating critical quenching domains and times
has been a primary focus of numerical and theoretical analysis [1, 4–6, 8, 11, 12, 14–17].
The numerical approaches have contained a mix of uniform and nonuniform grids often
employing temporal adaptation solely. It still remains to be seen how to best adapt the
spatial grid to improve on the overall numerical accuracy, efficiency, and robustness, let
alone the effects of such adaptations on the computation itself.

In quenching phenomena, it has been shown that if a solution quenches at a finite
value, then the rate of change function, that is, the temporal or spatial derivative, blows
up faster than an exponential rate [5, 13]. This leads to the following procedure for tem-
poral adaptation based on the equidistribution of ut. We adopt the implicit equation for
a new time step in each advancement,

(

u′
k+1−u′

k

)2 ·ej+
(

τ
(i)
k

)2
=
(

u′
k−u′

k−1

)2 ·ej+τ2
k−1, (1.2)

where uk, uk+1 are numerical solutions at temporal levels k and k+1, respectively, and
ej ∈ R

N is the jth unit vector, 1 ≤ j ≤ N. The notation (u)p means that each of the vec-
tor’s components is raised to the power p, and the initial step τ0 is given. The updated
temporal step τk is taken to be the minimum, that is,

τk= min
1≤j≤N

τ
(j)
k .
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Therefore, the Eq. (1.2) can be readily reformulated to yield

τ2
k =τ2

k−1+min
i

{(

u′
k−u′

k−1

)2−
(

u′
k+1−u′

k

)2}
, k=1,2,··· . (1.3)

In practical computations, temporal adaptations such as those via (1.3) are not nec-
essary till a pre-quenching appears. At that time, solutions at multiple time levels prior
to quenching are ready to use. Of course if this is not the case, such as with a numerical
restart, the temporal step can be initially reduced to accumulate the necessary informa-
tion to perform a successful temporal adaptation. Therefore solution data at multiple
levels is always at ready for future adaptation.

The mechanism to adapt the underlying mesh as quenching is approached is less
certain. The standard approach is to equidistribute a certain monitor function, typically
the arc-length of the solution or one its derivatives. However, it is not clear to what effect
different principles will have on the underlying computation. In this paper, we address
two questions. First, what adaptation principle provides the most benefit to tracking the
quenching location? Second, what numerical complications arise from the adaptation
and how is this manifested in the solution?

The organization of the paper is as follows. The next section details the splitting algo-
rithm as presented in [2]. In Section 3, six different spatial adaptive principles are intro-
duced. The first four we call primitive as they use common target functions such as the
solution or its derivatives. The last two we call modified as they use a priori knowledge
of the quenching solution and its characteristics. Examples and subsequent discussions
are then given in Section 4. Section 5 summarises our conclusions and expectations of
this research.

2 Numerical method

The following semidiscretized approximation to the quenching equation (1.1a) on a nonuni-
form mesh is proposed,

(ut)i,j =
α

φ(xi,yj)

( 2

hi−1(hi−1+hi)
ui−1,j−

2

hihi−1
ui,j+

2

hi(hi−1+hi)
ui+1,j

)

+
β

φ(xi,yj)

( 2

hj−1(hj−1+hj)
ui,j−1−

2

hjhj−1
ui,j+

2

hj(hj−1+hj)
ui,j+1

)

+
f (ui,j)

φ(xi,yj)
, i, j=1,··· ,N, (2.1)

where (xi,yj), i, j=0,1,··· ,N+1, are the spatial grid points, 0<hk≡xk+1−xk=yk+1−yk≪1,
k=0,1,··· ,N, and ui,j(t) is an approximation of the exact solution of (1.1a)-(1.1c) at the grid
point (xi,yj,t). The discretized equations can be placed into a vector form, namely,

v′=Pv+Rv+g(v), (2.2a)

v(0)=v0, (2.2b)
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where v′ = dv/dt, v(t)= (u1,1,u2,1,··· ,uN,1,u1,2,··· ,uN,N)
⊺ based on a natural ordering of

components [15], and P and R are N2×N2 matrices, that is,

P=αB(IN⊗T), R=βB(T⊗ IN),

where IN is the N×N identity matrix, ⊗ denotes the Kronecker product, and

g(v)=
( f (u1,1)

