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Abstract. The multi-symplectic Runge-Kutta (MSRK) methods and multi-symplectic
Fourier spectral (MSFS) methods will be employed to solve the fourth-order
Schrödinger equations with trapped term. Using the idea of split-step numerical
method and the MSRK methods, we devise a new kind of multi-symplectic integra-
tors, which is called split-step multi-symplectic (SSMS) methods. The numerical exper-
iments show that the proposed SSMS methods are more efficient than the conventional
multi-symplectic integrators with respect to the the numerical accuracy and conserva-
tion perserving properties.
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1 Introduction

Considering the effect of small fourth-order dispersion term in the propagation of intense
laser beams in a bulk medium with Kerr nonlinearity, Karpman and Shagalov established
the fourth-order Schrödinger equations [1–3]

iut+uxxxx+ h̄′(|u|2)u=0, i=
√
−1. (1.1)
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If an external trap potential is considered, the equation becomes the fourth-order nonlin-
ear Schrödinger equation with a trapped term (FNSETT). In this work, we investigate the
multi-symplectic integrators of the FNSETT in the form

iut+uxxxx+6|u|2u−150(sin2 x)u=0, (x,t)∈ (0,L)×(0,T], (1.2)

u(x,0)=u0(x), x∈ [0,L], (1.3)

u(x,t)=u(x+L,t), t∈ [0,T], (1.4)

where u0(x) is a prescribed complex-valued function. The equation focuses on the most
important physical effects, including dispersion, nonlinearity, and effective potential, and
in the physical context, issues like Bose-Einstein condensate, nonlinear optics. The poten-
tial term g(x)=−150sin2 x is to localize the wave around the origin. This model is a spe-
cial case of the non-self-adjoint nonlinear high-order Schrödinger equation with trapped
term [4–7]

i
∂u

∂t
+(−1)mα

∂2mu

∂x2m
+

∂h̄(|u|2)
∂|u|2 u+g(x)u=0, (1.5)

with m=2, α=1, g(x)=−150sin2 x, h̄(|u|2)= |u|4.
For the initial-boundary value problem (1.2)-(1.4), we have the following proposition.

Proposition 1.1. The solution of the initial-boundary value problem (1.2)-(1.4) has at least two
conserved quantities:

1. Charge conservation law

Q(t)=
∫ L

0
|u(x,t)|2dx=

∫ L

0
|u0(x)|2dx=Q(0); (1.6)

2. Energy conservation law

E(t)=
∫ L

0
[|uxx|2+3|u|4−150(sin2 x)|u|2]dx=E(0). (1.7)

Symplectic integrators have received much attention over the last decade, see, e.g.,
[8–12]. Recently, symplectic integrators had been generalized from Hamiltonian ODEs
to Hamiltonian PDEs (HPDEs), see, e.g., [13–15]. We call this kind of numerical method
multi-symplectic integrators. Many researchers are attracted by the methods for its in-
commensurable advantages over others for HPDEs in structure-preserving, such as in
local conservation properties and in long-term numerical simulation. The method has
been applied to many important physical and mathematical models, such as Schrödinger
equations [16, 17], wave equations [18], Dirac equations [20], etc. It is suggested that
concatenating a pair of symplectic Runge-Kutta (SRK) methods both in space and time,
or concatenating an SRK method in time and Fourier spectral method in space lead to
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multi-symplectic integrators, see, e.g., [14, 15, 20]. However, multi-symplectic schemes
constructed by these techniques are completely implicit for non-separable HPDEs, and
demand substantial computational cost. Moreover, the non-quadratic conserved quan-
tities of the original system are not exactly preserved though their residuals are very
small. To overcome the drawbacks, we introduce the split-step technique into the multi-
symplectic integrator. We first split the original multi-symplectic system into several
subsystems which are multi-symplectic, then construct multi-symplectic integrators for
the subsystems. We call such schemes SSMS schemes, which do not require to solve non-
linear algebraic systems and are very economic. We only need to solve one or so linear
algebraic system and some uncoupled algebraic equations by iteration. Moreover, the
conserved quantities are preserved very well by the SSMS schemes.

