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Abstract. An energy conserving discretization of the elastic wave equation in second
order formulation is developed for a composite grid, consisting of a set of structured
rectangular component grids with hanging nodes on the grid refinement interface. Pre-
viously developed summation-by-parts properties are generalized to devise a stable
second order accurate coupling of the solution across mesh refinement interfaces. The
discretization of singular source terms of point force and point moment tensor type are
also studied. Based on enforcing discrete moment conditions that mimic properties of
the Dirac distribution and its gradient, previous single grid formulas are generalized
to work in the vicinity of grid refinement interfaces. These source discretization for-
mulas are shown to give second order accuracy in the solution, with the error being
essentially independent of the distance between the source and the grid refinement
boundary. Several numerical examples are given to illustrate the properties of the pro-
posed method.
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1 Introduction

The finite difference method on a uniform Cartesian grid is a highly efficient and easy
to implement technique for solving the elastic wave equation in seismic applications [12,
20,32]. However, the spacing in a uniform Cartesian grid is fixed throughout the com-
putational domain, whereas the resolution requirements in realistic seismic simulations
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usually are higher near the surface than at depth. This can be seen from the well-known
formula

h<L/P,

which relates the grid spacing h to the wave length L, and the required number of grid
points per wavelength P for obtaining an accurate solution [15]. The compressional and
shear wave lengths in the earth generally increase with depth and are often a factor of
ten larger below the Moho discontinuity (at about 30 km depth), than in sedimentary
basins near the surface. A uniform grid must have a grid spacing based on the small
wave lengths near the surface, which results in over-resolving the solution at depth. As
a result, the number of points in a uniform grid is unnecessarily large.

Xy

(a) (b)

Figure 1: (a) Outline of a 2-D cross-section of the 3-D computational domain with grid refinements. (b) Close
up of a grid refinement interface, where interior points are drawn with filled circles and ghost points with open
circles. The grids have been plotted with a small offset to clarify the grid layout.

In this paper, we address the over-resolution-at-depth issue by generalizing the single
grid finite difference scheme described in [23] to work on a composite grid consisting of
a set of structured rectangular grids of different spacings, as outlined in Fig. 1(a). The
computational domain in a regional seismic simulation often extends to depth 40-50 km.
Hence, using a refinement ratio of two, we need about three grid refinements from the
bottom of the computational domain to the surface, to keep the local grid size in approx-
imate parity with the local wave lengths. Generating the composite grid is trivial once
the locations of the component grids have been determined, and the resulting composite
grid has ideal wave propagation properties due to its perfect regularity.

The composite grid discretization developed here, together with the generalization
of the method to curvilinear grids [2], which enables accurate modeling of free surfaces
on realistic (non-planar) topography, makes the finite difference method a very attractive
alternative to the recently developed finite element [7], spectral element [16], discontin-
uous Galerkin [10,14], and finite volume [11] discretizations on unstructured grids. An
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unstructured grid can be made to follow realistic topography and can in principle also
be made to follow arbitrarily complex shapes in the underlying 3-D geological structure,
with a grid size that gets larger as the material wave speed increases. However, gener-
ating a high quality unstructured 3-D grid can be a difficult task in itself. Compared to
a finite difference method on a structured grid, the unstructured nature of the grid also
requires extra book keeping and additional memory to keep track of the connectivity
in the grid, making an efficient implementation of these methods more challenging, in
particular on massively parallel machines.

The challenge of the composite grid approach is to find a stable and accurate method
for coupling the solution across the grid refinement interface. Of particular importance
is the treatment of the solution at the hanging nodes, i.e., the fine grid points which are
located in between coarse grid points. A natural way of advancing the solution in time
on a composite grid is to first use the difference scheme to update the solution at all
interior points, followed by assigning solution values to the ghost points through inter-
polation from the neighboring grid (see Fig. 1(b)). For example, this approach works
well for many other problems in conjunction with finite difference methods on overlap-
ping grids [6]. We call this the non-conservative interpolation technique. Because it is
based on interpolation, the non-conservative technique is only accurate if the solution is
smooth across the refinement interface. Furthermore, when applied to wave propagation
problems, the non-conservative interpolation sometimes induces numerical instabilities,
originating from the grid interface. To stabilize the non-conservative method, one can try
adding artificial dissipation to the finite difference scheme. However, in our experience,
it is very difficult to automatically choose a strength of the dissipation term and a time
step that guarantees a stable numerical solution for realistic heterogeneous materials.

To overcome the problems with non-conservative interpolation, this article presents
a new, energy conserving, coupling procedure for the elastic wave equation at grid re-
finement interfaces. When used together with the difference scheme of [23], it results
in a method that is provably stable, without artificial dissipation, for arbitrary heteroge-
neous isotropic elastic materials. We call this the conservative interpolation technique.
The new coupling procedure is based on satisfying the summation-by-parts principle
across refinement interfaces. From a practical standpoint, an important advantage of the
proposed method is the absence of tunable numerical parameters, which are seldom ap-
preciated by application experts. The non-dissipative character of the method also makes
it well suited for wave propagation over large distances, where dissipation otherwise can
lead to significant amplitude errors.

The performance of the different interpolation techniques can be illustrated by solv-
ing a layer over half-space problem where the grid refinement interface is aligned with
the material discontinuity. The details of this experiment are described in Section 6.4.
Here we outline some of the results as a motivating example. Fig. 2 displays the error at
a point on the surface as function of time. The upper half of the figure illustrates that the
error with non-conservative interpolation (shown in red) is larger than the error when
the energy conservative interface treatment is used (shown in blue). This is due to the so-
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Figure 2: (Top): The velocity magnitude as function of time at x, = (3.1x10%,3.3x10%,0)T in the solution of

a layer over half-space problem due to a moment tensor source located at x. = (2.5x 10%,2.5x 10%,2.55 x 103)T
(black). The errors in the numerical approximations correspond to conservative interpolation (blue), non-
conservative interpolation (red), and a uniform fine grid (green). (Bottom): Errors at later times. See Section 6.4
for details.

lution having a discontinuous gradient across the material discontinuity. The lower half
of Fig. 2 shows that for later times, the method based on non-conservative interpolation
(shown in red) becomes unstable, while the energy conserving approach remains stable
(shown in blue).

Conservative grid interface conditions for finite volume approximations of first or-
der hyperbolic systems, in particular the Euler equations of gas dynamics, have been
extensively studied for a long time [4, 5,26, 27]. In these articles the objective is to con-
serve integrals of the dependent variables, such as the mass, across boundaries between
grids of different refinement, or between grids from different curvilinear mappings. The
conserved integrals are not norms of the solution, and consequently the conservation
property in this context does not automatically lead to stability estimates. Instead con-
servation is needed for obtaining correct shock propagation speeds. Stability at mesh
interfaces is usually studied separately for linearized versions of these equations by the
so called GKS analysis, see for example [25,30].

For linear hyperbolic equations, which for example govern acoustic or elastic wave
propagation, the energy is a norm of the discrete solution (usually under a CFL-
condition), and therefore, energy conservation leads to stability. Energy estimation with
grid interfaces for finite difference methods can be done by summation by parts differ-
ence operators. The summation by parts technique has been used extensively for analyz-
ing interfaces for first order hyperbolic problems, both for sudden changes in grid spac-
ing and for discontinuous coefficients in the equation, see for example [17, 24] and the
references therein. However these articles are limited to constant coefficient problems
in one space dimension, thereby not addressing either the difficulties associated with
variable coefficients, or the difficulties associated with hanging nodes in several space di-
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mensions. An exception is the recent two-dimensional summation by parts discretization
for grid refinement interfaces developed in [18]. That paper considers mesh refinement
interfaces with hanging nodes, including effects of corners where two refinement inter-
faces meet. Results from solving a scalar constant coefficient advection problem in two
space dimensions shows some degeneracy of the grid convergence rate, due to reduced
order of accuracy of the discretization at the corners of the refinement patches.