φ(x1,y1)
,··· , f (uN,N)

φ(xN ,yN)

)⊺

. (2.3)

The matrix P is block diagonal with tridiagonal blocks while R is block tridiagonal with
diagonal blocks. The matrix B is diagonally defined as,

B=diag(B(j)), B(j)=diag(ψ−1
i,j ) and ψi,j =φ(xi,yj),

for i, j=1,··· ,N. The matrix T is tridiagonal with upper, main, and lower diagonals of

uk =
2

hk(hk+hk−1)
, k=1,··· ,N−1, (2.4a)

mk =− 2

hkhk−1
, k=1,··· ,N, (2.4b)

lk =
2

hk(hk+1+hk)
, k=1,··· ,N−1. (2.4c)

The advantage of the semidiscretization is that readily availably time-stepping algo-
rithms can be used. Ultimately this amounts to approximating the matrix exponential
of t(P+R). We consider a linearized Peaceman-Rachford splitting method to acquire the
fully discretized variable time-step splitting scheme,

vk+1=
(

I− τk

2
R
)−1(

I− τk

2
P
)−1(

I+
τk

2
P
)(

I+
τk

2
R
)[

vk+
τk

2
g(vk)

]

+
τk

2
g
(

vk+τk

(

Cvk+g(vk)
))

+O(τ2
k ), k=0,1,··· , (2.5)

where C=P+R, v0 is the given initial vector and τk is the variable time step to be deter-
mined by a suitable adaptation mechanism. For illustrative purposes, a typical solution
profile with its time derivative prior to quenching is given in Fig. 1.

Key analysis of this algorithm has been acquired, mainly proving that the method
matches the most important feature, that the solution monotonically increases toward a
steady state solution or quenches in finite time. Herewith we provide two main results
that show if certain criteria are satisfied that the discrete solution monotonically increases
and is stable to perturbations in a weak sense. For detailed proofs, the reader is referred
to [2].

Theorem 2.1. (Monotonicity). For any beginning time step ℓ≥0, if
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(i) ∆xj=∆yj=hj such that minj{hjhj−1}<4α/13M for all available j, where M= f (τ0 f0ψ−1
min);

(ii) τk <4−1minj{hjhj−1}ψminα−1 for all k≥ ℓ;

(iii) either

1. Cvℓ+g(vℓ)+τℓPRg(vℓ)/4>0 and τk=τℓ for all k≥ℓ, if uniform temporal steps are
used;

2. Cvℓ+g(vℓ)>0 and τk is sufficiently small, if nonuniform temporal steps are used,

then the sequence {vk}k≥ℓ generated by the adaptive splitting method (2.5) increases monotoni-
cally until unity is exceeded by a component of the solution vector vk, or converges to the steady
solution of the problem for both constant and variable τk, k≥ ℓ.

Theorem 2.2. Stability. The adaptive splitting method (2.5) with the nonlinear term frozen is
unconditionally stable in the von Neumann sense.
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Figure 1: Computed (a) function u and (b) derivative function ut prior to quenching. Projections of u and ut are
taken from 88, 24, 19, 4, 2 and 1 temporal positions (from the left to right) before quenching. An exponentially
graded spatial grid of the size 301×301 is used with a nonlinear source function of f (u) = 1/(1−u) and

φ(x,y)=
√

x2+y2. While the terminal maximal value of u is 0.99219123737588, the peak value of ut reaches
124.4559481079604.