We will consider multi-symplectic integrators for the FNSETT (1.2) in the work, in-
cluding MSRK method, MSFS method and SSMS method.

In the rest of the section, we describe the multi-symplectic structure and local conser-
vation laws for the FNSETT (1.2). To rewrite the complex equation (1.2) as real equations,
suppose u(x,t)= p(x,t)+iq(x,t), where p(x,t),q(x,t) are real-valued functions, we have

−qt+pxxxx−150(sin2 x)p+6(p2 +q2))p=0, (1.8a)

pt+qxxxx−150(sin2 x)q+6(p2+q2))q=0. (1.8b)

By introducing the Legendre transformation

px(x,t)= ϕ(x,t), qx(x,t)=α(x,t), ϕx(x,t)=ψ(x,t),

αx(x,t)= β(x,t), ψx(x,t)=η(x,t), βx(x,t)=γ(x,t),

one casts FNSETT (1.2) into the multi-symplectic framework

Mzt+Kzx =∇zS(z), (1.9)

where z =(p,q,ϕ,α,ψ,β,η,γ)T ,∇ is the gradient operator. The Hamiltonian functional is
given by

S(z)=−3

2
(p2+q2)2+75(sin2 x)(p2+q2)+

1

2
(ψ2+β2)−ϕη−αγ,

and the skew-symmetric matrices M,K are

M=

























0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

























, K =

























0 −1 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0

























.
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According to the multi-symplectic theories, the multi-symplectic system (1.9) satisfies the
following local conservation laws:

• Multi-symplectic conservation law (MSCL):

∂

∂t
ω+

∂

∂x
κ =0, (1.10)

where ω and κ are pre-symplectic 2-forms

ω =dp∧dq, κ =dp∧dη+dq∧dγ−dϕ∧dψ−dα∧dβ.

• Local energy conservation law (LECL):

∂

∂t
E(z)+

∂

∂x
F(z)=0, (1.11)

where the energy density E(z) and the energy flux F(z) are

E(z)=(150sin2 x−3(p2+q2))(p2+q2)−(ϕη+αγ+pηx +qγx),

F(z)= pηt +qγt−ϕψt−αβt+ψϕt+βαt−ηpt−γqt.

• Local momentum conservation law (LMCL):

∂

∂t
I(z)+

∂

∂x
G(z)=0, (1.12)

where the momentum density I(z) and the momentum flux G(z) are

I(z)= ϕq−αp,

G(z)=−3(p2+q2)2+150(sin2 x)(p2+q2)ψ2+β2+pqt−qpt−2(ϕη+αγ).

The local conservation laws imply that the density can be varied from time to time;
however, the variation of density in time is just offset by that of flux in space. Under
appropriate circumstance, the local conservation laws imply total conservation laws

ω(t)=
∫ L

0
ω(x,t)dx=C1, (1.13)

E(t)=
∫ L

0
E(x,t)dx=C2, (1.14)

I(t)=
∫ L

0
I(x,t)dx=C3, (1.15)

where C1,C2 and C3 are constants independent of t.
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The arrangement of this paper is as follows. In Section 2, we discuss the conven-
tional multi-symplectic integrators for the FNSETT (1.2), including MSRK method and
MSFS method. In Section 3, we sink the split-step technique into the multi-symplectic
integrator and propose an SSMS method for the FNSETT. Numerical experiments are
presented in Section 4 which mainly check the convergence and conservation properties
of the schemes. We conclude the paper in Section 5.

2 Conventional multi-symplectic integrators for FNSETT

In this section, we present two contentional methods for constructing the multi-symplectic
integrators for the HPDEs and then apply them to the FNSETT.

As usual, we introduce some notations: xj = jh, tn = nτ, j = 0,1,2,··· ,N; n = 0,1,2,··· ,
where h = L/N, τ are spatial length and temporal step span. The approximation of the

value of the function u(x,t) at the node (xj,tn) is denoted by un
j . ||un||=(h∑

N
j=1 |un

j |2)
1
2 .