Material jumps for the acoustic wave equation in second order formulation was han-
dled by the summation by parts technique in [21], but also here as a purely one dimen-
sional procedure, which however was applied to an unstructured grid discretization in
three space dimensions.

An interface condition for the acoustic wave equation in two space dimensions was
presented in [3], where stability was proven for a finite element discretization. In this
work, discontinuous material properties was treated together with a grid refinement in-
terface with hanging nodes. Although the finite element formulation makes the analysis
very different, the method in [3] is close in spirit to our proposed approach.

Seismology researchers have also constructed algorithms for coupling finite differ-
ence schemes for the elastic wave equation across grid refinement interfaces. These ap-
proaches are given without a proof of their stability, but have been demonstrated to work
reasonably well in realistic seismic applications, see for example [35].

In the second part of this paper, we study the discretization of singular source terms
in the vicinity of grid refinement interfaces. These source terms are essential in seismic
applications where they are used to model time-dependent slip on an earthquake fault. In
larger earthquakes the slip occurs over an extended area of the fault surface, and source
terms can be distributed over this area to model variable amounts of slip and variations
in the source time function, according to the earthquake source model. Because of a po-
tentially significant variation in material wave speed over a fault surface, it is desirable to
allow fault surfaces to extend through grid refinement interfaces. This means that some
point sources may be located near a refinement interface, in which case our previous sin-
gle grid source discretization technique based on Waldén’s formulas [33] does not apply.
In the present paper, we generalize the source discretization formula by enforcing certain
moment conditions, which mimic properties of the Dirac distribution and its gradient,
leading to a second order accurate discretizations of point forces and point moment ten-
sor sources which are located anywhere on the computational grid, in particular near
grid refinement interfaces. The discretization is first derived in one space dimension,
both on a uniform and a composite grid near a grid refinement interface. In three di-
mensions we use a Cartesian product of one-dimensional singular source discretizations,
which guarantees that the corresponding 3-D moment conditions are satisfied. We find
by numerical experiments that the solution with a singular source term becomes second
order accurate independently of its location relative to the grid, both away from a grid
refinement interface and in its vicinity.

The remainder of the paper is organized as follows. In Section 2, we derive stabil-
ity properties of a finite difference approximation of the 1-D scalar wave equation with
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discontinuous wave speed on a composite grid. Relevant stability properties of our pre-
vious single-grid discretization of the elastic wave equation are presented in Section 3,
followed by a derivation of the energy conserving grid refinement coupling for the elas-
tic wave equation in Section 4. An accurate way of discretizing point force and moment
tensor sources located anywhere on the grid, in particular close to a grid refinement in-
terface, is presented in Section 5. Numerical experiments are given in Section 6, followed
by concluding remarks in Section 7.

2 The scalar wave equation in 1-D

We start by illustrating the energy conserving interpolation technique for the scalar wave
equation with variable wave speed c¢(x) = /(x) in one space dimension

utt:(y(x)ux)x, u(x)>0, —oco<x<oo, t>0. (2.1)
The solution u(x,t) is subject to initial conditions

u(x,0)=¢1(x),  u(x,0)=¢a(x),

and is assumed to tend to zero as x— d-co such that the integrals in the following estimates
become bounded.

By multiplying (2.1) by u; and integrating over the spatial interval a; <x <a, we get
the identity

1d 2, ’
33t ). uy (x,£) +p(x)ui(x, t)dx=u(az,t)p(ag)uy(az, t) —u(ar,t)p(ar ) uy(ag,t).  (2.2)

Assume that (2.1) is solved over the subdomains —co < x <0 and 0 < x < oo, and denote
the corresponding solutions by u and U, respectively. Relation (2.2) shows that

%%</Ooouf(x,t)—i—pt(x)ufc(x,t)dx—i—/ooollf(x,t)—i—pt(x)LI%(x,t)dx)
0 (0,£)1(0) 1 (0,6)— Uy (0,5 (O) L (0,), 3)

where U;(0,t) and u(0)U,(0,t) should be interpreted as limits of U;(x,t) and p(x)U(x,t)
when x—0 from the right (x>0). Similarly, 1;(0,#) and #(0)u,(0,t) are the corresponding
limits as x — 0 from the left (x <0). It follows from (2.3) that the energy

/0 u%(x,t)—I—;l(x)ui(x,t)dx—l—/oooutz(x,t)—I—;l(x)ll,zc(x,t)dx, (2.4)

is conserved in time if we impose the interface conditions

u(0,t)=U(0,t), (2.5a)
Jim p(—e)ux(—e,t)= Um p(e)Ux(e ). (2.5b)
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Figure 3: The composite grid in one space dimension.

Note that if y(x) is discontinuous at x =0, the solution is continuous but its gradient is
discontinuous.

We proceed by deriving corresponding interface condition for a finite difference dis-
cretization of the wave equation. We discretize (2.1) on the grid configuration shown
in Fig. 3, where the grid refinement interface is located at x =0. The fine grid has grid
spacing h >0, the coarse grid has grid spacing 2k, and the grid points are located at

xj=(j—N)h, j<N+1,

Xj=(j—1)2h, j>0.
Note that the points Xy and xy41 are ghost points, which are used to simplify the en-
forcement of the interface conditions. Time is discretized on a uniform grid t, = nd; with
time step J; > 0.

We denote the variables on the coarse grid by upper case letters, and the variables on
the fine grid by lower case letters, i.e.,

u]n:u(X],tn)/ and u?:u(x]',tn)~

The composite grid function over the entire domain is denoted
a:(u,u)T, M:<"‘,MN,1, uN)T/ u:<ull uZI "'I)T' (26)

The discrete 1-D scalar product and norm for grid functions u, v on a grid with size h are
defined by

q—-1

h
(1,0) 10,0 = 54p0p +h' Z luivi-i- 54V
i=p+

2
|| u || 1Lh,p.q — (u/u)l,hlplq‘
At interior grid points, the discretization of the wave equation (2.1) is
n+l__n,n n—1
Uj 2uf +u;
6
urtt —aur+ur?
] J ]
2
%

=D_(h) (E1/2p(x;) D+ (h)uj), j<N, 2.7)

=D_(2h) (E1jop(X;) Dy (20)U}),  j>1, 2.8)
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where the usual divided difference and averaging operators are defined by

uj+1—u uj—u‘_l

D (huj=—"——, D_(huj=——"—, Eipp(xj)=

u(xje1) +p(x))
h h '

2

The dependence on the grid and its size will be suppressed when the meaning is obvious.
On a uniform grid, all grid functions u;, v;, and y; satisfy (see the appendix of [28])

(u,D—((E1/21) D40))

Lh,p,q
q—1 i,
=1} (E1japtj) (Dy14;) (D0j) = - [(E1japtp-1) D4 0p-1+(E1/apip) D10y
j=p
u
_1_311 [(Ev/2#tg-1)Dy 041+ (E1/2pq) D vg). (2.9)

This identity can be applied separately on each grid in the composite grid to show

(u,D_(mDv)) v+ (UD_(MD,V))