3 Spatial adaptation

It is known that as quenching is approached, the solution function u remains bounded
while its time derivative grows beyond exponentially fast at the quenching location. In
the most general cases, the quenching location is not known. Thus to layout an accurate
mesh focused about the quenching location is impossible before the computation. Adap-
tation provides a remarkable alternative to improve the mesh as the solution advances.
Recall Fig. 1. Any mesh adaptation strategy should contain two essential features. First,
distribute points near the quenching location as determined by the physics of the discrete
solution, mitigating human intervention and construction. Secondly, minimize compu-
tational cost by allowing a fewer number of grid points to be used, hence reducing the
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size of the involved matrices. Naturally, the methods to be presented attempt to address
these features. Computational examples will also be utilized to highlight their degrees of
effectiveness.

The adaptation of the grid is calculated via an equidistribution of a certain monitor
function, in this case the arc-length of a target function. Substantial work has been done
for general adaptations using equidistribution techniques (see [3] and references therein).
For (1.1a)-(1.1c) the quenching location occurs along the line y=x. Therefore the equidis-
tribution of the grid can be viewed along this line, hence one-dimensional. Define z as
the local coordinate along the line y= x, hence z∈ [0,

√
2] and z=

√
2x=

√
2y. Let w(z,t)

be a given target function. The arc-length, L, of w(z,t) is

L=
∫

√
2

0

√

1+w2
zdz.

We then look to find grid points that satisfy the equidistribution equations, namely,

L

N−1
=

∫ zi+1

zi

√

1+w2
zdz,

where z0 = 0, zN+1 =
√

2, and i= 1,··· ,N. This generates N equations for the grid points
z1,z2,··· ,zN which can be solved using standard quadrature methods. A convenient ap-
proach is to solve for z1 then z2 and so forth. This minimizes computational storage as the
entire system of equations need not be stored at any particular moment. The generation
of the new spatial grid points zi are then mapped to xi and yi accordingly.

For simplicity, let U(z,t)=u(x,x,t) the solution along the line y=x. Common choices
of target function are U(z,t), Ut(z,t), Uz(z,t), or Utz(z,t). Each target function is explored
here. In the following these four methods will be referred to as Prim 1, 2, 3, and 4, respec-
tively.

We now motivate two additional target functions. It is clear from Fig. 1 that the solu-
tion profile remains bounded while the time derivative is growing quickly at the quench-
ing location. The maximum location of both the solution and its derivative are the same.
Naturally, it is ideal for a mesh to have more points near the maximum values in hopes of
better tracking the quenching location and blow-up phenomena. Do the above principles
exhibit this feature? The simple answer is no. To justify this answer, the reader may be

inclined to examine the equidistribution of the arc-length of f (x) = e−x2
and f ′(x). The

problem lies in that the spatial derivative a t the maximum is identically zero.
Knowing that the quenching singularity happens near a maximum and that the so-

lution grows exponentially fast near the singularity leads us to an alternative approach.
First, consider the plot of u and ut along the center line using data from Fig. 1 close to the
onset of quenching, this is shown in Fig. 2.

It is clear that Fig. 2(b) exhibits the expected beyond exponential blow-up profile. We
elect to fit this curve to a two-sided exponential y(z), namely

y(z)=

{

κ1eγ1z, 0< z< z∗ ,

κ2eγ2z, z∗< z<
√

2,
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Figure 2: A plot of (a) u and (b) its derivative function ut prior to quenching in the z-coordinate. The modified
strategies attempt to fit the solution curves to an exponential function in the least squares sense.

where κi and γi fitting parameters chosen in the least squares sense and z∗ is the maxi-
mum location. The equidistribution equations then become,

1

N

∫ z∗

0

√

1+
(

γ1κ1eγ1z
)2

dz=
∫ zi+1

zi

√

1+
(

γ1κ1eγ1z
)2

dz,

1

N

∫

√
2

z∗

√

1+
(

γ2κ2eγ2z
)2

dz=
∫ zN+i+1

zN+i

√

1+
(

γ2κ2eγ2x
)2

dz,

where z0 = 0, zN+1 = z∗, z2N+1 =
√

2, and i= 1,··· ,N. This method does not prevent the
arc-length growing unboundedly as quenching is approached, however any monitoring
of ut or its derivatives through an arc-length principle will have a similar issue. A com-
mon approach is to clip the solution at a certain value, effectively fixing the number of
points near the maximum [17]. Alternatively, a minimum step size controller can be im-
plemented. Here, no such alternative mechanism is used.