2.1 Multi-symplectic Runge-Kutta integrator

It has been proved that concatenating a pair of SRK methods both in time and space
directions results in multi-symplectic scheme [13, 14]. The most frequently employed
MSRK method for the multi-symplectic formulation (1.9) is the central box scheme

M
zn+1

j+ 1
2

−zn
j+ 1

2

τ
+K

z
n+ 1

2
j+1 −z

n+ 1
2

j

h
=∇zS

(

z
n+ 1

2

j+ 1
2

)

, (2.1)

where

z
n+ 1

2

j+ 1
2

=
1

2

(

zn+1
j+ 1

2

+zn
j+ 1

2

)

=
1

2

(

z
n+ 1

2
j+1 +z

n+ 1
2

j

)

=
1

4

(

zn+1
j+1 +zn

j+1+zn+1
j +zn

j

)

.

This scheme is of second-order in both time and space directions. For the FNSETT (1.2),
the component formulation is

−δtq
n+ 1

2

j+ 1
2

+
1

h

(

η
n+ 1

2
j+1 −η

n+ 1
2

j

)

=−6|un+ 1
2

j+ 1
2

|2 p
n+ 1

2

j+ 1
2

+150(sin2 xj+ 1
2
)p

n+ 1
2

j+ 1
2

, (2.2a)

δt p
n+ 1

2

j+ 1
2

+
1

h

(

γ
n+ 1

2

j+1 −γ
n+ 1

2

j

)

=−6|un+ 1
2

j+ 1
2

|2q
n+ 1

2

j+ 1
2

+150(sin2 xj+ 1
2
)q

n+ 1
2

j+ 1
2

, (2.2b)

1

h

(

ψ
n+ 1

2
j+1 −ψ

n+ 1
2

j

)

=η
n+ 1

2

j+ 1
2

,
1

h

(

β
n+ 1

2
j+1 −β

n+ 1
2

j

)

=γ
n+ 1

2

j+ 1
2

, (2.2c)

1

h

(

ϕ
n+ 1

2
j+1 −ϕ

n+ 1
2

j

)

=ψ
n+ 1

2

j+ 1
2

,
1

h

(

α
n+ 1

2
j+1 −α

n+ 1
2

j

)

= β
n+ 1

2

j+ 1
2

, (2.2d)

1

h

(

p
n+ 1

2
j+1 −p

n+ 1
2

j

)

= ϕ
n+ 1

2

j+ 1
2

,
1

h

(

q
n+ 1

2
j+1 −q

n+ 1
2

j

)

=α
n+ 1

2

j+ 1
2

, (2.2e)

with difference quotient operator δtu
n
j =(un+1

j −un
j )/τ.
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The coding for the multi-symplectic central box scheme (2.2) is quite complicated
and not convenient with the prescribed initial and boundary conditions. An ideal alter-
native is to produce a numerical integrator which only depends on original variables
u. The purpose can be attained by removing the discretization of the canonical mo-
menta α,β,η,γ,ϕ,ψ at nodes, by using some standard algebraic procedures. The objective
scheme reads

i

16

(

δtu
n
j−2+4δtu

n
j−1+6δtu

n
j +4δtu

n
j+1+δtu

n
j+2

)

+δ4
xu

n+ 1
2

j

=−3

4

(

∣

∣

∣

∣

u
n+ 1

2

j− 3
2

∣

∣

∣

∣

2

u
n+ 1

2

j− 3
2

+3

∣

∣

∣

∣

u
n+ 1

2

j− 1
2

∣

∣

∣

∣

2

u
n+ 1

2

j− 1
2

+3

∣

∣

∣

∣

u
n+ 1

2

j+ 1
2

∣

∣

∣

∣

2

u
n+ 1

2

j+ 1
2

+

∣

∣

∣

∣

u
n+ 1

2

j+ 3
2

∣

∣

∣

∣

2

u
n+ 1

2

j+ 3
2

)

+
75

4

(

sin2 xj− 3
2
u

n+ 1
2

j− 3
2

+3sin2 xj− 1
2
u

n+ 1
2

j− 1
2

+3sin2 xj+ 1
2
u

n+ 1
2

j+ 1
2

+sin2 xj+ 3
2
u

n+ 1
2

j+ 3
2

)

, (2.3)

with the difference quotient operator

δ4
xun

j =
un

j−2−4un
j−1+6un

j −4un
j+1+un

j+2

h4
.