1,h,—co 1,2,1,00
N-1
= —h ) mjy1/2(Dyuj)(D+ovy) th j+1/2(D+U;) (D4 V;)
j=—00
UN UN+1—OUN UN —UN-1
+7<mN+1/Z+T+mN’1/ZT)
U Vo,—W; Vi—W
— S (M= M, (2.10)
where
mjr1/2=E1op(x;),  Mjt172=E1op(X;).
Hence, the symmetry property
(u’D*(mDJFU))l,h,—oo,N-i_(U’D*(MD+V))1,2h,1,oo
=(0,D_(mDu)),, . +(V,D_(MD W), ., (2.11)

is satisfied if both composite grid functions #=(u,U)T and o= (v, V)7 satisfy the interface
conditions

Uy =uy, (2.12)

U, — U U, — Uy UN—UN-1 UN41—UN
7 +Mj T ZmN—l/zT+mN+1/2%~ (2.13)

M3,

Note that (2.12) and (2.13) are second order accurate approximations of the continuous
jump conditions (2.5), also when y(x) is discontinuous at x =0.
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If we define the energy on the composite grid (cg) by

1 n+1_un 2 i
n o n
“Leg ‘ 5 g™ D mD) oy
un+l U ;
- - _ +1 n
+H 1,2h,1,00 (U™, D-(MDU™)) 51 o (2.14)
we can use (2.7) to show
u”'H—u” 2 u —y"— 1,2 . .
T —_— + ("t —u" L D_(mD_u" .
‘ O 1,1,—c0,N ‘ O Hl,h,—oo,N ( D—(mDy ))Lh/—"O/N

The corresponding relation for (ur+t — un) / 6 follows from (2.8), and we have

n__,n=1,2
n+l _ ‘u —(unfl,D_<mD+un))

€ g

¢ 1,1,—co,N L, —oo,N

7U“H

+| — (U"1,D_(MD, U"))

121100 1,2h,1,00°

When both (#",U") and (u"~1,U"~!) satisfy the jump conditions (2.12)-(2.13), symmetry
property (2.11) implies that the energy is conserved by the time-stepping, i.e.,

6111 Z_gl = 61 €8
Furthermore, using Lemmas 2 and 3 in [28] shows that e’f’ cg >0 under a CFL-condition on
the time step. Hence the discretization is stable.
By using (2.10), the discrete energy (2.14) can be written

" s S N-1 41
n n n
el i —‘ 5 1h7wN+h' ) mjy172(D+(h)uj) (D+(h)”j )
"ty ’ ]:_
un+1 —ur2
- H&i Lo, +2112MJ+1/2 D (2h)U}') (D4 (2m)UF™Y),
t ,411,1,00
which shows that e”Jrl is a second order accurate approximation of the continuous energy

(2.4), evaluated at time th+0:/2.

While (2.13) is a linear relation involving the solution at the ghost points uy; ; and Uy,
the condition (2.12) does not explicitly depend on those values. However, u™ and U}
depend on the ghost point values uy,  ; and Uy through the difference scheme (2.7)-(2.8)
applied on the grid interface. By enforcing (2.12) at time level n+1, we therefore get

_ 5?
2uf Uyt + (2h) 5 (Mg (U5 —UY') — My o (U7 - Uy))
Y
=2uy —uy 1+h_g(mN+1/2(unN+l_u1l1\])_mN71/2<u111\]_u111\]—1))- (2.15)
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Conditions (2.13) and (2.15) lead to a linear system of equations for the two unknowns
uy,; and Ug, with matrix

—5% M 5% m 2
sVl2 —75MN+1/2 36
A= (Zlil) h , detA:mNH/le/zﬁ.
EMl/Z MN11/2

By assumption, j(x) >0, so the determinant of A is non-zero. Hence, (2.13) and (2.15) are
two linearly independent relations which can be solved for the two ghost point values.

3 Symmetric discretization of the elastic wave equation

The 3-D elastic wave equation for the displacement vector u(x,f), where x is the spatial
location and t is time, is given by

puy =div7 (u)+£(x,1), xc, t>0. (3.1)
Here p=p(x) >0 is the density, f(x,t) is the external forcing, and 7 (u) is the stress tensor,
7 (u)=Adiv(u)I+2uD(u).

The Lamé parameters y.(x) >0 and A(x) >0 characterize the elastic properties of the ma-
terial. The identity matrix is denoted by I, and D is the symmetric part of the displace-
ment gradient. In terms of the Cartesian components u = (u(x,t),v(x,t),w(x,t))T and x=

(x,y,2)T,

2Uy Uy+vy Uzt Wy
Uy + 0y 2vy vz +wy
u+wy vtw, 2w,

D(u)=

We consider the finite difference approximation of (3.1)

n+l_n..n n—1
Wik 2“z’,j,k by

Pijk 7 =Ly(u");jx+ijx(tn), (3.2)

on a domain (x,y,z) € [0,a] x [0,b] x [0,c]. Here, L(u); ;s represents the discretization of
the spatial operator in (3.1) which is described below. The external forcing is discretized
according to

u v w T
£ () =£(xi008) = (£ () FL (8, £ (D)

Let the grid function u} ;x denote the approximation of the x-component of the displace-
ment at grid point
xj=(i—1)h, yi=(j—1)h, (3.3)
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and z; = (k—1)h, at time level t, =n4;. In the same way, v} ik and w; ik denote the approx-
imations of the y- and z-components of the displacement, respectively. The domain sizes
and the grid spacing are defined such that xy, =4, yn, =b and zn, =c.

We apply the discrete equation (3.2) at all interior grid points 1 <i< N,, 1<j<N,,
and 1<k <N,. The ghost points withi=0, i=N,+1; j=0, j=N,+1; k=0, or k=N, +1
are used to impose the boundary conditions.

In [28], we generalized the summation-by-parts discretization introduced in [23] to in-
clude boundary modified mixed derivatives on all six sides of the domain. In component

form, the spatial discretization is given by
Ly(u)= (Lﬁl”)(u,v,w),Lév)(u,v,w),Léw) (u,v,w))T,
where

L;l”)(u,v,w):D’i( 1/2(2u+A)Diu)+DY (E{ ,(u) D% u) + D (E )5 () D7 ut)

+Dj (ADyo+ADgw) +Df (uDy0) + Dy (uDiw), (3.4)
Ly (w,0,w) =D* (E3 )5 () D% 0) + DY (E{ ), (2p+A) D*.0) + D% (Ef /o (1) D3 0)

+ Dy (#Dju) +D§ (\Dju-+ADjw) + Dj (Dyw), (35)
L) (u,0,w0) =D (E¥ 5 (1) D% w) + DY (E! . (1) Dw) + D% (E3 ;5 (21 +A) D’ w)

+D§ (uDju) +Df (1Dgv) + D5 (ADju-+ ADfo). (3.6)

Here we use a multi-dimensional notation of the standard divided difference operators,
ie.,
Uitk — Wijk 1

7 , DIujje=Dlui 1k, Dy=5

S (D5 +D%).