Lastly, we propose a similar method that fits the solution to a two-sided exponential.
Although Fig. 2(a) does not indicate an exponential pattern the benefit to this approach is
that the arc-length will remain bounded as quenching is approached while still distribut-
ing points near the maximum location. These last two modified methods will be called
MOD 1 and MOD 2, respectively.

The adaptation of the mesh will require the solution to be interpolated onto the new
mesh, (Xi,Yj). For simplicity we consider a bilinear interpolant, that is,

û(Xi,Yj)=(1− α̂)(1− β̂)u(xi,yj)+ α̂(1− β̂)u(xi+1,yj)+ α̂β̂u(xi+1,yj+1)+(1− α̂)β̂u(xi,yj),

α̂=
Xi−xi

hi
, β̂=

Yj−yj

hj
,

where u(xi,yj) is the solution’s value at the old mesh location (xi,yj), hk = xk+1−xk =
yk+1−yk, and û is the interpolated solution which will be used in the next iteration in the
computation.
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4 Examples

The aforementioned spatial adaptive principles discussed are now examined computa-
tionally. In each example we will present many of the interesting features that illuminate
potential advantages and disadvantages of the adaptation. For each, the temporal step is
fixed in order to best observe the effect that the spatial adaption has on the computation.
The first example is quite intensive and begins by illustrating a subtle problem that arises
in the newly formed matrices as a result of the adaptation. It is shown that computation
with overly refined and focused grids can potentially ruin the reliability of the compu-
tation. Beginning the adaptation early in the computation is a viable option, potentially
avoiding this complication. However, a one-time violation is shown to not disrupt the
end result. The next example puts many of the newly refined ideas to practice in the con-
text of a computation involving a degeneracy. The quenching location is not known and
the refined algorithm is compared to a computation with a fixed grid with a far greater
number of grid points.

In each of the computations the nonlinear source and degenerate term will be f (u)=
1/(1−u) and φ(x,y)=(x2+y2)q/2, respectively [5, 9, 10].

4.1 Example 1

Let q=0, α=0.1 and β=0.1. It is well known that in this case, the quenching location occurs
at the center of the domain (0.5,0.5). The quenching time in this situation is computed to
be T∗=0.587354 using a uniform mesh with 301×301 points and dt=5×10−7.

We consider the six adaptive principles on the numerical solution at the onset of
quenching. The solution and the time derivative along the line y = x are shown in
Figs. 3(a) and (b) in the iteration just prior to quenching. In addition, the meshes con-
structed using each of the six adaptive principles are given in Fig. 4(a)-(f).

It is clear that MOD 1 and 2 have advantages over Prim 1 and 2, in that the mesh is
focused about the quenching location rather than near other points in the domain. Both
Prim 3 and 4 do focus the mesh near the quenching location, however Prim 3 places
points near the boundary where the solution is growing the least while Prim 4 is not
symmetric about z =

√
2/2, a consequence of the error in the derivative function uzz.

These are clear drawbacks to these primitive methods.
The adaptation will require an update of the temporal step in order to satisfy hypoth-

esis (ii) of Theorem 2.1. Of course, the change in the mesh and temporal size will require
the interpolation of the current solution onto the new mesh. In addition, a reconstruc-
tion of the involved matrices is necessary. How does this reconstruction influence the
monotonicity of the solution? Recall, the third hypothesis of Theorem 2.1. This delicately
depends on the following theorem.

Theorem 4.1. Let

Cvℓ+g(vℓ)+
τ2
ℓ

4
PRg(vℓ)>0
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and τk =τℓ for all k≥ ℓ, where ℓ≥0 is any beginning time step. If

τk <
1

4
min

1≤i≤N
{hihi−1}ψminα−1,

then vk+1>vk for all k≥ ℓ. The sequence {vk}∞

k=ℓ
is therefore monotonically increasing.

The result is a slight variation of that in [5]. In fact, it is straightforward to show that
for a null initial condition, vℓ=0, that

Cvℓ+g(vℓ)+
τ2
ℓ

4
PR g(vℓ)>0,

hence the theorem can then be proven by using a mathematical induction. Up to the
point of the first spatial adaption the discrete solution will have monotonically increased,
guaranteed by the theory. Of course, if the algorithm had begun using one of the newly
constructed meshes (see Fig. 4(a)-(f)) the solution would monotonically increase. How-
ever, in the iteration that adaptation presents itself vℓ, the newly constructed interpolated
solution, is not zero and contains some interpolation error. Does this error in the solution
in conjunction with the update of the matrices violate the criteria of Theorem 4.1? Indeed,
Table 1 indicates a violation has occurred by all of the mentioned adaptation principles!
Of course, this is a direct result of small interpolation errors, but even with higher order
interpolators the problem persists.

What does this violation do to the continued computation? Does the solution still
monotonically increase with an exception of a small number of points? We now consider
continuing independent computations using each of the newly constructed meshes from
Fig. 4(a)-(f). Table 2 shows the ensuing computation’s quenching time T1, in contrast to
the quenching time T2, calculated by beginning the initial computation with the adapted
mesh. Notice that the computations involving overly focused meshes have led to a dras-
tic overshoot in the quenching time as compared to the previous result of 0.587354. In
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Figure 3: (a) The solution u and (b) its time derivative ut along the line y= x. Herewith we have maxu=0.98
and maxut =25.19.
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Figure 4: The meshes in the iteration just prior to quenching have been constructed using the 6 adaptive
principles; (a-b) MOD 1-2 and (c-f) Prim 1-4, respectively. The meshes generated by Mod 1, Mod 2, Prim 3,
and 4 have the smallest grid sizes near the quenching location, while Prim 1 and 2 contains a gap as a result
of the stationary point in the spatial derivative. The pictures are given over a 51×51 mesh for the purpose of
saving digital memory sizes and to better view the constructed grids.

fact Prim 2 and 4’s computation were terminated when the calculation continued 4 times
beyond the predicted value! Hence, it is not merely necessary to place more points near
the quenching location, rather it must be done in a smooth fashion such that the disparity
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Table 1: The minimal value of Cvℓ+g(vℓ) in the advancement just prior to quenching, where vℓ is the
interpolated solution and C is the matrix reconstructed after adaptation in the mesh generated by the six
different adaptation mechanisms. To ensure a monotonically increasing discrete solution the value needs to be
greater than zero. As τk is sufficiently small the additional term (τ2

ℓ
/4)PRg(vℓ) has been neglected.

Principle MOD 1 MOD 2 Prim 1 Prim 2 Prim 3 Prim 4
Cvℓ+g(vℓ) -4900.2285 -21.9991 -6.55012 -6964.6189 -13757.49860 -107056.6364

Table 2: A comparison of quenching times T1 and T2, found using a uniform spatial mesh and adapting the
mesh in the iteration prior to quenching and using the adapted mesh as the initial mesh in the computation,
respectively. We observe good agreement between T1 and the computed quenching time T= 0.587354 found
using a uniform mesh, even though there is a violation of Theorem 4.1 in the continued computation. There
is a lack of agreement between T1 and T2 for MOD 1, Prim 2, and Prim 4 which is attributed to the overly
focused mesh near the quenching location resulting in a large disparity in hk.

Principle MOD 1 MOD 2 Prim 1 Prim 2 Prim 3 Prim 4
T1 0.585980 0.587450 0.587335 0.587515 0.587465 0.587480
T2 1.048925 0.596675 0.594350 N/A 0.591440 N/A

between neighboring grid points is not too large. It is easy to recognize that Figs. 4(b), (c)
and (e) offer the least disparity in hk as compared with (a), (d), and (f). Interestingly, T1

for all of the adaptations are reasonably close to the previously calculated value. In ad-
dition, the discrete solution does monotonically increase with exception of a few points
close to the boundary. Hence, a one-time violation is not too damaging, if at all, rather
it is continued and early violation of the monotonicity of the solution that renders the
calculation useless.

With a large change in the underlying meshes interpolation errors are presumed to
be significant. Hence, we may expect that if the adaptation happens early in the com-
putation no violation should occur. Let’s consider the same computation maintaining a
uniform mesh throughout, but at each iteration we formulate the meshes, calculate the
newly interpolated solution, and reconstruct the matrices as if an adaption was going to
occur. Then, we calculate σℓ=sign(Cvℓ+g(vℓ)) at each iteration, this is shown in Fig. 5.

Notice that Prim 2 and 3 are always in violation! Similarly, Prim 4 is always in vio-
lation outside of a few rare situations later in the computation. This suggests that using
ut, uz or utz is not advantageous, at least not without a slight modification, such as only
adapting a collection of points, or using a higher order interpolator. In contrast, MOD
1-2 and Prim 1 shows no violation early in the computation. This seems to indicate that
if there is only a small movement of grid points in the adaptation that no violation will
occur. Hence, early adaptation is necessary to attenuate this effect. Recall, Prim 1 still
has the pesky drawback of placing too few points at the maximum location of the solu-
tion, while MOD 1-2 were developed in part to correct this. On the other hand, MOD
1 tends too focus the mesh too much which may potentially result in a loss of accuracy
away from the quenching location or increase potential interpolation errors. This occurs
as a result of the arc-length ut tending to infinity as quenching occurs. Therefore, MOD 2
presents a nice and surprising alternative.
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Figure 5: A plot of σℓ at iteration ℓ using the adaptive principles: (a-b) MOD 1-2, (c-f) Prim 1-4, respectively.
A negative value indicates a violation in Theorem 4.1, resulting in a loss of monotonicity in the discrete solution.

4.2 Example 2

Let q = 1 in φ. In light of previous example’s observations, we compute the quenching
time and determine its location using MOD 2 and compare this to that found using a
fixed 201×201 uniform mesh. Adaptations are done at iterations for which maxu=0.01j
for j=1,··· ,99. This ensures the mesh is adapted early, while maintaining a small number
of adaptations. No limitation on the minimum spatial step-size is given. The adaptive
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Figure 6: A plot of the constructed meshes using the MOD 2 at iterations for which the maxx,yu = 0.1j for
j=1,··· ,9, and the iteration just prior to quenching (a)-(j), respectively. The adaptations quickly focus about
the quenching location indicated by the closed red circle on each plot.
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computation begins with a uniform 51×51 mesh.

The quenching time for MOD 2 is calculated to be Tm2 =0.392966 in close agreement
to Tf ixed = 0.390574 calculated using the fixed fine mesh. Of course, the quenching can
be further refined by implementing temporal adaptation. Fig. 6 presents the evolution
of the underlying grids at iterations for which maxx,y u = 0.1,··· ,0.9, and after the last
adaptation.

The quenching location is found at (0.40328433,0.40328433) while the algorithm with-
out refinement stops at (0.405,0.405). Similarly, a computation using a fixed 101×101 grid
results in a calculated quenching location of (0.41̄,0.41̄). Hence, the spatial adaptation
has allowed the algorithm to compute an extremely accurate quenching location using
relatively few grid points, resulting in quicker computation as a consequence of smaller
matrices. The minimum step-size is hk =0.00653 and is found at that quenching location
with its nearest neighbor along the line y= x.

Interestingly, the mesh situates around the quenching location rather quickly, by the
time maxx,yu=0.6 there is little movement around that location. This is easily recognized
on closer examination of Figs. 6(g)-(j) which shows a lack of change in the meshes beyond
this stage in the computation. However, the algorithm does continue to slightly focus the
mesh about the quenching location in the remainder of the computation.

5 Conclusions

In this paper, we explore spatial adaptation in the context of a nonlinear reaction-diffusion
equation of the quenching type. The degeneracy at the boundary and strong nonlinear-
ity that creates the singularity in the solution’s time derivative brings about the need for
developing appropriate adaptations in both space and time. We employ and compare
six different adaptive procedures. Each procedure attempts to establish a more suitable
nonuniform grid through the equidistribution of the arc-length of a targeted function.
The target functions are comprised from either the solution u or one of its derivative
functions.

The first four primitive methods have been used in our recent computations for
quenching, however, the presented examples indicate the potential drawbacks. Namely,
the monitoring of the arc-length of a singular function can be problematic as the entire
grid coalesces near the singularity. This can be avoided by modifying the adaptation
itself, such as setting a minimum step-size. However, in doing so, the equidistribution
equations will no longer be satisfied. Secondly, directly monitoring the solution or its
spatial derivatives is less than desirable. This is because the existence of a stationary
point near the quenching location places too few mesh points in the areas where it is
needed the most.

In conjunction with these findings we develop two modified methods which follow
the solution (MOD 2) or its time derivative (MOD 1) through least squares approximate
functions. At first glance, MOD 1 seems to be a natural candidate but as quenching
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approaches the target function’s arc-length tends to infinite, a similar problem noted pre-
viously. MOD 2 is then suggested as a primary alternative to monitoring the solution and
developing meshes.

One of the most important features of the quenching solution is that it monotonically
increases toward quenching or steady state. The discrete solution will follow this behav-
ior provided certain criteria are satisfied. The adaptations in the mesh cause a refinement
in the temporal step, update of the involved matrices, and requires the interpolation of
the current solution onto the newly constructed mesh. It is shown that this may result in
a violation of the criteria for monotonicity. Although a one-time violation seems to not
inherently destroy the algorithm, incessant and early violations can lead to erroneous
results. Of course, any initial mesh used to begin the computation with a null initial con-
dition will result in a monotonically increasing solution. However, it is found that using
overly refined meshes near the quenching location may lead to inaccuracies in the com-
puted quenching time. These observations indicate that MOD 2 is a suitable choice for
such problems, while the alternative methods, particularly involving a function whose
arc-length tends to infinite as quenching is approached, should be avoided.

The quenching time and location of a fully degenerate problem is then discussed and
shares comparable success to the results found using a higher resolution and fixed mesh.
While it is true, that the quenching times are comparable, the extra resolution in the
quenching location is quite significant via a proper adaptive algorithm. Moreover, it is
seen that the algorithm situates the mesh rather quickly around the quenching location
and thereafter little movement is seen in the continued computation. This indicates early
rather than later adaption is crucial for accuracy near the quenching location. In partic-
ular, the little movement in the mesh means unnecessary interpolation error is avoided
later in the algorithm. This suggests a possibility of combining adaptive mechanisms
when the solution exhibits certain type of behavior, such as using MOD 1 early in the
computation and switching to MOD 2 in the later stages. Hence the mechanism can be
better crafted for the solution’s particular stage in the computation. In either case, the
beneficial features of a fully adaptive method are extremely useful for analyzing quench-
ing problems containing a degeneracy. However, much work is still needed to under-
stand how the underlying interpolation errors and the disparity in the newly constructed
mesh have on the numerical accuracy of the computation.
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