This scheme is a second-order multi-symplectic integrator since the discrete version of
MSCL is held.

2.2 Multi-symplectic Fourier spectral integrator

It has been verified that an appropriate Fourier discretization in space for the abstract
multi-symplectic formulation (1.9) leaves the multi-symplectic character unchanged. In
other words, the resulting semi-discrete system fulfills semi-discrete MSCL [15]. There-
fore, we can discretize the multi-symplectic system (1.9) first via the Fourier spectral
method in space direction, and then apply a standard SRK method to the time direction.

It is noticed that the first-order partial differential operator ∂x yields the Fourier spec-
tral differential matrix D1, in case that the space direction is discretized by a Fourier
spectral method. Here D1 is a skew-symmetric matrix, whose entry is

(D1)j,l =

{

1
2(−1)j+lµcot

(

µ
xj−xl

2

)

, j 6= l,

0, j= l,
for j,l =1,2,··· ,N, (2.4)

where µ=2π/L. For more details, see [15] and references therein. Applying the Fourier
spectral method to Eq. (1.9) in the spatial direction, one obtains

− d

dt
qj +(D1η)j =−6|uj|2 pj+150(sin2 xj)pj, (2.5a)

d

dt
pj +(D1γ)j =−6|uj|2qj+150(sin2 xj)qj, (2.5b)
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(D1ψ)j =ηj, (D1β)j =γj, (2.5c)

(D1ϕ)j =ψj, (D1α)j = β j, (2.5d)

(D1p)j = ϕj, (D1q)j =αj, (2.5e)

where p = (p1,p2,··· ,pN)T, q = (q1,q2,··· ,qN)T, etc. The semi-discrete system (2.5) pos-
sesses the following N semi-discrete MSCLs

d

dt
ωj+

N

∑
l=1

D1 jlκjl =0, l =1,2,··· ,N, (2.6)

where ωj =dpj∧dqj, and

κj =dpj∧dηk +dpk∧dηj +dqj∧dγk+dqk∧dγj+dψj∧dϕk

+dψk∧dϕj+dβ j∧dαk +dβk∧dαj. (2.7)

According to the symmetry of κjl and skew-symmetry of D1, we can find that the conser-
vation property of total symplecticity by summing over the spatial index in (2.6)

d

dt ∑
j

ωj =0. (2.8)

It can be verified that the semi-discrete system preserves the following N local energy
conservation laws

d

dt

[

(

150sin2 xj−3(p2
j +q2

j )
)

(p2
j +q2

j )−
(

ϕjηj+αjγj+pj(D1η)j+qj(D1γ)j

)

]

+
(

D1(pηt+qγt−ϕψt−αβt+ψϕt+βαt−ηpt−γqt)
)

j
=0, j=1,2,··· ,N. (2.9)

Applying the Euler midpoint scheme

zn+1−zn

τ
= J∇z H(zn+ 1

2 ), (2.10)

to the semi-discretization (2.5), we have

− qn+1−qn

τ
+D1ηn+1/2 =−6|un+1/2|2 pn+1/2+150(sin2x)pn+1/2, (2.11a)

pn+1−pn

τ
+D1γn+1/2 =−6|un+1/2|2qn+1/2+150(sin2 x)qn+1/2, (2.11b)

D1ψn+1/2 =ηn+1/2, D1βn+1/2 =γn+1/2, (2.11c)

D1ϕn+1/2 =ψn+1/2, D1αn+1/2 = βn+1/2, (2.11d)

D1pn+1/2 = ϕn+1/2, D1qn+1/2 =αn+1/2, (2.11e)

with x=(x1,x2,··· ,xN)T.
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Proposition 2.1. The scheme (2.11) is multi-symplectic. In other words, it satisfies N discrete
MSCLs

ωn+1
j −ωn

j

τ
+

N

∑
l=1

D1 jlκ
n+1/2
jl =0, j=1,2,··· ,N, (2.12)

where ωn
j =dzn

j ∧Mdzn
j =dpn

j ∧dqn
j and κn+1/2

j is defined by (2.7) with a superscript n+1/2 on

the right-hand side.

Eliminating the intermediate variables α,β,η,γ,ϕ,ψ, it gives rise to

i
un+1−un

τ
+D4

1un+1/2−150(sin2 x)un+1/2+6|un+1/2|2un+1/2 =0, (2.13)

where un =(un
1 ,un

2 ,··· ,un
N)T.

Theorem 2.1. The multi-symplectic Fourier spectral scheme maintains the charge (1.6) un-
changed, that is to say

Qn =‖un‖2 = ···=Q0. (2.14)

Proof. Multiplying the MSFS scheme (2.13) with un+1/2, we have

i

2τ
(un+1−un,un+1+un)+(D4

1un+1/2,un+1/2)

+(6|un+1/2|2un+1/2−150(sin2x)un+1/2,un+1/2)=0. (2.15)

The second term of the above equality is real since D4
1 is symmetric, and the third part is

also real. The first term reads

i

2τ
(un+1−un,un+1+un)=

i

2τ

(

‖un+1‖2−‖un‖2
)

+
i

2τ

[

(un+1,un)−(un,un+1)
]

, (2.16)

On the RHS of Eq. (2.16), the last term is real, and the first part is purely imaginary. The
conclusion (2.14) is derived from the above facts by induce. The proof is finished.

3 Split-step multi-symplectic method for the FNSETT

In this section, we consider split-step multi-symplectic methods for the FNSETT (1.2)
which penetrate the split-step idea into the multi-symplectic integrators. Splitting tech-
nique was originally used for multi-dimensional parabolic equations by Douglas et al.
[22, 23]. It was generalized to nonlinear wave equations by Tappert [24], and now is
widely employed for solving nonlinear PDEs for its simplicity and flexibility, see, e.g.,
[26, 27]. The method has also been successfully applied to symplectic geometric integra-
tors [8, 9, 21]. However, the combination of multi-symplectic integrators with splitting
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is very limited. The only work was done by Ryland in [19], which mentioned the split-
ting multi-symplectic concept. The basic idea of splitting is to decompose the original
problem into subproblems which are easier to solve than the original one. Then the sub-
problems are approximated in a given order.

In what follows, we discuss the splitting multi-symplectic integrator for multi-
symplectic formulation (1.9) through FNSETT.

Decompose the spatial symplectic structure matrix into K =K1+K2 and the Hamilto-
nian function into S(z)=S1(z)+S2(z). The multi-symplectic formulation (1.9) splits into
sub-multi-symplectic systems

Mzt+Kizx =∇zSi(z), i=1,2. (3.1)

We can prove that the subsystems (3.1) satisfy MSCLs similar to (1.10):

ωt+κix =0, i=1,2, (3.2)

where the new 2-forms are κi =dz∧Kidz, i=1,2. It is quite clear that κ1+κ2 =κ. In fact,

κ =dz∧Kdz=dz∧(K1 +K2)dz=dz∧K1dz+dz∧K2dz=κ1 +κ2.

Moreover, both of the subsystems (3.1) conserve the same total symplecticity ω. Thus, the
total symplecticity (1.13) is conserved by the new subsystems. Similarly, we also have the
total energy conservation law (1.14) and total momentum conservation law (1.15) for the
new subsystems. Certainly, we can split the original system (1.9) into more than two sub-
systems. The number of subsystems depends entirely on the problem concerned. Next,
we can approximate the sub-multi-symplectic systems (3.1) by multi-symplectic integra-
tors, such as MSRK, MSFS, etc. Since both schemes for the subsystems conserve the
symplecticity, one expects the total symplecticity to be preserved. We take the FNSETT
(1.2) as a concrete example to describe the process.

We adopt linear-nonlinear splitting for the FNSETT (1.2) in the context. Let us first
rewrite Eq. (1.2) in the form

iut =(L+N )u, (3.3)

where the linear and nonlinear operators are

L=− ∂4

∂x4
, N =150sin2 x−6|u|2,

respectively. We then split Eq. (3.3) into the linear subproblem and nonlinear subproblem:

iut =Lu=−uxxxx, (3.4)

iut =N u=150(sin2 x)u−6|u|2u. (3.5)
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The result of subsystems (3.4) and (3.5) is an approximation of the original system (3.3)
because of the incommutability between L and N . The accuracy is based on the compo-
sition of the operators L and N .

The linear subproblem (3.4) and nonlinear subproblem (3.5) are both multi-symplectic
systems. The linear subproblem (3.4) can be rewritten as multi-symplectic formulation
(1.9) with the same symplectic structure matrices M,K, and the Hamiltonian function is
the quadratic part of S(z), i.e.,

S1(z)=
1

2
(ψ2+β2)−ϕη−αγ.

The nonlinear subproblem (3.5) is also multi-symplectic with zero symplectic structure
in space, and the Hamiltonian function is the remainder of S(z)

S2(z)=75(sin2 x)(p2+q2)− 3

2
(p2+q2)2.

Thus, the symplectic structure matrix is K1 =K and K2 =0.
In fact, the nonlinear multi-symplectic system (3.5) reduces to an infinite dimensional

Hamiltonian system

pt =(150sin2 x−6(p2+q2))q, (3.6a)

qt =−(150sin2 x−6(p2+q2))p, (3.6b)

with Hamiltonian function

H(ẑ)=
∫ L

0

(

75(sin2 x)(p2+q2)− 3

2
(p2+q2)2

)

dx.

The linear subproblem (3.4) and nonlinear subproblem (3.5) can be approximated by
multi-symplectic integrators. We adopt central box scheme (2.1) to discrete linear sub-
problem (3.4). As for the nonlinear subproblem (3.5), we first discretized it in space and
get a finite dimensional Hamiltonian system,

dpj

dt
=(150sin2 xj−6(p2

j +q2
j ))qj, j=1,2,··· ,N, (3.7a)

dqj

dt
=−(150sin2 xj−6(p2

j +q2
j ))pj, j=1,2,··· ,N. (3.7b)

For the finite-dimensional Hamiltonian system (3.7), the Euler midpoint scheme (2.10) is
employed which is symplectic.

In the split-step method, the solution of one subproblem is employed as the initial
value of another. The general techniques of split-step method to solve the problem are

u(x,t+τ)=exp(−iτN )exp(−iτL)u(x,t), (3.8)

u(x,t+τ)=exp(−iτN/2)exp(−iτL)exp(−iτN/2)u(x,t). (3.9)
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By the Baker-Campbell-Hausdorf (BCH) formula [24], the first version (3.8) is of first-
order and can be realized as follows:

1. Compute u∗ from u(x,t) by solving (3.4).

2. Compute u(x,t+τ) from u∗ by solving (3.5).

The second version (3.9) is of second-order which is said to be the standard Strang
splitting [25]. It can be carried out in the following procedure:

1. Compute u∗ from u(x,t) by solving (3.5) with half time step length.

2. Compute u∗∗ from u∗ by solving (3.4) with a full time step length.

3. Compute u(x,t+τ) from u∗∗ by solving (3.5) with another half time step length.

There is almost no more computational cost required for the second-order scheme
(3.9) than the first-order scheme (3.8). As a matter of fact, scheme (3.9) can be written as

u(x,t+τ)= e−
i
2 τN e−iτLe−

i
2 τN u(x,t)

= e−
i
2 τN e−iτLe−iτN e−iτLe−

i
2 τN u(x,t−τ). (3.10)

In summary, for the second-order Strang splitting method, it can be programmed in
the following flow-chart:

un
j ⇒u∗

j , i
u∗

j −un
j

τ/2
=

1

2

(

150sin2 xj−1.5|un
j +u∗

j |2
)(

un
j +u∗

j

)

, (3.11a)

u∗
j ⇒u∗∗

j ,
i

16

(

δtûj−2+4δtûj−1+6δtûj+4δtûj+1+δtûj+2

)

+δ4
xûj =0, (3.11b)

u∗∗
j ⇒un+1

j , i
un+1

j −u∗∗
j

τ/2
=

1

2

(

150sin2 xj−1.5|un+1
j +u∗∗

j |2
)(

un+1
j +u∗∗

j

)

, (3.11c)

for j=0,1,2,··· ,N, where

ûj =
1

2
(u∗

j +u∗∗
j ), δtûj =

u∗∗
j −u∗

j

τ
.

This algorithm is of second-order in both time and space directions and is very simple.
There is no additional memory needed to save the intermediate variables u∗ and u∗∗.

4 Numerical experiments

In this section, we present some numerical results to test the multi-symplectic approxima-
tions (2.3), (2.13) and (3.11). We mainly focus on the issues of accuracy and conservation
properties.
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In each time step, the completely implicit schemes (2.3) and (2.13) can be written as

A(τ,h)Un+1 = B(τ,h)Un+τF(Un+1,Un), n=1,2,··· ,

where A(τ,h) and B(τ,h) are invertible matrices, and F(Un+1,Un) is the nonlinear term
in the nonlinear system. We apply the fixed point iterative method to solve the algebraic
system, namely,

A(τ,h)Un+1,(k+1) = B(τ,h)Un+τF(Un+1,(k),Un), n=1,2,··· , (4.1)

k=0,1,2,··· , is the iterative steps, and

Un+1,(0) =Un.

The iteration is terminated when

max
j

∣

∣

∣
u

n+1,(k+1)
j −u

n+1,(k)
j

∣

∣

∣
<10−13,

or

max
j

∣

∣

∣

∣

[

A(τ,h)Un+1,(k+1)−B(τ,h)Un−τF(Un+1,(k),Un)
]

j

∣

∣

∣

∣

<10−13.

In the computation, the error for numerical solutions is scaled as follows:

‖en‖2
2 =h∑

j

(

|un
j |−|u(xj,tn)|

)2
, ‖en‖∞ =max

j

∣

∣

∣|un
j |−|u(xj,tn)|

∣

∣

∣,

and the error for the charge and energy are measured by

Errorn
c =Qn−Q0, Errorn

e =En−E0,

respectively, where

Qn =h∑
j

|un
j |2, En =h∑

j





∣

∣

∣

∣

∣

un
j−1−2un

j +un
j+1

h2

∣

∣

∣

∣

∣

2

−3|un
j |4+150(sin2 xj)|un

j |2


.

In what follows, we study the following 2π-periodic initial value problem

iut+uxxxx−150(sin2 x)u+6|u|2u=0, (4.2a)

u(x,0)=
5√
2
(1+i)sinx, (4.2b)

u(x,t)=u(x+2π,t)=0, (4.2c)

uxx(x,t)=uxx(x+2π,t)=0. (4.2d)
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Figure 1: The errors of charge by different mesh division. The top two is by MSRK, the middle two by MSFS,
the bottom two by SSMS. Left: τ =0.002, Right: τ =0.001.
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Figure 2: The errors of energy by different mesh division. The top two is by MSRK, the middle two by MSFS,
the bottom two by SSMS. Left: τ =0.002; Right: τ =0.001.
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Table 1: Numerical results for multi-symplectic integrators.

τ\h scheme ‖en‖2 ‖en‖∞ CPU(sec)

τ =0.001 MSRK 5.552×10−3 8.255×10−3 14
h= π

20 MSFS 3.235×10−6 2.690×10−3 16
SSMS 9.903×10−14 3.250×10−13 2.8

τ =0.002 MSRK 5.922×10−4 1.252×10−3 41
h= π

40 MSFS 6.693×10−6 2.312×10−3 48
SSMS 1.084×10−13 6.004×10−13 3

τ =0.001 MSRK 1.845×10−5 3.826×10−5 58

h= π
40 MSFS 5.645×10−6 2.550×10−4 64

SSMS 3.973×10−13 1.375×10−12 5

Problem (4.2) admits an exact solution

u(x,t)=5exp
(

i(t+
π

4
)
)

sinx. (4.3)

We consider the problem on the time interval [0,2], and simulate it by the multi-
symplectic integrators (2.3), (2.13) and (3.11). Data given in Table 1 show the numerical
error in L2 and L∞ norm and the consumed CPU time with different mesh partitions.
Figs. 1 and 2 show the error of charge and energy against time. From the table, it can be
seen that all of the schemes simulate the problem well. The numerical result obtained by
SSMS method is surprisingly excellent. The numerical solution is almost equal to the ex-
act solution. Moreover, the CPU time consumed by the SSMS method is greatly less than
that by the other two schemes. The SSMS method is more efficient and accurate than
conventional multi-symplectic methods. Figs. 1 and 2 reveal that the charge is exactly
preserved by the MSFS method (2.13) and the SSMS method (3.11). However, for the
preservation of charge, the MSRK method is worse than other two. The energy is accu-
rately preserved from the beginning to the end by scheme (3.11), which is seen better than
the other two. For conservative cases, the error brought up by coarse mesh is smaller than
that by the refined meshes. The results are in contrary with the non-conservative cases.
Mesh refinement implies increasing computational cost and larger roundoff errors for
conservative situations.

Next, we simulate the problem in a longer time interval [0,20]. We again use multi-
symplectic integrators (2.3), (2.13) and (3.11) to solve the problem. The mesh step sizes
are h=π/40, τ=0.01. It is observed that we can not obtain satisfactory numerical results
by the MSRK method (2.3) and the MSFS method (2.13), and we will not show them here.
On the other hand, accurate numerical results can be obtained by using the SSMS method
(3.11). The real part and imaginary part of the solitary wave are depicted in Fig. 3, and
the errors of charge and energy are presented in Fig. 4. It is observed from Fig. 3 that
the solitary wave is perfectly periodic all along. The variations of charge and energy are
within the roundoff error of the machine.
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Figure 3: The real and imaginary parts of the solitary wave. Left: real part; Right: imaginary part.
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Figure 4: The errors of charge and energy. Left: charge; Right: energy, obtained by the SSMS method.

5 Summary

In this work, we propose some multi-symplectic integrators for the fourth-order non-
linear Schrödinger equation with a trapped term (FNSETT). First, we apply the central
box scheme to the equation and obtain an MSRK method. This scheme is completely im-
plicit. A pentagonal nonlinear algebraic system needs to be solved by iteration. The MSFS
method is also implicit and charge-preserved. To overcome the drawbacks of completely
implicit schemes and avoid solving coupled nonlinear algebraic equations, the split-step
idea is introduced to the multi-symplectic integrators. We then can construct a new kind
of split-step multi-symplectic method. The method is significantly more efficient than
the MSRK method and the MSFS method. In terms of the conservative property and
long-term behavior, it is also superior to the conventional multi-symplectic schemes.

The suggested SSMS method for the FNSETT can be naturally generalized to any
multi-symplectic formulation in the form (1.9). Furthermore, they can be applied to
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multi-dimensional circumstance. In multi-dimensional case, local one-dimensional split-
ting, alternative direction splitting, fractional step splitting are frequently used. We will
discuss it in other papers [28]. For the discretization of subproblems, more types of meth-
ods for the concatenation, including symplectic partitioned Runge-Kutta methods, sym-
plectic Runge-Kutta-Nyström methods, SRK-Fourier spectral method, can also be used.
This will be investigated in future works.
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