Dfr ui’]"k =
The boundary modified operator for differences in the x-direction is defined by
Diuije, i=1,
Douijr=q Dyuijr, 2<i<Ny—1,
DYujjr, i=Ny,
and the multi-dimensional averaging operator is defined by

Wi,k Hijk
Ef)o(W)ijk= 1]271]

The superscripts on the difference and averaging operators denote the direction in which
the operator is applied and we use corresponding definitions for the difference operators
in the y- and z-directions.
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To analyze the stability of the discrete equations, we define the 3-D weighted scalar
product and norm

Ny Ny N

(14,9)3,1, NN N, N, = hszzzu ak ul]kvljk, (3.7a)
i=1j=1k=1

H”H%,h,Nx,Ny,Nz (,1)3 N, N, Ny, N (3.7b)

We will use the more compact syntax (1,v)3 , when the meaning is obvious. The weights
in the scalar product satisfy

w_ [1/2, i=1or i=N,,
)1, 1<i<N,,

with corresponding definitions of a¥) and a(*). We define the vector scalar product and
norm by

(uul)s )= (Ut )3p+ (00,01 ) 3+ (@, wh)ap,  ull3 = (wu)s
In [28], we proved that the energy, defined by

n,2

n+1
n+1 124 —u

esh —Hp —5 —(u”H,Lh(u”)) +T( m+lu),

3,h

is positive under a CFL-condition. Furthermore, it satisfies
n+1 n+1 n—1 _,.n

es, =3, +Tp(u" —u"",u"),

where the boundary term is

Ny N
j=1lk=

Ny N
+12Y Yl (= uine B+ BV, )
i=1k=1

LY (@) (2)
+12Y Y aal (—ui,]ﬂ-B(V)i,jll-l-ui,lez-B(v)i/].,NZ>. (3.8)

i=1j=1

Here, B®), B, and B(® denote the discretized boundary stresses normal to the x, y,
and z-directions, respectively. The normal stresses are discretized as described in [23]
and [28]. For example, the discretized boundary stress normal to the z-direction is

1 1 BY
3Mijk—1/2D% it 5 jrr 2 D3 e+ i jk Dy wi e

B(w) ) — | 2M4ik-1/2DZ 0+ 3 k1 /2D3. 04k 1k Dy 3.9
(5ix= | L2t A 111 7aD% w1 4 L 2pA AT per 2D wr | 3.9)
5 (2u+ )l,],k—l/z —wl,],k+2( Bt )1,],k+1/2 3 Wijk

+Aij (D1 i+ Dyoi j )
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Note that homogeneous Dirichlet (u = 0) or free surface boundary conditions (B = 0),
make the boundary term Tj,(u,v) vanish, which results in a stable, energy conserving,
numerical scheme.

4 Energy conserving interpolation

Consider a computational domain 0 <x <g, 0 <y <b, and 0 <z <c¢, which is divided into
two sub-domains in the z-direction, such that the upper subdomain 0 <z <c¢ is covered
by a grid of spacing h, and the lower subdomain cp <z <c is covered by a grid of spacing
2h, see Fig. 1(b). As was discussed in the introduction, this grid configuration is desirable
in seismology where the material properties vary along the vertical (z-) direction in such
a way that a fine grid is needed to resolve waves near the surface (z=0), while a coarse
grid gives adequate resolution deeper into the ground, where the waves are longer.

We align the grid points in a node centered fashion on the grid refinement interface
and add one ghost point on each side of the grid refinement boundary z=cy. In the z-
direction, grid points are denoted by z; and Z; on the fine and coarse grids, respectively.
They are located at

zk, =co+ (k1 —nz)h, 0<ky<n,+1,
Zk2260+(k2—1)2h, 0<k, <N,+1.

Here, N,, n;, and h are chosen such that z; =0 and Zy, =c. By construction, z,, = Z;, so
the grid arrangement in the z-direction is similar to the one-dimensional case, see Fig. 3.

In the x- and y-directions, the grid points are given by (3.3) with grid spacings / and
2h on the fine and coarse grids, respectively, see Fig. 4. Excluding the ghost points, the
fine grid has n, and n,, grid points in the x- and y-directions, respectively. The coarse grid
has Ny and N, grid points in the corresponding directions. Since the refinement ratio is
two, we have

nxzsz_l, nyZZNy_l.

Furthermore, grid point (,/,1) on the coarse grid is co-located with grid point (2i—1,2j—
1,n;) on the fine grid. The grid points on the fine grid with indices (2i,2j—1,n,), (2i—
1,2j,n;), and (2i,2j,n,) are located in between coarse grid points and are called hanging
nodes.

We denote the solution on the coarse grid by U; ; ; and the solution on the fine grid by
u; ;. Similar to the 1-D wave equation in Section 2, the discrete energy is defined as the
sum of the energies from the two subdomains

n+1 n+l u" |2 n+1 n n+1
el = Vo, (L) g+ T )
Un+l_Un

+ H \/_ - (Un+1’L2h(Un))3,2h +T2h(Un+1/Un), (41)

3,2h
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2i-3 _ 2i-1 _ 2i+1
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N\ N\ N\
i-1 i i+1

Figure 4: The alignment of grid points along a horizontal grid refinement boundary.

where subscripts 2 and I denote quantities evaluated on the coarse and fine grids, re-
spectively.

We enforce a free surface boundary condition at z=0 and homogeneous Dirichlet
conditions on all other sides, which for example are natural to use in conjunction with a
damping sponge layer near far-field boundaries. Because of the outer boundary condi-
tions, the only non-zero contributions to the boundary terms T, and T}, arise from the
interface between the two grids, i.e., the terms involving B(v)(?) in (3.8). To simplify the
notation, we set

B;j=B(U")) bij=B(u)?

ij1” Ljng’

in the remainder of this section. To avoid confusion between the scaling factors in the
scalar products, we denote the weights in the fine grid scalar product (3.7) by

W), o).

By re-organizing the terms in (3.8) we arrive at the following result.

Lemma 4.1. Assume that homogeneous Dirichlet or free surface boundary conditions are imposed

on the outer boundaries of the computational domain. The discrete energy is conserved (eg”ggl

eglcg) if the following grid interface condition is satisfied:

ZZa Uf]fl ‘Bj;

i= l]
1 Ne=1 N
22“21 1"‘2] 1“3;“12] 1, D2i12)- 1"'4 )3 Z"‘zl "‘2] 1“?2} 1, P2i2j1
z 1] i=1 j=1
Ny— Nx—lNy 1
X:l 2i- 1"‘2] “gf 3 2, P2i 12]+ E Z "‘21 "‘2] “ZE,nZ bai ;. (42)

When homogeneous Dirichlet boundary conditions are enforced on the outer bound-
aries, all edge and corner terms in (4.2) vanish, i.e.,

n+1 __ n+1 __ n+1 __ n+l __
U,]-l—O, Uill—O, U 0, UZ-’Ny’l—O,

Nyj1
n+1 _ n+1 n+l __ n+l1 __
1,jnz =0, Win = =0, Ty, iz =0, ui,ﬂy,nz =0.
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Therefore, all remaining terms in (4.2) have unit weights in the scalar products.
In order to satisfy (4.2), it is natural to enforce

Z],l:ugl—l,z]_llnz’ ZSZSNx_l, ZSJSNy_l, (4'3)

together with second order accurate averaging conditions for the solution at the hanging
nodes

1 . .
Ui 127, = > (Wyi1pj 10, T Wi 10j1,n ), 2Si<Ne—1, 1<j<N,—1,  (44)
1 . .
ugi,z]'fl,nz ) <ugi71,2j71,nz +“§i+1,2]’71,nz)/ I<i<Ny—=1, 2<j<N, -1, (4.5)
1
U0, = 1 (W31 07— 1,n, W2 1,2j— 1, T WDi—10j 11, F Wi 1,0j 41, ) (4.6)

where (4.6) is enforced for 1 <i<N,—1,1<;j< N,—1. Finally, expression (4.2) determines
the interpolation formula that B must satisfy:

1 1
B, :ZbZi—l,Zj—l t3 (b2i—1,2j—1+b2it1,2j-1+b2i—12j41+boir12i41)
1
t1¢ (bai—22j—2+boi—22j+b2inj—2+bai2j), (4.7)

where 2<i<N,—1,2<j<N,—1.

Note that (4.2) is symmetric in (u,U) and (b,B), which implies that an alternative,
dual, energy conserving interface condition is obtained by swapping (u,U) and (b,B) in
formulas (4.3)-(4.7). The conditions (4.3)-(4.7) are natural to use when Dirichlet condi-
tions are imposed at x=0, x=a, y=0, and y =0, because (4.7) do not depend on any i- or
j-boundary points, while some of (4.3)-(4.6) do. If free surface conditions were used on
these boundaries, the dual of (4.3)-(4.7) would be a more natural interface condition.

There are (Ny—2)(N,—2) unknown ghost points in the coarse grid, and (2N, —
3)(2N, —3) unknown points in the fine grid. The total number of unknown points is
therefore

5NN, —8(N,+N,)+13.

The number of equations is (note the index bounds in (4.3)-(4.7))

2<Nx_2)<Ny_2)+<Nx_2)<Ny_1)+<Nx_1)<Ny_2)+<Nx_1)<Ny_1)
=5N;Ny —8(Nx+Ny)+13. (4.8)

Thus the number of equations equal the number of unknowns.

Similar to (2.12) in the 1-D example problem, (4.3)-(4.6) do not depend explicitly on
the solution values at the ghost points. To obtain an equation for the ghost point values
at time level n, we impose (4.3)-(4.6) on time level n+1 and substitute the finite difference
scheme (3.2) in the same way as done for the 1-D example problem in (2.15).
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One difficulty with the above approach is that the hanging node treatment leads to
a coupling of the conditions along the interface. Hence, the solution values at the ghost
points must be obtained by solving a linear system of equations involving all ghost points
on the grid interface. The linear system has of the order NN, unknowns and has a
band structure with band width of the order min(N,,N, ). Since the coefficients in the
linear system are constant in time, we could in principle LU-decompose the system once
and then back-substitute to obtain ghost point values at each time step. However, LU-
decomposition is not straight forward to perform over many processors on a parallel
machine, and it is therefore desirable to solve the interface conditions iteratively.

After some experimentation, we found an iterative block Jacobi relaxation method
that works very well in practice. Each equation in (4.3)-(4.7) is a vector equation for the
ghost point values of u on the coarse and fine grids. The equations decouple into three
separate linear systems for the three components (# v w), which can be solved indepen-
dently of each other. We now outline the block Jacobi method for the u-component. Away
from the boundaries, each blocks consist of the five unknowns

_ n n n n n T
wij=(Uf o, Ui 10j-1m+1 W2i2j—1,m 41 U2i12jm+1 U2ijm.+1) - (4.9)

In each block we solve the u-component of the linear equations (4.3)-(4.7) evaluated at
the same index (i,j). We write each block system as

Ajjw;i=d;,

where A; ; is a 5x 5 matrix. The right hand side d;; holds contributions from interior grid
points and forcing functions (which are constant during the Jacobi iteration) as well as
contributions from the solution values in the neighboring ghost points

n n n n n n
U2i—12j4+1,m4+17 Y2i41,2j—1,n 417 U2it12j4+1,n,+17 U2i—2.2j—2n, 417 U2i-22jn,+17 H2i2j—2,n,+1s

which are outside the block. The contribution from these ghost points follows from the
approximate values from the previous Jacobi iteration. The number of equations and
unknowns in the blocks are reduced near boundaries and corners since some equations
are not defined on the boundary and some unknowns are already determined by the
outer boundary conditions.

The block-Jacobi approach has turned out to be very efficient in practical computa-
tions where the method converges to acceptable precision in less than five iterations. As
with all Jacobi iterations, the convergence properties do not depend on the decomposi-
tion over a parallel machine. However, our choice of unknowns in each block is slightly
asymmetric with respect to the center point (2i—1,2j—1) in the fine grid, leading to an
asymmetric communication requirement in our parallel implementation.

In the case of more than two refinements, for example with spacing & in 0 <z < ¢,
spacing 2h in cg <z <cj, and spacing 4/ in ¢; <z <, the interpolation technique applies
separately at each of the interfaces.
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5 Source term discretization near grid interfaces

In seismic applications of the 3-D elastic wave equation, we need to discretize point mo-
ment tensor sources

g(HMV5(x—x.), G.1)
where M is a symmetric 3 X 3 matrix, and point forces
(D Fs(x—x.), 52)

where F is a vector with 3 components. In these expressions, §(x—x.) is the Dirac distri-
bution, V is its gradient, and the time function g(t) is assumed to be sufficiently smooth
in time.

The n-dimensional Dirac distribution has the property

[ #x)00cx.)dx=g(x.),

for any smooth function ¢(x). Similarly, if x is a Cartesian component of x, the s’th
derivative with respect to the x-direction satisfies

[00092 (x-x)dx=(-17T L (x.).

Our discretization principle for the Dirac distribution and its derivatives is to satisfy the
integral condition for polynomials up to a given degree, where the integrals are replaced
by a discrete scalar product.

5.1 One-dimensional discretization of source terms

On a uniform grid with grid size I, we approximate §(x—x,) by a grid function dj,, by
requiring that all polynomial functions

q
Py(x)=) max’,
=0

satisfy
(Pq,dh)llthq(X*), q:O,"',Q. (5.3)

Similarly, a grid function dj, that approximates ¢’(x —x,) should satisfy
(Pq,d;z)llh:_Pé(X*), q:O,"',Q. (5.4)

Because (5.3) or (5.4) give Q-+1 conditions, dj, or d; need to be non-zero at Q+1 grid
points, i.e., their stencils are Q41 points wide.
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For the Helmholtz equation discretized on a uniform grid, Waldén [33] showed that
if the difference approximation of the partial differential equation is p’th order accurate,
9°6/0x° (x —x, ) must be discretized with

QZp_l'i'S/

to obtain overall p’th order convergence of the solution (away from the solution singu-
larity at x,). Our experience is that this requirement is sharp also for the elastic wave
equation discretized on a uniform grid, at least for s=0 and s=1.

We begin by deriving a third order discretization of ¢’ (x—x.) on a uniform grid using
the scalar product (#,0)1 ) —c,c- Let j be the grid point index such that Xj < X < Xjyq.
Because p=3 and s=1, we take Q =3, i.e., there are four conditions in (5.4). Hence, we
use a four point stencil

! _ / Vi / T
dh_(“'loléjflléjl ]'+1/ ]'+2/O/"') .

To make the coefficients in the linear system O(1), we enforce (5.4) for the polynomial
functions
Py(x)=(x—x;)1, 0<g<3,

leading to the conditions

(X1 = 2107 _1 + (3= %)) 16} + (x50 = ) 10711 + (X2 —xj)z(s]’-+2 =—L(x.—x))7!, (5.5)

1
h
where 4=0,1,2,3.
Note that, by definition,
(xj—x;)7=1, for g=0; (xj—xj)1=0, for g>1.

Introducing the relative source location
a=(x.—x;)/h,

gives the system

1 11 1\ (% 0
-1 0 1 2| ¢ | _| —1/K?
1 01 4 5]’.+1 —2a/h% |’
2 /12
-1 0 1 8 5]’.+2 —3a*/h
which has the solution
1,1 o? 1 /1 3u2
o (Z_ i r—_—(Z _
FeE(Gerg) =53 ta-7) (5.6a)
l 3u2 1

J/‘+1:h2<_1_“+7)/ ]{+2:p(%—%2)- (5.6b)
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We remark that the source discretization formulas are valid regardless of the center
point x;. Thus it is easy to bias the discretization stencil away from the outer boundary of
the domain. For example, if Xji2is outside the domain, the stencil can be centered around
xj1. The resulting formulas (5.6a) and (5.6b) will be the same, but with j replaced by j—1
and with a= (x. —x;_1)/h.

We proceed by generalizing Waldén’s source discretization formulas to the situation
(which surprisingly often occurs in practice) where the grid spacing is larger than the
distance between the source and the grid refinement interface. Obviously, one can avoid
the problem altogether by moving the source by O(h) away from the grid interface, but
that approach inevitably results in an O(h) solution error. Here we aim for a procedure
which gives overall second order convergence. From a theoretical standpoint, as long as
the source is not located exactly on the grid interface, the grid size can always be made
fine enough to put a fixed number of grid points between the source and the interface.
Waldén’s formulas would therefore give second order convergence rate in the limit when
the grid spacing goes to zero, but the required grid size might be much smaller than what
is practically possible.

When the source is near a grid refinement interface, we enforce the moment condi-
tions (5.3) or (5.4) in terms of the 1-D composite scalar product

<ﬂ/5)1,cg,}71,¢71,}72,¢72 = <ulv)1,h,r71,¢71 + <ulv)1,2h,P2,qZ' (5.7)

Asbefore, we will abbreviate the notation to (ﬁ,ﬁ)l,cg when the meaning is obvious. Con-
sider the situation displayed in Fig. 3 and let us derive a third order discretization of
d(x—x,), when the grid point closest to x, is the interface point xy = X;. Q=2 implies a
three point stencil. However, the interface point is represented on both grids, so we use
the points with indices N—1, N on the fine grid and indices 1, 2 on the coarse grid. (Note
that the source term is only defined on interior points so the ghost points xy,1 and Xy
are not needed to discretize the source.) Similar to the composite grid notation (2.6) for
the solution, we denote the weights on the composite grid by

d=(dp,do), dy=0(---,0,0n_1,08)T, dop=(A1,02,0,---)T.

The order conditions (5.3) together with the scalar product (5.7), applied to the polyno-
mial functions
Py(x) =(x—xn)T, =012,
give
(% —xn)1

e (68)

)
(xn—1—xN)TON_1+ (xn —aN)1 <7N +A1> +2(Xo—X1)10 =

where 4=0,1,2.
It is natural to introduce the combined interface source weight Z=45y/2+A;. In terms
of o= (x,—xy)/h, the solution of (5.8) is

2

(1+%—“—), A= (ata?). (5.9)

_ 1 2 _
5N,1—3—h( 200+ ), 1= 5 2%
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Note that the moment conditions only prescribe Z, and not the individual weights Jy
and A;. From numerical experiments, we have found that is very important how the
combined interface weight is distributed between the grids, and that the best choice is
given by

oInN=TZ, M=T/2. (5.10)

We are currently unaware of a theoretical justification for this formula.

5.2 Numerical experiments in one space dimension

As a model for the elastic wave equation, we begin by studying the one-dimensional
wave equation where the source term is the s’th derivative of a Dirac distribution

S

Uy = (y(x)ux)x—l-g(t)%(x—x*), —co<x<00, t>0, (5.11)

subject to homogeneous initial conditions
u(x,0)=0, u(x,0)=0, —oo<x<oco.

We start by constructing an analytical solution. Let 71({,t) denote the spatial Fourier
transform of u(x,t). When
U= 2= const,
the Fourier transform of (5.11) is an ordinary differential equation in time, whose solution
is
1

260 = 20 (Pl(g,t)eiicf—Pz(g,t)e—"éff), —co<E<oo, t>0. (5.12)

The dependence on s is reflected in the functions F; and F,, according to

Fi(&t) = (i¢) e~ 6 /Otei€CTg(T) dr, (5.13)

and F,(¢,t) follows by replacing ¢ by —c in (5.13).
Let the time function be a general polynomial of order p

4
g(t) = Z Yot
v=0

Repeated integration by parts gives

v+1

/te_iccrg(r)drzfw<L+e—i€ct Yy ) (5.14)
0 = NGt o (&)™
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for some constants a,,, and b,. Insertion of (5.14) into (5.13) and (5.12) gives

- (ig)s 3 T <ei§(ct—x*) by _e—ié(ct-&-x*) by

2ige = (Ge)rtt (=ge)vtt

v+41
—ifxs Amy  Amy
Y () G4

The solution of (5.11) follows from the inverse Fourier transform formula

o (x,1) = % / " (1) de. (5.16)

Each term in the sum (5.15) leads to an integral over a function of the form

ei@(x—x*)/gm, eié‘(x—x*-i-ct)/érm’ or eié‘(x—x*—ct)/érm’

where m is an integer. The formula

) eié‘tx . anfl
7oog—nd§:sgn(0()7n m, (517)

can be used to write down an explicit expression for the analytical solution, which we
omit in the interest of space.

Numerical experiments are made on a composite grid configuration, covering the
domain 0 <x <1, with grid size h on 0 <x <1/2 and grid size 2h on 1/2 <x <1. The
grid points are laid out such that the grid interface x =1/2 always coincides with a grid
point in both grids, similar to Fig. 3. The wave equation (5.11) with y =1 is discretized
by the second order approximations (2.7) and (2.8). We compute the solution errors by
comparison with the analytical solution (5.16) for the case s=1, i.e., when the source is a
first derivative of a Dirac distribution. Homogeneous Dirichlet boundary conditions are
imposed on the numerical solution at x=0 and x =1. Hence, the solution error can only
be evaluated in the time interval 0 <t <t,, during which the analytical solution (defined
on —oo < x < o) satisfies the homogeneous Dirichlet conditions u,(0,t) =u.(1,t) =0.

We consider the polynomial time function

—20t7 +70t° — 84 +35¢*, 0<t<1,
1, £>1,

which represents a smooth transition from 0 to 1 with three vanishing derivatives at t=0
and t=1, see Fig. 5. Due to the unit wave speed and the hyperbolic nature of (5.11), we
only need to evaluate the analytical solution on 0<x <1 for t<1. Hence, the case g(t)=1
for t >1 does not need to be considered when evaluating the inverse Fourier transform
formula.
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Figure 5: Source time function g(t).

In the following numerical experiments, we have used (5.10) to distribute the com-
bined source weight at the grid interface. Furthermore, the moment conditions are sat-
isfied to one order higher than the minimal requirement for second order accuracy on a
uniform grid, i.e., we use Q=2 in (5.3) and Q=3 in (5.4).

We start by comparing the energy conserving interpolation (2.12), (2.13) to a straight
forward interpolation formula

Up=un-2, (5.18a)
1 3 3 1 3 3
uN+1—_§u0+1u1+§u2——guN_z-FZul-FguL (5.18b)

which is third order accurate for smooth solutions. The results with non-conservative
interpolation are shown in Fig. 6. On the left we show the solution when the source
is located away from the grid interface, at x, = 0.33. Here the solution is smooth over
the grid interface and the interpolation formula (5.18) works well. The situation is very
different on the right side of Fig. 6, in which case the source is located at x, =0.5077, i.e.,
very close to the grid interface. This case uses the composite grid discretization of the
source, because x, is less than one coarse grid spacing (2h =0.0125) away from the grid
refinement interface. Since the solution is discontinuous at x., the interpolation formula
(5.18) leads to large errors in the ghost points which pollute the numerical solution away
from the discontinuity.

The distance between the source and the grid interface has a much smaller influence
on the solution error when the energy conserving interpolation (2.12), (2.13) is used. The
left side of Fig. 7 shows the solution when the source is placed away from the grid refine-
ment interface, at x, =0.33. The right side of the same figure displays the result when
the source is located very close to the grid refinement boundary, at x, =0.5077. For both
source locations, the numerical solution is accurate in all but one or two points, right next
to the source.



1096 N. A. Petersson and B. Sjogreen / Commun. Comput. Phys., 8 (2010), pp. 1074-1110

0.15 T T T T 0.25
0.2r
0.1r
0.151
0.05
0.1r
B 0¢ > 0.05f
O
-0.05¢
-0.05¢
-0.1y
-0.1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 6: Solution on the composite grid at time ¢t =0.33 when the source is located at x4 =0.33 (left) and at
xx=0.5077 (right) with non-conservative interpolation. Here blue and red color mark the numerical solution on
the fine and coarse grids, respectively. The black curve is the exact solution. In both figures, the grid size on
the fine grid is #=0.00625.

0.15 T T T T 0.15
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-0.05- -0.05-
-0.11 1 -0.1f
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Figure 7: Solution on the composite grid at time t=0.33 when the source is located at x. =0.33 (left) and at
X+« =0.5077 (right) with energy conserving interpolation. Here blue and red color mark the numerical solution
on the fine and coarse grids, respectively. The black curve is the exact solution. In both figures, the grid size
on the fine grid is h=0.00625.

Table 1 quantifies the maximum norm of the error when x, =0.33 and x, = 0.5077.
To eliminate effects of the homogeneous Dirichlet boundary conditions in the numerical
solution, we compare the solution at time t=0.33. The error, ¢, is defined as the difference
between the numerical and exact solutions at all grid points, except at the two grid points
closest to x,, where it is set to zero. In these two points, the error remains O(1) as the grid
is refined. However, as shown by Table 1, these errors do not affect the accuracy away
from x,. As the grid size h goes to zero, the norm of the error should behave as

1&(r)||=Ch?”,

where C is a constant. When the grid size is reduced by a factor of two, we can therefore
estimate the convergence rate as

p=log,(lle(2h)[|/lle(m)]])-
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Table 1: Errors and convergence rates with energy conserving interpolation at time t =0.33 on the composite
grid when the source is located at x,.=0.33 and x, =0.5077, respectively. Here, h is the grid size on the fine
grid. The two grid points closest to x, are excluded from the norm computation.

1. =0.33 x»=0.5077
h €]l 4 €]l 4
125%x1072 | 137x10°%| - [4.69x107%] -

6.25x1073% | 336x10° | 2.02 ] 137x107%| 1.78
3.125x10°3 | 845x10°° | 1.99 | 3.14x10°° | 2.12
1.5625x 103 | 2.12x10°° | 2.00 | 7.84x10~° | 2.00

We conclude that the numerical solution is second order accurate for both source loca-
tions. Note that x,=0.5077 is located on the coarse grid, which explains why those errors
are approximately four times larger than for x, =0.33.

Our numerical experiments show that the composite grid discretization of a singular
source works well with the energy conserving interpolation, and produces second order
accurate solutions under two conditions. First, the combined source weight should be
distributed according to (5.10) on the grid interface, and secondly, the moment condi-
tions should be satisfied to one order higher than what is necessary for a uniform grid.
Violation of either of these conditions leads to solution errors that are orders of magni-
tude larger, where the error is substantial over a significant portion of the computational
domain, similar to the right side of Fig. 6.

5.3 Three space dimensions

To generalize the one-dimensional formulas to the three-dimensional case we discretize
the singular source as a Cartesian product of one-dimensional grid functions. We focus
our presentation on the grid configuration described in Section 4, where a fine grid of grid
size h meets a coarse grid of grid size 2h along z=cy. At the grid interface, the grid points
in the x- and y-directions are aligned as in Fig. 4, while they are laid out as in Fig. 3 in
the z-direction. To approximate d(x—x.,. ), where x. = (X.,V+,z.), we use one-dimensional
grid functions d;lx), déz), d;ly ), d%), and d®. For example, with Q =2 the grid functions in
the x-direction have three non-zero components on either the fine or the coarse grid

i Y41

asy) (- --,O,AYi)l,A}"),A‘x) 0,-)7, on the coarse grid.

{d,(f) = (-+,0,61,6%,6% 0,.-)7T, on the fine grid,
2h

I+17

Here, grid points x; and X; are the closest to x,. The grid functions déy) and d%) have
corresponding components centered around the grid points y; and Yj, which are the clos-
est to y.. In the z-direction, we use the composite grid notation from Section 5.1. For
example, if the closest grid point to z, is z,, = Z; and Q =2, we get the components

d_(Z) = (d§12)/d§l))/ d;(lZ) = ( o ,O,(S,(li),l,(sp(é)) T/ d;z) = (A§Z)/A§Z)/O/' o ) T-
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Denote the discretization of the three-dimensional Dirac distribution by the three-
dimensional composite grid function d©®). Its components are defined by the Cartesian
product
_ Al(x)A](.y )A,(cz), (i,j,k) belongs to the coarse grid,

51-(x)5(y)5,52), (i,7,k) belongs to the fine grid.

In the above example, AZ(X):O, fori<I—landi>1I+1; A](-y) =0,forj<J—1landj>]+1;

and A,(cz) =0, for k>3. Therefore, d' 3) is only non-zero on the 3x3x2 stencil [ -1<i<I+1,
J—1<j<J+1,1<k<2 on the coarse grid, with a corresponding 3 x 3 x 2 stencil on the
fine grid.

The sources should satisfy moment conditions in the composite scalar product over
both grids:

(1,@)3,cg = (14,20)3 1, ny m. + (U, W) 320N, Ny, N

Ny N,
—h32220¢ oc ock ul]kw,]k-l— (2h 3i2iu ,]kWi,j,k.
i=1j=1k= i=li=1k=

The three-dimensional moment conditions follow directly from the one-dimensional mo-
ment conditions. For example, the discrete moment of the polynomial functions

P(x/y,Z) =x1, 0< q< Q,

satisfy
(d_(s) xq)3 cg
—h?’nZMZMZZa 55675+ (2n) ZZD NSNS
i=1j=1k= l i=1j=1k= k i

=(ryns? )(hza ") L)
+(2n Za(%(”xq) (Zh Za 'a") (21 Za(%}j)). (5.19)

Each sum on the right hand side of (5.19) can be identified as a one-dimensional scalar
product

Nx
hzagx>5l«(x)x?:(dng)rxq)l,h,l,nx:xZ' ZhZa(x)A X‘I (dgh)/ )1,2h,1,Nx:x*’
i=1 i=1

S () ) _ (1) )
h;“jy 5jy =(d," V1 p1n,=1, 2hZa dy V1n1,N8,= 1,

Nz
hY. IX;({Z)‘S;EZ) = (d£2)11)1,h,1,nzl 2h Z ﬂk zh)/l)l,zh,l,Nz-
k=1
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Since @ @ ~
(d,70) gy (@3 1) 1 g1, = (@21) e =1

it follows that
(d®),x7)

Because we have restricted the grid refinement boundary to only occur in the z-direction,
the sums over i and j will always be over uniform grids. This leads to the general expres-
sion

4 _
3,Cg_x*’ q—olll"'/Q'

(@), xy'zm), = Iyl (d‘(z),zm) =xTylzm, (5.20)

forall 0<q,I,m<Q.

The gradient of the Diract distribution, Vé(x—x,.), is discretized by a composite grid
function d’. Similar to the Dirac distribution, d’ is defined by a Cartesian product of
one-dimensional grid functions

(
k

() AW A,((Z) , on the coarse grid, (5.21a)
(

i
dj ;= s/ WsE | on the fine grid. (5.21b)

The three-dimensional moment conditions for d’ follows from the one-dimensional prop-
erties in the same way as for d®). However, note that the rule of using Q=3 for d’ while
Q=2 for d means that not all of the moments conditions for d’ are satisfied to the same
order. As a topic for future investigation, it might be advantageous to use Q =3 also for
d when they are used as part of a moment source.

6 Numerical experiments

6.1 Method of manufactured solutions

We start by evaluating the error in the numerical solution on a composite grid, when
both the material and the solution are smooth. Let the computational domain be the cube
(x,y,z) €[0,5]° and impose a free surface boundary condition on the z=0 boundary and
Dirichlet conditions on all other boundaries. We take the material properties to be

p(x,y,2) = Ay (2+sin(wmx +0y,) cos(wpy+ 0 ) sin(wmz+6) ),
1u(x,y,2) = Ay (3+cos(wmx+0y) sin(wyy+ 0y ) sin(wmz+6y) ),
AMx,y,z) = Ay (2+sin(wpux 40y ) sin(wmy + 0 ) cos(wmz+0y) ),
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where w,,=3.2,0,,=0.8, A;=2, A,=3,and A)=1. The internal forcing, boundary forcing
and initial conditions are chosen such that the exact (manufactured) solution becomes

ue(x,y,2,t) =sin(w(x—c.t)) sin(wy+0)sin(wz+0), (6.1)
ve(X,y,2,t) =sin(wx+0)sin(w(y—c.t)) sin(wz+9), (6.2)
we(x,y,2,t) =sin(wx+0)sin(wy+0)sin (w(z—cet)), (6.3)

with w=3,0=0.2, and ¢, =1.3.

The computational grid consists of a base grid with size 2k in 2 <z <5 and a refined
grid with size h in 0 <z <2. In terms of the number of grid points in the x-direction on
the base grid, the grid sizes are

2h=5/(Ny—1), h=25/(Ny—1),

respectively. For sufficiently small /i, the norm of the error should behave as e(h) = Ch”,
where C is a constant. As before, we estimate the convergence rate as p=log,[e(2h) /e(h)].
The errors in the numerical solutions and the convergence rates, evaluated in max and

Ly-norm at time t =4.8 are given in Table 2. As we can see the error in both norms is of
the order O (h?).

Table 2: Errors in the numerical solution and convergence rates at time t =4.8, on a composite grid, when the
exact solution is (6.1)-(6.3).

Ny 2h [uCt)—ue(-t)ll2 | pa | [[u(t)—ue(-)]lo | Poo
31 | 1.67x10°1 2.36x1071 - 6.16 x 102 -

61 | 8.33x10°2 5.74x102 2.04 1.59x 102 1.95
121 | 417x10°2 1.42x1072 2.02 417x1073 1.92
241 | 2.08x102 352x103 2.01 1.03x1073 2.02

6.2 Energy conservation test

To test the energy conserving property of the new interface condition, we solve the elastic
wave equation on the domain (x,y,z) € [0,5]> and impose a free surface boundary condi-
tion on the z=0 boundary and homogeneous Dirichlet conditions on all other boundaries.
The material is

p=2+6, u=3+0 and A=(r—2)%u+96,

where the velocity ratio 7 =c,/c; =3 in the computations below. Here 0 is a stochastic
variable, uniformly distributed between zero and one. Furthermore, the initial data are
also assigned by stochastic variables with uniform distribution. Note that every evalu-
ation of 0 gives a different value between 0 and 1, resulting in extremely noisy material
properties and initial data. The computational grid is the same two-grid configuration
as in Section 6.1, here with N, =31. The equations were integrated to time 500, which
corresponds to 30,746 time steps.
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Figure 8: Relative energy change vs. time with random material and initial data. The convergence tolerance in
the Jacobi iteration is 107° in Fig. (a) (to the left) and 1079 in Fig. (b) (to the right).

Fig. 8(a) shows the relative change of energy, defined as

1 0
(eg,Jcrg _eg,cg)/e&cg/

as function of time, where ¢j ., is the energy defined in (4.1). The average relative change

per time step is 1.1x1071%, hence there is a small increase in energy. This increase is
due to the iterative Jacobi iteration that solves the interface equations (4.3)-(4.7) only to
a given residual tolerance. For the computation in Fig. 8(a), the residual tolerance was
set to 107%. We show in Fig. 8(b) results from exactly the same computation, but with
the residual tolerance set to 10710. The average relative energy increase per time step is
now —3.9x107 1, i.e., the energy changes are smaller and decreasing. This is consistent
with the analysis presented in Section 4, which states that the energy will be conserved
perfectly if the interface equations are solved exactly.

6.3 Source discretization

To test the discretization of a moment tensor source term for the 3-D elastic wave
equation, we consider the half-space problem with homogeneous material properties:
p=2,650, cs=2,000, ¢, =4,000, corresponding to

p=pc;,  A=p(c;—2c).

In the simulation, the half-space z >0 is truncated to the computational domain (x,y,z) €
[0,4x10%]? x [0,5 x 10*]. The moment source (5.1) is located at the center of the computa-
tional domain in the (x,y)-plane, at depth z,

x, = (2x10*,2x10% z,) h
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Figure 9: Semi-analytical solution as function of time at receiver location x, =2.6x10%, yy:2.8><104, z; =0
for a source at depth z, =2.1x10% in a uniform material.

and is characterized by the matrix

010
M=10811 0 0],
000

which in seismic applications often is described by the seismic moment 19 =10'® and the
angles dip=90°, rake=0°, and strike=0° (when the x-axis is parallel to North), see [1].
The time function is the Gaussian

1 2 2
P = ¢ (t=t0)?/20% 6.4
g(t) P (6.4)

where 0 =0.25, ty = 60. The solution is recorded in time at x, = 2.6 x 103, Yy =2.8x% 104,
z,=0and compared to a semi-analytical frequency-wavenumber (FK) solution [13,34,37]
using the FK code [36]. An example is shown in Fig. 9, where we present the radial,
transverse, and vertical components of the solution, as is customary in seismology. The
radial, transverse, and vertical components are defined in a polar coordinate system cen-
tered at the (x,y)-location of the source, with the vertical component in the negative z-
direction, i.e., Uyert = —w. Since x, —x, = 0.6 x 10*, Yr—Y«=0.8x% 10*, the radial component
is u,q =0.614-0.8v, and the transverse component is #iran = —0.81+0.60.
We measure the error in the time interval 0 <t <T using the norms

1 T
||u(xrr')|‘%:T/o (”(ert)2+v(xrrt)2+w(xrzt)2) dt, (6.5)
) o = g i )2 0,2 0,1 66)
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Asbefore, we estimate the convergence rate using the formula p=log,[e(2h) /e(h)], where
e(h) is the norm of the error in the solution on a composite grid with characteristic grid
size h. The computational domain is discretized on a composite grid where the fine grid
with size h covers 0<z<2x10% and the base grid with size 2h covers 2 x 103 <z<5x10%.
A free surface boundary condition is imposed on the z =0 boundary and homogeneous
Dirichlet conditions are used on all other boundaries together with a damping sponge
layer. As was indicated in Section 5.3, the stencil for discretizing the gradient of the Dirac
distribution (5.21) should to be 4 points wide (Q = 3) to obtain second order accuracy.
Since we center the source discretization stencil around the source location x., the com-
posite grid formula is only used if the source is within 2 grid sizes of the refinement
boundary. In the results given in Table 3, the source location z, =2,100 therefore uses the
composite grid discretization for all presented grid sizes, while the case z, =4,000 always
uses the uniform grid discretization formula. Our results indicate that the solutions on
the two finest composite grids are in the asymptotic regime and give O(h?) accuracy for
both source locations.

Table 3: Errors and convergence rates in the numerical solution on a composite grid, with a moment tensor
source at depth z,, measured at the receiver location x, =2.6 X 104, