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Abstract. In this paper we develop a new closure theory for moment approximations
in kinetic gas theory and derive hyperbolic moment equations for 13 fluid variables
including stress and heat flux. Classical equations have either restricted hyperbol-
icity regions like Grad’s moment equations or fail to include higher moments in a
practical way like the entropy maximization approach. The new closure is based on
Pearson-Type-IV distributions which reduce to Maxwellians in equilibrium, but allow
anisotropies and skewness in non-equilibrium. The closure relations are essentially
explicit and easy to evaluate. Hyperbolicity is shown numerically for a large range of
values. Numerical solutions of Riemann problems demonstrate the capability of the
new equations to handle strong non-equilibrium.
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1 Introduction

Many processes in gases are close to thermal equilibrium and can be described by fluid
dynamic equations using the constitutive relations of Navier-Stokes and Fourier for stress
and heat flux. In non-equilibrium processes these relations are no longer valid and the
statistical description of kinetic gas theory has to be used. Moment approximations fill
the gap between kinetic gas theory and fluid dynamics by deriving macroscopic partial
differential equations that extend classical fluid dynamics to processes of strong non-
equilibrium.
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Moment approximations have been introduced into kinetic theory by Grad [8, 9] and
refined from a thermodynamic point of view by Muller and Ruggeri, see the textbook
[18]. In recent years there have been considerable progress in rigorously developing a
practical, stable and accurate system of moment equations for non-equilibrium gases,
see [10, 26, 27, 30, 31]. In the context of computational fluid dynamics moment equations
have been considered, for example in [16, 23, 29].

Moment equations are partial differential equations for an extended set of fluid vari-
ables and consist of a non-dissipative first order flux operator and a dissipative part given
by relaxation and, depending on the model, also diffusion. The flux part models the free
flight of the particles, while the dissipation represents collisional interaction. One of the
remaining issues in the development of moment equations is the hyperbolicity of the
non-dissipative flux part, that is, real-valued characteristic speeds. Hyperbolicity allows
to decouple the first order flux into advection equations reflecting the free flight trans-
port. Non-hyperbolicity renders the first order moment system mathematically ill-posed
and physically useless. Unfortunately, the classical moment equations of Grad are hyper-
bolic only relatively close to equilibrium [4, 18, 28].

Levermore in [15] focussed on hyperbolicity of moment equations and advocated the
use of the maximum entropy distribution (see also [18]). Formally, the maximum entropy
distribution provides closure relations that lead to globally hyperbolic moment equa-
tions. However, due to strong non-linearity it was so far not possible to derive explicit
expressions for moment systems with more than 10 fields, i.e., higher than the second
moment. Unfortunately, this so-called 10-moment-system is not capable to describe heat
conduction and, hence, is of little practical use for gas processes. The works [12] by Junk
and [13] by Junk & Unterreiter also indicates that higher systems based on the maximum
entropy distribution might face severe mathematical problems.

This paper considers a Pearson-type-IV distribution for the distribution function of
the particle velocities and shows that this gives globally hyperbolic moment equations.
The use of a Pearson distribution comes as an ad-hoc assumption but is justified by the
fact that it reduces to the Maxwellian distribution in equilibrium and allows for skew-
ness and anisotropies in non-equilibrium to model stress and heat flux. The resulting
moment equations consider 13 fields including stress tensor and heat flux. The closure
relations are almost entirely explicit and easy to evaluate. Hyperbolicity is checked by
numerical evaluation over a wide range of variable states. Additionally, Riemann prob-
lems are computed to demonstrate the ability of the new system to cope with strong
non-equilibria.

Hyperbolicity is part of a larger group of properties desirable for a system of mo-
ment equations. This group contains for example Galilei-invariance, hyperbolicity, the
existence of an entropy, and a positive realizable distribution function. The importance
and relation of these properties is not clear and partly depends on the philosophy of the
model. Ideally, a moment system would exhibit all these properties, but in general, it
seems that they partly exclude each other. In this paper all systems of equations will be
Galilei-invariant and hyperbolicity is the ultimate goal. To achieve this, we may com-
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promise entropy and a realizable distribution. Indeed, the Pearson closure allows global
hyperbolicity only without realizable distribution, while a realizable distribution gives a
restricted hyperbolicity.

The rest of the paper is organized as follows. In the next section we introduce and
discuss moment approximation in general together with the classical cases of Grad and
maximum entropy. Section 3 introduces the Pearson-Type-IV distribution in one and
three dimensions and computes its moments. Moment equations are then derived in
Section 4. Valuable insights are taken from the ’toy-case’ of a one-dimensional kinetic
theory and afterwards used in the 3d-case. Section 5 discusses the results from different
point of views and Section 6 presents numerical solutions in one space dimension. The
paper ends with a conclusion and an appendix combining the details of the moment
calculations for the Pearson distribution.

2 Moment approximations in kinetic gas theory

Kinetic gas theory describes the state of a gas at time t by means of the velocity distribu-
tion function in each space point x∈Ω⊂R

D. We have

f : Ω×R
+×R

D →R, (x,t,c) 7→ f (x,t,c) (2.1)

which makes the distribution function operating on a 2D+1-dimensional domain in gen-
eral. The relevant physical case is D=3, but we will also consider D=1 as model problem.

2.1 Equations

The distribution function follows the evolution equation

∂t f +ci∂xi
f =S( f ) (2.2)

modeling free streaming of the particles by a transport operator and local particle inter-
action by S( f ). The interaction is typically modeled by Boltzmann’s collision operator or
a reduced variant, see for example the text books [5, 6]. In this paper S( f ) will play no
role.

The theory of moment approximations introduces moments of the distribution func-
tion which in general are defined by

Fi1···in (x,t)=m
∫∫∫

R3
ci1 ···cin

f (x,t,c)dc (2.3)

with particle mass m. The first moments F, Fi, and Fkk are the conservative variables of
gas dynamics

ρ=m
∫

f (c)dc, ρvi =m
∫

ci f (c)dc, ρe+
1

2
ρv2 =m

∫

1

2
c2 f (c)dc, (2.4)
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that is, the density, the momentum density and total energy density. We write the internal
energy e= 3

2 θ with temperature θ in units of energy density.
The fundamental idea of moment approximations is to replace the high dimensional

distribution function f by a finite set moments

f (x,t,c) , c∈R
3 ↔ {Fi1···in (x,t)}n=0,1,2,··· . (2.5)

The moments will still depend on space and time, but the additional dependency of f
on the particle velocity c is substituted by the consideration of several moments. The
working hypothesis is that a finite number of moments is sufficient to encode the details
of f as a function of c. Obviously, the motivation is that classical gas dynamics is very
successful by describing the gas with less than 3 full moments.

It is easy to produce an evolution equation for the moments by applying the operation
in (2.3) to the kinetic equation (2.2). We obtain

∂tFi1···in
+∂xk

Fi1···ink = Pi1···in
, n=0,1,2,··· ,

with the moment productions Pi1···in
which are integral of the interaction operator S( f ).

In this paper we will only focus on the left hand side hence drop the production and
consider the homogeneous moment system

∂tFi1···in
+∂xk

Fi1···ink =0, n=0,1,2,··· . (2.6)

Note, that this system essentially approximates the free flight equation

∂t f +ci∂xi
f =0. (2.7)

2.2 Closure problem

Every equation in the system of moment equations in (2.6) contains two moments, a
lower one as variable in the time derivative and the next higher one as flux. With this
structure the equations forms an infinite hierarchy, since every flux appears as variable
in the next equation which itself has an even higher moment as flux.

If we cut the system for a certain finite number of moments we are exposed to a
closure problems since the last flux needs to be related to lower moments in a reasonable
fashion in order to have solvable closed equations.

2.2.1 Chapman-Enskog expansion

A classical approach is the Chapman-Enskog expansion, which is an asymptotic expan-
sion for the non-equilibrium part of the distribution function. In equilibrium the distri-
bution function has isotropic Gaussian shape and is given by

fM (c;ρ,v,θ)=
ρ/m

√
2πθ

3
exp

(

− (c−v)2

2θ

)

, (2.8)
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the Maxwell distribution. It depends on the equilibrium variables density ρ, velocity v,
and temperature θ. Chapman and Enskog assumed an asymptotic expansion

f (CE)(c;ρ,v,θ)= fM (c;ρ,v,θ)
(

1+εϕ(1)(c;ρ,v,θ)+ε2 ϕ(2)(c;ρ,v,θ)+O
(

ε3
)

)

(2.9)

for the distribution function around equilibrium fM. The smallness parameter ε is given
by the Knudsen number, i.e., the ratio between men free path and observation scale. The
first correction ϕ(1) leads to gradient expressions for stress and heat flux and reproduce
the empirical laws of Navier-Stokes and Fourier, see [5,6]. However, the higher contribu-
tions lead to unstable equations, see [3].

2.2.2 General moment closure and hyperbolicity

In the moment approximation theory the closure is obtained from a model for the distri-
bution function. A model of the distribution function has the form

f (x,t,c)= f (model)
(

c;{λα(x,t)}|α|=1,2,···,N
)

(2.10)

such that f depends on space and time through parameters λα. Here we use multi-
index notation λα = λi1···i|α| . The number of parameters N represents the complexity of
the model. We assume that the parameters can be computed from the first N moments
after inserting f (model) into the definition of the moments (2.3) such that we have a one-
to-one relation

{Fα}|α|=1,2,···,N ↔ {λα}|α|=1,2,···,N (2.11)

between parameters and moments. If we now consider a moment hierarchy with N mo-
ments, the last flux of the moment system can be computed from integration of f (model)

and in general depends on all lower moments in an algebraic way.
The final system (2.6) can be written

∂tu+∂xk
fk (u)=0, (2.12)

where the variable vector u∈V combines all moments in the phase space V={Fα}|α|=1,2,···,N
and fk(u) are flux functions. Hyperbolicity is given by the following definition.

Definition 2.1 (Hyperbolicity). If for a phase state u∈V and any unit vector n∈S2 the matrix

A(n)=nkD fk(u) (2.13)

(based on the Jacobian D fk) has only real eigenvalues, the system (2.12) is hyperbolic in u.

The eigenvalues are also called characteristic speeds and the region H = {u ∈
V | hyperbolicity in u} is called region of hyperbolicity. Hyperbolicity is equivalent to
the fact that for a fixed direction the system can be decomposed into advection equa-
tions, see for instance [14], with advection velocities that may depend non-linearly on u.
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Hence, any moment system (2.6) should be hyperbolic, because the underlying physical
phenomena is nothing but free flight (2.7), that is, a pure transport.

In this paper all hyperbolicity regions are computed numerically with help of the
software package Mathematica. Typically, the direction n is chosen to be the x-direction.
We then consider the scalar function

ψ(u)=‖Im(σ(nkD fk(u)))‖∞ , (2.14)

where σ(A) is the set of (complex) eigenvalues of the matrix A. The function ψ(u) will be
zero for u∈H. The border of H is plotted by producing a contour plot of ψ with the only
contour ψ=ε for very small ε, e.g., ε=10−3. Typically, the phase state for u is additionally
projected onto a non-linear submanifold by appropriate scaling of the variables. In this
way all hyperbolicity regions in this paper can be completely displayed in one or two
dimensions even though the phase space is higher dimensional.

2.2.3 Grad’s distribution function

When Grad considered moment equations in [8, 9] he solved the closure problem by as-
suming the general expression

f (Grad)(x,t,c;ρ,v,θ)= fM (c;ρ,v,θ)

(

1+
N

∑
α=1

λα (x,t)cα

)

(2.15)

as model for the distribution function based on the Maxwellian distribution. Here, we
additionally used the multi-index notation for cα = ci1 ···ci|α| to simplify the presentation.
The Maxwellian in (2.15) depends on the local values of density, velocity and tempera-
ture. The ansatz (2.15) represents a partial sum of a Hermite series for the distribution
function written in monomials cα. From a functional analytical point of view we assume
that for smooth f this partial sum yields a reasonable approximation. With this interpre-
tation Grad’s distribution function is not restricted to be close to equilibrium. Still, for λα

small in some sense (2.15) can be viewed as perturbation of a Maxwellian.
The parameters λα are related to the moments after integrating f (Grad). The resulting

system is linear and in general we obtain an explicit one-to-one relation for the first N
moments and the parameters. The flux FNk of the last moment equation can now be
computed from integration of (2.15).

2.2.4 Non-hyperbolicity of Grad’s approach

The first interesting case beyond equilibrium considered by Grad uses the 13 fields of
the moments F, Fi, Fij, and Fikk. This corresponds to density, velocity, temperature, stress
deviator, and heat flux. For details of the derivation see [8, 9, 18]. The final system is
known as Grad’s 13-moment-equations.

In a process that varies only in one space dimension (say x-direction) we consider the
fields density ρ, velocity vx, pressure p, normal stress σ, and heat flux qx. The general
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Figure 1: Hyperbolicity region (left: green area) and two different Riemann problems for Grad’s 13 moment
equations. For density ratio larger than 5 the ellipticity of the equations lead to oscillations and break-down of
the computation.

system (2.6) reduces to 5 partial differential equations in space and time†. It turns out
that this system is not globally hyperbolic. There are physical values of the fields such
that complex eigenvalues arise from the flux function. The region of hyperbolicity can be
displayed in the plane opened by the dimensionless normal stress σ/p and the dimen-
sionless heat flux qx/(ρθ3/2). The left hand side of Fig. 1 shows this plane with the region
of hyperbolicity marked as green area. The dot in the middle marks equilibrium σ = 0
and qx = 0. Hyperbolicity is given for not too large heat fluxes and not too small stress
values. Because the second moment Fij is positive definite the normal stress can only take
values σ/p∈ [−1,2]. For large values of the heat flux and for very small values of σ/p
hyperbolicity is lost.

To demonstrate the influence of this lack of hyperbolicity we compute a standard Rie-
mann problem, see also Section 6 and [28] for details. The result for density and heat flux
is displayed on the right hand side of Fig. 1 for two different initial conditions. On the
top the initial density and pressure ratio is 4, on the bottom the ratio is 6.5. Note that the
result looks very different to classical gas dynamics. The reason is that the Grad system
approximates the free flight equation (2.7). In the top of the figure the analytical result for
(2.7) is shown for comparison. Details of the analytical results of the collision-less Boltz-
mann equation for Riemann problems can be found, e.g., in [2]. The solutions of Grad’s
equations are also shown in the (qx/(ρθ3/2),σ/p)-plane as a closed curve parametrized
by the space variable x.

For stronger initial density and pressure ratios the heat flux increases and the solution
leaves the region of hyperbolicity. Complex eigenvalues lead to strong oscillations which

†The system can be produced from (4.27) below when using mxxx = 6
5 qx and Rxx =5ρθ2+7θσ.
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grow and lead to a break down of the computation due to negative densities. This be-
havior severely limits the application range of Grad’s equations. It can not be improved
by considering more moments [2, 4]. The precise mathematical reason for the failure re-
mains unclear. Most likely, the fact that the distribution function (2.15) becomes negative
causes trouble. For the same reason the definition of an entropy by f ln f fails for Grad’s
equations.

Recently, Chapman-Enskog expansion have been used in [24, 25] to obtain proper
scalings of the moments which yields a natural closure condition for moment system.
This so-called order-of-magnitude approach yields moment equations which are linearly
stable, and very similar to Grad’s moment equations. Even though a rigorous investiga-
tion is open, due to the similarity these systems can be expected to exhibit comparable
deficiencies in terms of hyperbolicity.

2.2.5 Maximum entropy distribution function

In [15, 18] it has been shown that when maximizing the kinetic entropy f ln f under the
constraints of N given moments the distribution function has the form

f (ME)(x,t,c)=exp

(

1+
N

∑
α=1

λα(x,t)cα

)

, (2.16)

where the λα’s take the role of Lagrange multipliers in the maximization. It can be for-
mally shown that this model induces hyperbolic moment equations when used to com-
pute the last flux [15]. However, except when N=2 the mapping between the parameters
and the moments

{Fα}|α|=1,2,···,N ↔ {λα}|α|=1,2,···,N (2.17)

is highly non-linear and can not be solved analytically. Furthermore, it has been shown
in [12] for a model system and in [13] for general systems that the domain of definition for
a realizable distribution in (2.16) is non-convex and the fluxes of the moment equations
become singular arbitrarily close to equilibrium. Hence, beyond N = 2, the maximized-
entropy-distribution f (ME) was never used in practical computations. Various modifica-
tions of (2.16) have been proposed to remedy this drawback, for example in [1], but they
were not successful, so far.

2.2.6 Discontinuous models

Obviously, there are many ways to construct a model to approximate the distribution
function. One further popular method is to use discontinuous or piece-wise Maxwell
distributions with different variances and translations. In [17] shock waves have been
computed based on the superposition of two Maxwellian distributions. Discontinuous
distributions have been used [32] for sound dispersion and in [7] for shear flows. Typ-
ically, these models are defined for a concrete geometry or process and lack generality.
For these models hyperbolicity have not been studied.



M. Torrilhon / Commun. Comput. Phys., 7 (2010), pp. 639-673 647

3 Pearson-Type-IV distribution function

3.1 One-dimensional case

The Pearson distributions type I-XII for a one-dimensional variable have been introduced
in a series of papers [20–22]. For our purpose only type IV is relevant. A good introduc-
tion can be found in [11]. Pearson describes a distribution with four real parameters: a
translation λ, a scale a>0, a skewness ν, and a shape factor m̄>0‡. The function is given
by

f (P1) (c;λ,a,m̄,ν)=
1

ak

exp
(

−νarctan
(

c−λ
a

))

(

1+
(

c−λ
a

)2
)m̄ (3.1)

with normalization constant k. Explicit expressions for the normalization constant can be
found in [19, 20].

We denote the first moment by v (velocity in our context) and find

v=
∫ ∞

−∞
c f (P1) (c;λ,a,m̄,ν)dc=λ− aν

2(m̄−1)
(3.2)

after suitable integration which is outlined in Appendix A.1.1. In one-dimensional calcu-
lations it becomes useful to define

r=2(m̄−1) (3.3)

as abbreviation. General moments of the distribution are defined by

µn(λ,a,m̄,ν)=
∫ ∞

−∞
(c−v)n f (P1)(c;λ,a,m̄,ν)dc (3.4)

for n>1. In the Appendix A.1.2 it is shown that the recursion

µn =
a(n−1)

r−(n−1)

((

1+
(ν

r

)2
)

aµn−2−
2ν

r
µn−1

)

(3.5)

holds for the moments with starting relations µ0 =1 and µ1 =0.
If we define the temperature and the reduced third and fourth moment by

θ =µ2, Q=
µ3

µ3/2
2

, D=
µ4

µ2
2

, (3.6)

we can compute the parameters of the distribution from the first four moments with the
simple expressions

r=
6(D−Q2−1)

2D−3Q2−6
, ν=− r(r−2)Q

√

16(r−1)−Q2(r−2)2
,

a=
√

θ

√

r−1− 1

16
Q2(r−2)2, λ=v− 1

4
(r−2)Q

√
θ,

(3.7)

‡The standard notation for the shape factor is m, which we write m̄ in order not to confuse it with the particle
mass.
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Figure 2: Pearson Type IV distributions with unit temperature, zero velocity and different third and fourth
moment, Q and D. In equilibrium, Q=0, D=3, the distribution becomes Gaussian.

which can also be found, e.g., in [19]. Because ν and a need to be real and r>−2 (m̄>0),
we find the realizability condition

D≥D(crit) =
48+39Q2+6

√

(4+Q2)3

32−Q2
, |Q|<

√
32 (3.8)

for Pearson IV when given the first four moments.

It is very important to note that for Q =0 we have ν=0 and a =
√

(2m̄−3)θ and it is
easy to see that

lim
m→∞

f (P1)(c;λ,a,m̄,0)= lim
m→∞

1

ak

1
(

1+
(

c−λ
a

)2
)m̄ =

1√
2πθ

exp(− (c−λ)2

2θ
), (3.9)

hence, the Pearson distribution reduces to a Gaussian if the shape factor m̄ goes to infinity
and Q = 0. Only for m̄→∞ the distribution has exponential decay, while for m̄ < ∞ it is
heavy-tailed.

Fig. 2 shows some examples of Pearson IV distributions for different values of the
reduced third and fourth moment. All curves have zero velocity and unit temperature.

3.2 Three-dimensional case

3.2.1 Definition

The gas particle velocity c∈R
3 is a vector in 3-space. Hence, the Pearson IV distribution

introduced in the previous section needs to be extended to the three-dimensional case.
In this setting the translation becomes a vector λ∈R

3, and the scale a symmetric positive
definite 3×3-matrix A∈R

3×3. The skewness parameter ν is supplemented by a direction
of the skewness n∈ S2. The shape parameter m̄ > 0 remains the same. In this way the
distribution is described by 14 real parameters.
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The distribution function is given by

f (P3)(c;λ,A,m̄,ν,n)=
1

det(A)K

exp
(

−νarctan
(

nTA−1(c−λ)
))

(

1+(c−λ)T A−2(c−λ)
)m̄ (3.10)

with normalization constant

K =
1

det(A)

∫∫∫

R3

exp
(

−νarctan
(

nTA−1(c−λ)
))

(

1+(c−λ)T
A−2(c−λ)

)m̄ dc. (3.11)

This constant does only depend on m̄ and ν which is shown in Appendix A.2.1. There,
it is also demonstrate that the three-dimensional integral factorizes into integrals over
1D Pearson distributions. This procedure is key to the computation of moments of the
distribution in three dimensions and leads to the fact that all 3D-moments are analytically
computable with expressions very similar to the one-dimensional case.

3.2.2 Velocity and general moments

The velocity can be expressed by

v=
∫∫∫

R3
c f (P3) (c;λ,A,m̄,ν,n)dc=λ+A

∫∫∫

R3
c̃ f (P3)(c̃;0,I,m̄,ν,n)dc̃ (3.12)

with the transformation of c as in Appendix A.2.1. From tensor representation theory the
remaining integral must have the form

∫∫∫

R3
c̃ f (P3)(c̃;0,I,m̄,ν,n)dc̃=αn, (3.13)

since n is the only available vector in the integrand. The scalar α follows from scalar
multiplication with n which transforms the vectorial integral into a scalar one and reads
α=− ν

2(m̄−2)
(see Appendix A.2.1) such that we find

v=λ− ν

2(m̄−2)
An (3.14)

for the velocity. Here, in the three-dimensional case it is useful to define

r=2(m̄−2) (3.15)

instead of (3.3). With this the similarity of the moment expressions of the one- and three-
dimensional case becomes clear. We will use r(1D) and r(3D) in the rare cases where confu-
sion is possible.

General moments of the Pearson distribution are defined by

Mi1···in
=
∫∫∫

R3
(ci1−vi1)···(cin

−vin
) f (P3) (c;λ,A,m̄,ν,n)dc, (3.16)
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which are tensorial quantities of degree n. To compute the moments this integral will be
transformed according to

Mi1···in
=
∫∫∫

R3
(Ai1 j1 c̃j1 +λi1−vi1)···(Ain jn c̃jn +λin

−vin
) f (P3)(c̃;0,I,m̄,ν,n)dc̃

= Ai1 j1 ···Ain jn

∫∫∫

R3
(c̃j1 − ṽj1 )···(c̃jn − ṽjn) f (P3) (c̃;0,I,m̄,ν,n)dc̃ (3.17)

with the abbreviation
ṽ=−ν

r
n. (3.18)

A general expression for the remaining integral has not been found. To evaluate it for
specific cases below it is useful to know the integral

µ̃
p,q
n =

1

K

∫∫∫

R3
(c̃1− ṽ1)

n c̃
p
2 c̃

q
3

exp(−νarctan(c̃1))
(

1+ c̃2
1+ c̃2

2+ c̃2
3

)m̄ dc̃, (3.19)

which can be viewed as a generalization of the one-dimensional moments µn. In the for-
mula p and q are even otherwise µ̃

p,q
n =0. Additionally, we have the symmetry µ̃

p,q
n = µ̃

q,p
n .

In Appendix A.2.2 it is shown that µ̃
p,q
n satisfies a recursion similar to the one-dimensional

case. It reads

µ̃
p,q
n =

1

r−(p+q)−(n−1)

(

(n−1)

(

1+
(ν

r

)2
)

µ
p,q
n−2−(2(n−1)+p+q)

ν

r
µ

p,q
n−1

)

(3.20)

with starting condition

µ̃
p,q
0 =(p−1)!!(q−1)!!

p+q
2

∏
k=1

1+( ν
r−2k+2)

2

r−2k+1
(3.21)

and µ
p,q
−1 = 0. Note that µ

p,q
1 does not vanish in general, instead it is given by a lengthy

expression. However, it turns out that this expression is identically obtained from the
recursion for n = 1 when setting µ

p,q
0 to the value above and formally setting µ

p,q
−1 = 0.

Setting p = q = 0 this recursion is identical to (3.5), except that r is defined differently in
the 3D case.

3.2.3 Second to fourth moment

The second moment, that is, the variance matrix, is given by

Mij = Aik Ajl

∫∫∫

R3
(c̃k− ṽk)(c̃l− ṽl) f (P3)dc̃, (3.22)

where we have from tensor representation theory

M̃kl =
∫∫∫

R3
(c̃k− ṽk)(c̃l− ṽl) f (P3)dc̃ =αnknl +βδkl . (3.23)
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Multiplying by nknl and δkl yields the equations

µ̃0,0
2 =α+β, µ̃0,0

2 +µ̃2,0
0 +µ̃0,2

0 =α+3β (3.24)

for α and β. From the recursion formula we find µ̃2,0
0 = µ̃2,0

2 and thus α = 0 and β = µ̃0,0
2 .

Hence, the second moment reads

M=Θ= µ̃0,0
2 A2 =

1+
(

ν
r

)2

r−1
A2, (3.25)

where we introduced the temperature tensor Θ.
Following the same derivation for the third moment as for the second, we first have

the representation

Mijk = Ail AjpAkq

∫∫∫

R3
(c̃l− ṽl)(c̃p− ṽp)(c̃q− ṽq) f (P3)dc̃

= Ail AjpAkq

(

αnlnpnq+βn(l δpq)

)

= Ail AjpAkq M̃lpq. (3.26)

Multiplication of M̃lpq with nlnpnq and nl δpq gives equations for α and β that involve µ̃0,0
3 ,

µ̃2,0
1 , and µ̃0,2

1 . We additionally have µ̃2,0
1 =µ̃0,2

1 = 1
2 µ̃0,0

3 from the recursion formula and with

this the solution reads α=− 1
2 µ̃0,0

3 and β= 3
2 µ̃0,0

3 . Thus, the third moment is given by

Mijk = µ̃0,0
3 Ail Ajp Akq

(

−1

2
nlnpnq+

3

2
n(l δpq)

)

. (3.27)

The fourth moment can be represented

Mijkl = Ail Ajp Akq Als

∫∫∫

R3
(c̃l− ṽl)(c̃p− ṽp)(c̃q− ṽq)(c̃s− ṽs) f (P3)dc̃

= Ail Ajp Akq Als

(

αnlnpnqns+βn(lnp δqs)+γδ(lpδqs)

)

= Ail AjpAkq Als M̃lpqs (3.28)

and multiplication of M̃lpqs with nlnpnqns, nlnpδqs and δlpδqs gives equations for α, β, and
γ with the solution

α= µ̃4,0
0 −µ̃0,0

4 , β=−2
(

µ̃4,0
0 −µ̃0,0

4

)

, γ= µ̃4,0
0 . (3.29)

We now introduce the dimensionless quantities

Q=
µ̃0,0

3
(

µ̃0,0
2

)3/2
=

4ν

r−2

√

r−1

r2+ν2
,

D=
µ̃0,0

4
(

µ̃0,0
2

)2
=

3(r−1)

(r−2)(r−3)

(

6+r− 8r2

r2+ν2

)

,

(3.30)
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which are analogously defined in the one dimensional case. According to (3.7), the pa-
rameters r and ν and thus all µ

p,q
n become functions of Q and D. In particular, we find

µ̃4,0
0 =

(

1− 3

4
Q2/D

)

µ̃0,0
4 .

With the definition

N=Θ
1/2 n, (3.31)

we can write the third and fourth moment in the form

Mijk =
1

2
Q
(

−NiNjNk +3N(i Θjk)

)

, (3.32)

Mijkl =
(

D− 3

4
Q2
)

Θ(ijΘkl)+
3

4
Q2
(

−NiNjNkNl +2N(iNjΘkl)

)

. (3.33)

3.2.4 Reduction to Maxwellian

According to (3.25) we have A=
√

(2m̄−5)Θ for ν=0 and it can be shown that similar to
the one-dimensional case

lim
m̄→∞

f (P3) (c;λ,A,m̄,0,n)= lim
m̄→∞

1

det(A)K

1
(

1+(c−λ)T
A−2(c−λ)

)m̄

=
1

√

det(2πΘ)
exp

(

− 1

2
(c−λ)T

Θ
−1(c−λ)

)

. (3.34)

Hence, the Pearson distribution reduces to an anisotropic Gaussian. In that case the shift
is nothing but the velocity λ=v. If additionally the temperature tensor is isotropic Θ=θI,
the distribution function reduces to the Maxwellian (2.8). In the solution of the moment
equations this reduction to the Maxwellian distribution is realized by relaxation of the
non-equilibrium variables. This relaxation forces the heat flux and thus ν to vanish and
the temperature tensor to become isotropic.

4 Moment equations

We will use Pearson-Type-IV distribution functions as distribution model to solve the
closure problem in kinetic theory.

4.1 1D: An instructive study

It is instructive to investigate the case of a one-dimensional velocity space for f . The
kinetic equation (2.7) then reduces to

∂t f +c∂x f =0 (4.1)
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with a real-valued velocity c. We consider the moments up to fourth order

ρ=m
∫

f (c)dc, ρv=m
∫

c f (c)dc, ρθ =m
∫

(c−v)2 f (c)dc, (4.2)

q=m
∫

(c−v)3 f (c)dc, ∆=m
∫

(c−v)4 f (c)dc, (4.3)

which are all scalar in this case. They have an interpretation of density ρ, mean velocity
v, temperature θ and a quasi-heat flux q. Temperature, heat flux and fourth moment
are defined as central or non-convective moments integrating the distribution function
shifted by the mean velocity v.

4.1.1 Five moment equations

The corresponding moment equations for the five moments given in (4.2)/(4.3) read

∂tρ+∂xρv=0,

∂tρv+∂x

(

ρv2+ρθ
)

=0,

∂t

(

ρv2+ρθ
)

+∂x

(

ρv3+3ρθv+q
)

=0,

∂t

(

ρv3+3ρθv+q
)

+∂x

(

ρv4+6ρθv2+4qv+∆
)

=0,

∂t

(

ρv4+6ρθv2 +4qv+∆
)

+∂x

(

ρv5+10ρθv3 +10qv2+5∆v2+R
)

=0,

(4.4)

with the highest central moment

R=m
∫

(c−v)5 f (c)dc, (4.5)

which needs to be related to the lower moments in order to close the system. It is easy to
set up the model distribution of Grad (2.15) specialized to the one-dimensional case with
up to fourth order moments given. The result for the fifth moment is

R(Grad) =10θq, (4.6)

that is, R is proportional to heat flux. Similar to the full 3D case discussed above, the
resulting moment equations are not hyperbolic. The region of hyperbolicity can be dis-
played in the plane spanned by the dimensionless quantities q/(ρθ3/2) and ∆/(ρθ2) and
is shown on the left hand side of Fig. 3 (green area). Equilibrium is given at the black
dot in the middle of the plot. Note, that the even moment ∆ exhibits an equilibrium
value of 3ρθ2. The figure also shows the result of a Riemann problem with a density and
pressure ratio of 4.5 which reaches into the elliptic region and develops oscillations. The
qualitative behavior is identical to the 3D case shown in Fig. 1.

To establish hyperbolicity we suggest to take a Pearson-IV distribution as model. We
write

f (c)=
ρ

m
f (P1)

(

c;λ,a,1+ r
2 ,ν
)

, (4.7)
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Figure 3: One-dimensional kinetic theory: Failure of Grad closure similar to the full 3D case. The right plot the
solution of a Riemann problem. It is also shown in the phase space together with the hyperbolicity region (in
green) in the left plot.

Figure 4: One-dimensional kinetic theory: Left: Hyperbolicity region (green area) with Riemann problem for
Pearson5-closure. Right: Riemann problem solution for density.

Figure 5: One-dimensional kinetic theory: Contours of maximal characteristic speed of Pearson5 closure.
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with f (P1) from (3.1) but we used r from (3.3) as shape parameter, and m as the particle
mass. As shown above moments up to fourth order are necessary and sufficient to fix
the parameters of the Pearson distribution. The essential parameters from (3.6) are in this
context given by

Q=
q

ρθ3/2
, D=

∆

ρθ2
, (4.8)

and with these we can compute the parameters of the distribution via (3.7). The recursion
for the moments (3.5) finally gives an explicit expression for the fifth moment

R(Pearson5)(Q,D)=2θq
D2−3Q2+7D

3Q2−D+9
, D< D(max)(Q)=9+3Q2. (4.9)

We denote this closure by Pearson5, expressing the fact that we used 5 moment equations
in (4.4). Note, that when the fraction in (4.9) is expanded around (Q,D)=(0,3), we obtain
the result of Grad (4.6). Hence, the Pearson5-closure is a non-linear extension of Grad.
For D=D(max)(Q)=9+3Q2 the fifth moment tends to infinity, because the shape factor r
and hence the exponent m̄ in (3.1) becomes too small for the fifth moment to exist. Fig. 4
shows the region of hyperbolicity of the Pearson5-closure (green area) together with the
solution of a Riemann problem with density and pressure ratio of 20. The result is free of
oscillations.

For given third and fourth moment the Pearson distribution is only realizable if
D > D(crit)(Q) holds as stated in (3.8). This corresponds to the region above the red line
in Fig. 4. Interestingly, hyperbolicity is also given below this line and also the solution
of the Riemann problem does not respect this realizability constraint. It seems that the
singularity occurring in the expression for ν in (3.7) cancels out in the closure of the mo-
ment equations. Indeed, the relation (4.9) does not show any problems along this line.
However, the singularity of R(Pearson5) at D = D(max)(Q) can be observed in the moment
equations. This line is given as black line in Fig. 4. To investigate this singularity we plot
the hyperbolicity region in Fig. 5 together with contours of the maximal characteristic
speed of the system. It is clearly seen that along the line D=D(max)(Q) the maximal char-
acteristic speed becomes infinite as the result of the singularity of R. The dashed lines in
Fig. 5 will be discussed below.

4.1.2 Four moment equations

If we only consider moments up to third order, the relevant moment equations are given
by (4.4) with dropping the last line. The basic variables are (ρ,v,θ,q) and ∆ requires a
closure. This situation corresponds to the 13-moment-equations in 3D.

Grad’s distribution function gives ∆=3ρθ2 but again this shows only limited hyper-
bolicity for q/(ρθ3/2)<0.91. To use Pearson’s distribution requires to fix one parameter
in the definition (3.1) or equivalently, relate one moment to all the others.

We will use the reduction D = D(Q) by defining an appropriate curve in Fig. 5. Nat-
urally, the curves should contain the equilibrium point (Q,D)= (0,3). The closure then
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Figure 6: One-dimensional kinetic theory: Maximal characteristic velocities for the reduced moment equations
with both realizable and singular Pearson4-closure.

follows from

∆(Pearson4) =ρθ2D(q/(ρθ3/2)). (4.10)

Two interesting examples are shown in the figure by dashed lines. The first curve lies in
the realizable region and has been obtained from estimating the critical curve (3.8) by

D(crit)
<

48+39Q2+3
√

(4+Q2)4

32−Q2
=3
(

1+Q2 22+Q2

32−Q2

)

, (4.11)

which gives

D(realizable)(Q)=3
(

1+Q2 22+Q2

32−Q2

)

, |Q|<
√

32. (4.12)

With this closure the solution of the reduced moment system with four equations will
always have an underlying realizable Pearson Type IV distribution function. For |Q|→√

32 the maximal characteristic speed tends to infinity.

The second dashed curve in Fig. 5 represents another interesting case. Along the line

D(singular)(Q)=3
(

1+
1

2
Q2
)

, (4.13)

the shape factor r (and thus m) becomes infinite as can be seen from (3.7). As a result
the distribution function shows exponential decay. To some extend this case is closest
to the exponential distribution functions of Grad or maximized-entropy-distributions.
Even though there exists no realizable Pearson distribution it turns out that the induced
moment equations show an extended region of hyperbolicity with no limitation for Q.
Additionally, the maximal characteristic speed exhibits smaller values. The situation is
depicted in Fig. 6 where the maximal speed is shown for the closure based on D(realizable)

and for the closure D(singular). In the first case the speed increases quickly and becomes
infinite at Q=

√
32≈5.66, while the second curve has much more modest speed values.
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4.2 3-D closure

In the full three dimensional case we consider the 13 moments

ρ=m
∫

f (c)dc, ρvi =m
∫

ci f (c)dc,
3

2
ρθ =m

∫

1

2
C2 f (C)dC, (4.14)

pij =m
∫

CiCj f (C)dC, qi =m
∫

1

2
C2Ci f (C)dC, (4.15)

that is, density ρ, velocity vi, temperature θ, pressure tensor pij and heat flux qi. The
central moments are based on the velocity Ci=ci−vi. The pressure p=ρθ is the trace of the
pressure tensor pkk =3p. Dividing the pressure tensor by density yields the temperature
tensor such that pij =ρΘij and θ =3Θkk. The corresponding moment equations are given
by

∂

∂t
ρ+

∂

∂xi
(ρvi)=0,

∂

∂t
(ρvi)+

∂

∂xj

(

ρvivj +pij

)

=0,

∂

∂t

(

ρvivj +pij

)

+
∂

∂xk

(

ρvivjvk +3p(ijvk)+mijk

)

=0,

∂

∂t

((

1

2
ρv2

k +
3

2
p

)

vi+pikvk +qi

)

+
∂

∂xj

((

1

2
ρv2

k +
3

2
p

)

vivj+
1

2
pijv

2
k

+2v(i pj)kvk +2q(ivj)+mijkvk +
1

2
Rij

)

=0,

(4.16)

which require closures for the higher moments

mijk =m
∫

CiCjCk f (C)dC and Rij =m
∫

CiCj C
2 f (C)dC. (4.17)

Note that the trace of the third moment is related to the heat flux qi =
1
2 mikk.

For the closure we use the 3D Pearson distribution (3.10) and write

f (c)=
ρ

m
f (P3)

(

c;λ,A,2+ r
2 ,ν,n

)

(4.18)

as distribution model with r from (3.15). As introduced in Section 3.2.3 we replace the
parameters ν and r by Q and D according to (3.30). The parameter Q and the direction
n have to follow from the trace of the general third moment Mijk given in (3.32), which
corresponds to the heat flux in our case. We find

qi =
ρ

2
Mikk =

ρ

2
Q

(

1

2

(

3θ−N2
k

)

δik +Θik

)

Nk (4.19)
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or using the definition (3.31)

qi =
ρ

2
QΘ1/2

ij

(

1

2
(3θ−nlΘlmnm)δjk +Θjk

)

nk, (4.20)

where we re-introduced the vector n explicitly.

For i=1,2,3 these are three equations to compute the direction n and Q, since density
and temperature tensor are known. The equations are non-linear in the components of
n and can not be explicitly solved. However, it is possible to design a simple iteration to
find the solution approximately with only few matrix inversions.

Algorithm 4.1:

Let the matrix Bik(κ) be defined by

Bik(κ)=Θ1/2
ij

(

3θ−κ

2
δjk +Θjk

)

. (4.21)

With κ =θ we find the zeroth iteration Q(0) and n
(0)
i for Q and ni by inversion

ñ
(0)
i =

2

ρ
B−1

ik (θ)qk, Q(0) =
∥

∥

∥
ñ

(0)
i

∥

∥

∥
, n

(0)
i =

ñ
(0)
i

Q(0)
(4.22)

and successive approximations by

ñ
(s)
i =

2

ρ
B−1

ik

(

n
(s−1)
l Θlmn

(s−1)
m

)

qk, Q(s)=
∥

∥

∥
ñ

(s)
i

∥

∥

∥
, n

(s)
i =

ñ
(s)
i

Q(s)
(4.23)

for s=1,2,···.

Convergence of this fix point iteration can be demonstrating in a straight forward
way using the fact that Bik is positive definite for 0<κ<3θ. Numerical evaluation shows
that s = 1 already gives a very good approximation to the exact solution. The norm of
the deviation of the true and approximated direction is below 2%, with the maximum
deviation occurring for extreme values of the temperature tensor.

Once Q and ni are known the full third moment can be evaluated using (3.32) and
yields

m
(Pearson13)
ijk =ρMijk

=
ρ

2
Q
(

−NiNj Nk+3N(i Θjk)

)

(4.24)
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with Ni =Θ1/2
ij nj. Similarly, the trace of the fourth moment (3.33) is given by

R
(Pearson13)
ij =ρMijkk

=ρ

(

D− 3

4
Q2

)(

Θijθ+
2

3
Θ2

ij

)

+ρ
Q2

4

(

3
(

θ−N2
)

NiNj+N2Θij+4NkΘk(iNj)

)

, (4.25)

which requires the knowledge of D. At this point we use the reduced Pearson4-closures
of the one-dimensional setting above. Hence, the two possibilities D = D(realizable)(Q) or
D= D(singular)(Q) given in (4.12) and (4.13) will be investigated.

4.3 3-D closure in one space dimension

In order to study hyperbolicity of the new closure we specialize the equation to processes
that vary only in a single space dimension. The 13 fields reduce to five relevant variables

U ={ρ,vx,p,pxx,qx} (4.26)

with the equations

∂tρ+∂xρvx =0,

∂tρvx +∂x

(

ρv2
x +pxx

)

=0,

∂t

(

1

2
ρv2

x +
3

2
p

)

+∂x

((

1

2
ρv2

x +
3

2
p

)

vx+pxxvx+qx

)

=0,

∂t

(

ρv2
x +pxx

)

+∂x

(

ρv3
x +3pxxvx +mxxx

)

=0,

∂t

((

1

2
ρv2

x +
3

2
p

)

vx +pxxvx +qx

)

+∂x

((

1

2
ρv2

x +
3

2
p

)

v2
x+

5

2
pxxv2

x

+ 2qxvx+mxxxvx +
1

2
Rxx

)

=0,

(4.27)

where mxxx and Rxx require closure relations. In one space dimensional processes the
pressure tensor is diagonal and can be written pij = diag(p+σ,p− 1

2 σ,p− 1
2 σ) using the

shear stress σ = pxx−p = ρ(Θxx−θ). With this we have Θxx/θ = 1+σ/p. Additionally,
we have qi = (qx,0,0) which together with the structure of pij induces ni = (1,0,0) and

Ni =(
√

Θxx,0,0). Hence, the equation (4.19) for Q can be written

qx =
ρ

2
Q

(

3

2
θ+

1

2
Θxx

)

√

Θxx (4.28)

and we find

Q=
4qx

ρθ
√

Θxx (3+Θxx/θ)
=

qx

ρθ3/2
√

1+σ/p
(

1+ 1
4 σ/p

) (4.29)
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Figure 7: Realizable Pearson closure for 3D moment equations. The figure shows the hyperbolicity region with
contours of the maximal characteristic speed in one space dimension. Additionally, pathes of shock tube and
shock wave Riemann problems are displayed according to Section 6.

Figure 8: Singular Pearson closure for 3D moment equations. The figure shows the hyperbolicity region with
contours of the maximal characteristic speed in one space dimension. Additionally, pathes of shock tube and
shock wave Riemann problems are displayed according to Section 6.

as explicit expression for Q. For the closure for mxxx and Rxx we now easily find with
(4.24) and (4.25) the relations

m(Pearson13)
xxx =qx

1+σ/p

1+ 1
4 σ/p

and R(Pearson13)
xx =

ρDθ2

3
(1+σ/p)(5+2σ/p) , (4.30)

where we have to use D=D(realizable)(Q) or D=D(singular)(Q) as given in (4.12) and (4.13).
The hyperbolicity region for both cases are shown in Fig. 7 and Fig. 8 together with

contours of maximal characteristic speeds. Both figures can be compared to the hyper-
bolicity region of Grad’s 13-moment-equations shown in Fig. 1. The first figure shows
the realizable closure for which the fourth moment Rxx becomes infinite when |Q|→32.



M. Torrilhon / Commun. Comput. Phys., 7 (2010), pp. 639-673 661

This defines a line in the plane of Fig. 7 towards which the maximal characteristic speed
also tends to infinity. Apart from this the equations stay hyperbolic for physical values
of σ/p<2.

The singular closure shown in Fig. 8 does not show any tendency for infinite maximal
characteristic speed. From the contours it is visible that close to equilibrium in the origin
both closures are equivalent. However, the singular closures shows a much more mod-
erate growth of the maximal speed. Hence, even though it lacks an underlying explicitly
realizable distribution function this closure might be of better use in numerical computa-
tions. Numerical examples considering Riemann problems for both Pearson13-closures
are presented below.

5 Discussion

The proposed closures can be discussed from different point of views.

5.1 Numerical point of view

The approximation of the kinetic equation (2.7) by moments can be viewed as a type of
spectral method using monomials as test functions and an ansatz space represented by
the model for the distribution function. Numerically, the obvious choice for the ansatz
space would be the linear space opened by compact basis function, for example hat func-
tions ϕi(c). The distribution would have the form f (c)=∑λi ϕi(c). The resulting system
of moment equations would be strongly related to standard discrete velocity schemes for
kinetic equations. Even though such an approach is very simple, the clear disadvantages
are that the Maxwell distribution, i.e., equilibrium, can not be exactly represented with
this ansatz and the moment equations also do not exhibit Galilei invariance. Further-
more, positivity of the distribution function is not easily assured. Interestingly, hyper-
bolicity of discrete velocity schemes is obvious, because every value of the distribution
function is simply advected.

The Pearson distribution (3.10) must be viewed as a representation of a non-linear
ansatz space that includes Maxwell distribution and guarantees Galilei invariance and
positivity. There is no general theory that gives statements about hyperbolicity of the
resulting moment equations, except for the maximum entropy distribution (2.16). Hence,
hyperbolicity can only be checked numerically as done in this paper.

The singular closure seems to exhibit a global region of hyperbolicity for all physical
values of the phase space. However, the corresponding distribution function is not realiz-
able. As alternative, the realizable closure shows loss of hyperbolicity for some physical
values of the phase space. However, this loss of hyperbolicity can be considered robust
because of the following reason. In a numerical computation which reaches values close
to the border of the hyperbolicity region the characteristic speed tends to infinity forcing
the time step of the computation to go to zero before leaving the hyperbolicity region.
This behavior simply indicates that the solution shows a non-equilibrium that can not
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be represented by a Pearson distribution. Note, that the loss of hyperbolicity in Grad’s
equations is not robust, i.e., complex eigenvalues arise at finite characteristic speeds.

5.2 Thermodynamical point of view

There is no rigorous a priori statement about the shape of the distribution function except
in equilibrium where it becomes a Maxwellian. In this way both the ansatz of Grad (2.15)
and the maximum entropy distribution (2.16) are somewhat arbitrary. These ansatzes
can be supported by mathematical statements, like a Hermite expansion or entropy max-
imization, but remain ad hoc. Of course, the choice of a Pearson distribution is no ex-
ception. But it leads to practical moment equations contrary to the maximum entropy
distribution, and to hyperbolicity in opposition to Grad’s equation.

When using the realizable closure (4.12) in (4.25) it is possible to define an entropy
from the distribution function (4.18) by

η(P3) =m
∫

R3
f (c) ln f (c)dc

=−ρln(det(A)K/ρ)

−ρν
∫

R3
arctan

(

nTA−1(c−λ)
)

f (P3)(c)dc

−ρ r+4
2

∫

R3
ln
(

1+(c−λ)T
A−2(c−λ)

)

f (P3)(c)dc, (5.1)

which reduces to the entropy ln
(

p/ρ5/3
)

in equilibrium because the Pearson distribution
reduces to a Maxwellian in that case. An entropy can not be defined for Grad’s distri-
bution due to negative values of the distribution functions. Only in the linearized case
Grad’s equations can be shown to admit a quadratic entropy, see for example [27]. By
definition the maximum entropy distribution allows to write down an entropy which
additionally can be shown to be convex. This immediately implies symmetrizing vari-
ables for the moment equations and thus hyperbolicity [18]. Convexity for the Pearson
entropy (5.1) is unclear and remains future work.

5.3 CFD point of view

Moment equations have been utilized in computational fluid dynamics both for contin-
uum and non-equilibrium flows [16,23,29]. In the case of continuum flows the computa-
tional advantage of moment equations over standard compressible viscous flow models
is the first order structure which allows numerical methods to use less structured grids.
However, especially for high-speed applications the lack of hyperbolicity induced serious
drawbacks whenever strong non-equilibrium occurs either local in time or in space. For
this reason only the globally hyperbolic 10-moment-equations based on the maximum
entropy distribution (2.16) have been used in [16, 23].
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However, the 10-moment-system assumes vanishing heat conduction which is inap-
propriate in most high speed flow situations. The proposed closure of this paper based on
Pearson distribution offers an alternative which exhibits the necessary robustness due to
hyperbolicity and includes heat conduction. If we are only interested in hyperbolic first
order equations that model heat conduction and viscous stresses, and not in the detailed
approximation of a kinetic equations, the singular closure should be used.

6 Numerical examples

In this section we present some numerical results for (4.27) with the Pearson13 closure in
one space dimension. We consider Riemann problems with initial conditions

u0(x)=

{

(ρ,vx,p,σ,qx)=(ρ(1),v
(1)
x ,p(1),0,0), x<0,

(ρ,vx,p,σ,qx)=(ρ(0),v
(0)
x ,p(0),0,0), x≥0,

(6.1)

which develop a series of waves propagating away from the origin. The moment equa-
tions are solved with a standard second order finite volume method using a HLL Rie-
mann solver for intercell fluxes and vanLeer-Limiter, see [14].

6.1 Shock tube

The Riemann problem corresponds to a shock tube experiment if we set v
(0)
x = v

(1)
x = 0,

ρ(0)=p(0)=1 and ρ(1)
>ρ(0), p(1)

>p(0). This is both a standard test problem in gas dynam-
ics and for computational methods [14]. In gas dynamics described by Euler equations
the result shows a shock wave moving into the low pressure region and a rarefaction
fan opening towards the high pressure. The result for the moment equations differ from
this picture because we approximate free flight of particles according to (2.7) without
any collisions. Only when adding dissipation, like collisional relaxation, to the moment
equations the results will turn into the gas dynamical solutions [2,28]. Here, we use these
Riemann problems to check and verify the findings about hyperbolicity and study the
behavior of the new closure.

First, we choose ρ(1) = p(1) = 4 in order to be able to compare to the result of Grad
which is shown in the top row of Fig. 1. Due to a different closure by Pearson the wave
structure changes as can be seen in Fig. 9, which shows density and heat flux profiles. The
similarities of the curves in the plots support the statement given above that Pearson and
Grad become equivalent close to equilibrium. Additionally, the realizable and singular
closure does not show strong differences.

For large values of ρ(1)/ρ(0) and p(1)/p(0) the Grad closure fails due to lack of hyper-
bolicity. However, the Pearson closure is capable to compute very strong shock tubes. In
Fig. 10 we show the solution for ρ(1) = p(1) = 50. The plots show the density, pressure,
stress and heat flux profiles both for the realizable and singular closure. Differences are
only visible for the first two waves to the right which are faster for the realizable closure.
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Figure 9: Comparison of the results of Grad13 and Pearson13 closure for a weak shock tube.

Figure 10: Strong shock tube problem for Pearson13 with realizable and singular closure. Only the first and
second wave to the right show significant differences.

The spatial resolution of the numerical method was ∆x = 1.3×10−3 and the end time
tend = 0.7. To satisfy the CFL condition, the constant time step was chosen according to
the highest characteristic velocity observed in the solution, which was cmax/

√
θ =30 for

the realizable and cmax/
√

θ = 5 for the singular closure. Hence, the computation of the
singular closure in Fig. 10 was able to use a clearly bigger time step. Both solutions are
shown projected into the region of hyperbolicity in Fig. 7 for the realizable closure and
Fig. 8 for the singular closure. From these plots the maximal characteristic speeds can be
read off.

Note, that the heat flux and normal stress show very large values in Fig. 10 indicating
a very strong non-equilibrium. As soon as dissipation is added to the moment system,
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Figure 11: Riemann problem with shock wave initialization for Pearson13 with realizable and singular closure.
Significant differences can be observed.

i.e., collisions are included, these values will be damped and decrease quickly with time.
The collisionless situation shown here represents the worst case scenario moment equa-
tions have to be able to face.

6.2 Shock wave

In another Riemann problem we consider initial data that are chosen from Rankine-
Hugoniot conditions connecting a shock wave in classical gas dynamics. That is, we take
for the left hand side (ρ(1),v(1),p(1)) = (1,M0,1) with inflow Mach number M0 and for
the right hand side (ρ(0),v(0),p(0)) = (ρ(RH) (M0), v(RH)(M0), p(RH) (M0)), see, e.g., [33].
Clearly, the solution of the homogeneous moment equations will not show a shock wave
profile due to lack of collisions. Instead, several waves arise similar to the shock tube.
When adding dissipation these waves are damped away to create a shock profile. As
above, the collisionless setting creates a strong non-equilibrium which represents the
worst case situation for moment equations.

Fig. 11 shows the result for M0 =4 both for the realizable and singular Pearson13 clo-
sure. The values of density and pressure are normalized and shifted such that left and
right values are 0 and 1. Both cases use a spatial resolution of ∆x = 2.25×10−3 and the
end time tend = 0.2. The constant time step was chosen according to the highest charac-
teristic velocity observed in the solution, which was cmax/

√
θ=280 for the realizable and

cmax/
√

θ =15 for the singular closure.
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A close inspection of the result shows that the fastest wave to the left shows signif-
icant differences between the closures. For the singular closure, the fastest wave to the
left is located at x=−2.2 and clearly visible in pressure, stress and heat flux. For the real-
izable closure this wave is almost not visible in density, pressure, stress and velocity (not
shown), but only in heat flux. However, this wave is so fast that for the time shown it
has left the domain shown in Fig. 11 (top right) and is located at approximately x=−9.5.
Viewing the solution in the region of hyperbolicity, Fig. 7 shows that this wave reaches
values close to the border and, thus, produces large wave speeds. The solution of the
singular closure remains in regions with moderate wave speeds, see Fig. 8.

7 Conclusion

This paper proposes a new practical closure for moment equations in kinetic gas the-
ory that establishes global hyperbolicity. This closure is considerably superior to both
the classical Grad closure which is known to have a finite region of hyperbolicity, and
the maximum entropy closure which has practical and theoretical problems to produce
explicit constitutive relations. As a model for the distribution function the new closure
assumes a Pearson-Type-IV distribution which possesses enough parameters to close the
moment equations with the 13 fields density, velocity, temperature, pressure deviator
and heat flux. A major advantage of the Pearson distribution is that all moments can
be expressed analytically. The final closure comes in two variants. The realizable ver-
sion guarantees the existence of a distribution function for the solution of the moment
system, but characteristic speeds may tend to infinity. This is avoided in the singular
variant, which however, does not have a realizable distribution function everywhere.

A few solutions of Riemann problems in one space dimension demonstrate the be-
havior of the closure variants. In future work the new equations have to be studied in
one and more dimensions and coupled to dissipation like relaxation and diffusion.

Appendix

A.1 One-dimensional

A.1.1 Velocity

For the velocity of the distribution we again use the transformation c̃ = (c−λ)/a⇔ c =
ac̃+λ to find

v=
1

ak

∫ ∞

−∞
c

exp
(

−νarctan
(

c−λ
a

))

(

1+
(

c−λ
a

)2
)m dc=λ+

a

k

∫ ∞

−∞
c̃

exp(−νarctan(c̃))

(1+ c̃2)m dc̃, (A.1)

where the integral can be reduced by the transformation

x=arctan(c̃) ⇔ c̃= tanx with dx=
1

1+ c̃2
dc̃=cos2 xdc̃ . (A.2)
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This leads to the integral

v=λ+
a

k

∫ π

−π
sinx cos2(m−1)−1xexp(−νx)dx (A.3)

which has the form
∫

u(x)v′(x)dx and we use partial integration with v′(x) =

sinx cos2(m−1)−1x and u(x)=exp(−νx) to find

v=λ− ν

2(m−1)

a

k

∫ ∞

−∞
cos2(m−1) xexp(−νx)dx=λ− aν

2(m−1)
(A.4)

after back-transforming of the integral and realizing that fP1 is normalized.

A.1.2 Recursion formula

The recursion formula is derived in four steps. First the integral is transformed to a
trigonometric integral where then suitable partial integration can be employed. The re-
maining integrals are then back-transformed and the definition of the moments is used.
At last the definition of velocity is inserted. We start with transforming the integral and
find

µn =
an

k

∫ ∞

−∞
(c̃− ṽ)n exp(−νarctan(c̃))

(1+ c̃2)m dc̃

=
an

k

∫ ∞

−∞
c̃(c̃− ṽ)n−1 exp(−νarctan(c̃))

(1+ c̃2)m dc̃− ṽaµn−1, (A.5)

where we introduced the reduced velocity

ṽ=− ν

2(m−1)
. (A.6)

The integral is now further transformed using the relation (A.2) which gives

µn =
an

k

∫ π

−π
sinx cosr−n x(sinx− ṽcosx)n−1exp(−νx)dx− ṽaµn−1, (A.7)

with r = 2(m−1). Here, partial integrations of the form
∫

u(x)v′(x)dx can be employed
with v′(x)=sinx cosr−n x and u(x)=(sinx− ṽcosx)n−1exp(−νx) which yields

µn =
an

r−n+1

(

n−1

k

∫ π

−π
cosr−n+1(x)(cosx+ ṽsinx)(sinx− ṽcosx)n−2exp(−νx)dx

− ν

an−1
µn−1

)

− ṽaµn−1, (A.8)

where the one part of the partial integration result have been identified immediately
by µn−1 after back-transforming. The remaining integral is further reduced such that
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moments µn−1 and µn−2 can be identified and gives us

1

k

∫ π

−π
cosr−n+1x(cosx+ ṽsinx)(sinx− ṽcosx)n−2exp(−νx)dx

=
1

k

∫ π

−π
cosr−n+2 x(sinx− ṽcosx)n−2exp(−νx)dx

+ ṽ
1

k

∫ π

−π
cosr−n+1xsinx(sinx− ṽcosx)n−2exp(−νx)dx

=
1

an−2
µn−2+ ṽ

1

k

∫ ∞

−∞
c̃(c̃− ṽ)n−2 exp(−νarctan(c̃))

(1+ c̃2)m dc̃

=
1

an−2
µn−2+

ṽ

an−1
µn−1+

ṽ2

an−2
µn−2, (A.9)

which together with the above leads to

µn =
an

r−n+1

(

(n−1)

(

1

an−2
µn−2+

ṽ

an−1
µn−1+

ṽ2

an−2
µn−2

)

− ν

an−1
µn−1

)

− ṽaµn−1.

(A.10)
Finally, this is inserted above together with the definition of the velocity ṽ. After some
algebra we find

µn =
a(n−1)

r−n+1

(

(1+
(ν

r

)2
)aµn−2−2

ν

r
µn−1

)

(A.11)

which is the asserted recursion formula.

A.2 Three-dimensional

A.2.1 Normalization constant and velocity

The normalization constant (3.11) only depends on m and ν which can be seen using the
transformation c̃=A−1(c−λ)⇔ c=Ac̃+λ on the integral to produce

K(m,ν)=
∫∫∫

R3

exp
(

−νarctan
(

nT c̃
))

(1+ c̃T c̃)m dc̃. (A.12)

This integral factorizes in a special way. We choose the coordinate system such that c̃1 =
nT c̃ and c̃T c̃= c̃2

1+ c̃2
2+ c̃2

3 with c̃2,3 = n̂T
2,3c̃ where n̂T

2,3n=0 and use the transformations

ĉ3 =
c̃3

√

1+ c̃2
1+ c̃2

2

, ĉ2 =
c̃2

√

1+ c̃2
1

, ĉ1 = c̃1 (A.13)
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successively which leads to

K(m,ν)=
∫∫∫

R3

exp(−νarctan(c̃1))
(

1+ c̃2
1+ c̃2

2+ c̃2
3

)m dc̃

=
∫

R

exp(−νarctan(c̃1))
∫

R

1
(

1+ c̃2
1+ c̃2

2

)m

∫

R

1
(

1+( c̃3√
1+c̃2

1+c̃2
2

)2

)m dc̃3dc̃2dc̃1

=
∫

R

exp(−νarctan(c̃1))
(

1+ c̃2
1

)m−1/2

∫

R

1
(

1+( c̃2

1+c̃2
1
)2
)m−1/2

dc̃2dc̃1

∫

R

1
(

1+ ĉ2
3

)m dĉ3

=
∫

R

exp(−νarctan(ĉ1))
(

1+ ĉ2
1

)m−1
dĉ1

∫

R

1
(

1+ ĉ2
2

)m−1/2
dĉ2

∫

R

1
(

1+ ĉ2
3

)m dĉ3

=K1(m,ν)K2(m)K3(m), (A.14)

where the three constants K1,2,3 are given by the three one-dimensional integrals over
ĉ1,2,3, which are nothing but integrals of one-dimensional Pearson distributions. Note
that in comparison to the one-dimensional case K1(m,ν)=k(m−1,ν), K2(m)=k(m−1/2,0)
and K3(m)= k(m,0).

To compute the velocity we need to find α according to (3.13). The integral can be
factorized as above and then easily gives

α=
1

K

∫∫∫

R3
nT c̃ f (P3)(c̃;0,I,m,ν,n)dc̃

=
1

K1K2K3

∫

R

c̃1
exp(−νarctan(c̃1))

(

1+ c̃2
1

)m−1
dc̃1

∫

R

1
(

1+ ĉ2
2

)m−1/2
dĉ2

∫

R

1
(

1+ ĉ2
3

)m dĉ3

=− ν

2(m−2)
. (A.15)

A.2.2 Recursion formula

For the recursion formula we use the same factorization procedure to find

µ̃
p,q
n =

1

K

∫∫∫

R3
(c̃1− ṽ1)

n c̃
p
2 c̃

q
3

exp(−νarctan(c̃1))
(

1+ c̃2
1+ c̃2

2+ c̃2
3

)m dc̃

=
1

K

∫

R

(c̃1− ṽ1)
n exp(−νarctan(ĉ1))
(

1+ ĉ2
1

)m−1− p+q
2

dĉ1

∫

R

ĉ
p
2

(

1+ ĉ2
2

)m− q+1
2

dĉ2

∫

R

ĉ
q
3

(

1+ ĉ2
3

)m dĉ3. (A.16)

For the first integral the derivation of the recursion in one dimension given in Section
A.1.2 can be used. This derivation essentially operates on n such that when identifying
the moments µ̃

p,q
n−1 and µ̃

p,q
n−2 the back-transform is possible. Hence, we can follow an

identical derivation of the recursion for the first integral up to (A.10). The only difference
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is that m(1D) in (A.10) has to be replaced by m(3D)−1− p+q
2 , that is, r(1D) = 2(m(1D)−1) is

replaced by 2(m(3D)−2− p+q
2 ) which we write r(3D)−p−q.

However, this replacement of r is not applicable in the definition of ṽ1 where we sim-
ply replace r(1D) by r(3D). However, inspection of the one-dimensional derivation shows,
that the definition of ṽ only enters in the steps after (A.10) which we have to redo for the
3D case. We find

µ̃
p,q
n =

1

r−p−q−n+1

(

(n−1)
(

µ̃
p,q
n−2+ ṽ1 µ̃

p,q
n−1+ ṽ2

1µ̃
p,q
n−2

)

−νµ̃
p,q
n−1

)

− ṽ1 µ̃
p,q
n−1

=
1

r−p−q−n+1

(

(n−1)
(

1+(
ν

r
)2
)

µ̃
p,q
n−2−(2(n−1)+p+q)

ν

r
µ̃

p,q
n−1

)

(A.17)

which is the asserted formula.

A.2.3 Explicit formula for µ̃
p,q
0

For the explicit formula we have the factorization

µ̃
p,q
0 =

1

K

∫∫∫

R3
c̃

p
2 c̃

q
3

exp(−νarctan(c̃1))
(

1+ c̃2
1+ c̃2

2+ c̃2
3

)m dc̃

=
1

K1K2K3

∫

R

exp(−νarctan(c̃1))
(

1+ c̃2
1

)m−1− p+q
2

dc̃1

∫

R

ĉ
p
2

(

1+ ĉ2
2

)m−1/2−q/2
dĉ2

∫

R

ĉ
q
3

(

1+ ĉ2
3

)m dĉ3, (A.18)

where the first integral does not cancel with the normalization constant because the expo-
nential in the denominator is different. For the same reason 1D recursions on the second
and third integrals can not be used easily, because the identification of the µ̃

p,q
0 becomes

difficult due to the differences of the exponentials in the integrands and in the normal-
ization constants. For this reason the recursion have to be applied very carefully.

We define

I(b,ν,n) :=
∫

R

cn exp(−νarctan(c))

(1+c2)b
dc (A.19)

such that we have

K1 = I(m−1,ν,0), K2 = I(m−1/2,0,0), K3 = I(m,0,0), (A.20)

and the 1D recursion (3.5) holds for µn = I(b,ν,n)/I(b,ν,0). It reads for ν=0

µn =
I(b,0,n)

I(b,0,0)
=

(n−1)

2(b−1)−(n−1)
µn−2 =

(n−1)

2(b−1)−(n−1)

I(b,0,n−2)

I(b,0,0)
. (A.21)

Additionally, we need the relation

I(b,ν,0)

I(b+1,ν,0)
=

2b

2b−1

(

1+(
ν

2b
)2
)

(A.22)
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which can be found from the explicit expression for the normalization constant [19]

I(b,ν,0)=
πΓ(2b−1)

22(b−1)Γ(b−i ν
2 )Γ(b+i ν

2 )
. (A.23)

Equipped with this we carefully evaluate one recursion step for µ̃
p,q
0

µ̃
p,q
0 =

I(m−1− p+q
2 ,ν,0)

I(m−1,ν,0)

I(m− q+1
2 ,0,p)

I(m− 1
2 ,0,0)

I(m,0,q)

I(m,0,0)

=
(p−1)

2((m− q+1
2 )−1)−(p−1)

I(m−1− p+q
2 ,ν,0)

I(m−1,ν,0)

I(m− q+1
2 ,0,p−2)

I(m− 1
2 ,0,0)

I(m,0,q)

I(m,0,0)

=
(p−1)

2(m−1− p+q
2 )

2(m−1− p+q
2 )

2(m−1− p+q
2 )−1

(

1+
( ν

2(m−1− p+q
2 )

)2
)

× I(m−1− (p−2)+q
2 ,ν,0)

I(m−1,ν,0)

I(m− q+1
2 ,0,p−2)

I(m− 1
2 ,0,0)

I(m,0,q)

I(m,0,0)

=
(p−1)

2(m−1− p+q
2 )−1

(

1+
( ν

2(m−1− p+q
2 )

)2
)

µ̃
p−2,q
0 , (A.24)

and for µ̃
0,q
0 analogously

µ̃
0,q
0 =

I(m−1− q
2 ,ν,0)

I(m−1,ν,0)

I(m− q+1
2 ,0,0)

I(m−1/2,0,0)

I(m,0,q)

I(m,0,0)

=
2(m−1− q

2 )

2(m−1− q
2)−1

(

1+
( ν

2(m−1− q
2)

)2
)

I(m−1− q−2
2 ,ν,0)

I(m−1,ν,0)

I(m− q+1
2 ,0,0)

I(m−1/2,0,0)

I(m,0,q)

I(m,0,0)

=
2(m− q+1

2 )

2(m− q+1
2 )−1

2(m−1− q
2)

2(m−1− q
2 )−1

(

1+
( ν

2(m−1− q
2)

)2
)

× I(m−1− q−2
2 ,ν,0)

I(m−1,ν,0)

I(m− (q−2)+1
2 ,0,0)

I(m−1/2,0,0)

I(m,0,q)

I(m,0,0)

=
(q−1)

2(m−1)−(q−1)

2(m− q+1
2 )

2(m−1− q
2)−1

(

1+
( ν

2(m−1− q
2)

)2
)

× I(m−1− q−2
2 ,ν,0)

I(m−1,ν,0)

I(m− (q−2)+1
2 ,0,0)

I(m−1/2,0,0)

I(m,0,q−2)

I(m,0,0)

=
(q−1)

2(m−1− q
2)−1

(

1+
( ν

2(m−1− q
2)

)2
)

µ̃
0,q−2
0 . (A.25)
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If we replace m= r/2+2 in these expressions we find the recursions

µ̃
p,q
0 =

(p−1)

r−p−q+1

(

1+
( ν

r−p−q+2

)2
)

µ̃
p−2,q
0 , (A.26)

µ̃
0,q
0 =

(q−1)

r−q+1

(

1+
( ν

r−q+2

)2
)

µ̃
0,q−2
0 , (A.27)

which directly lead to the explicit formula

µ̃
p,q
0 =(p−1)!!(q−1)!!

p+q
2

∏
k=1

1+( ν
r−2k+2)

2

r−2k+1
(A.28)

as given in the main text.
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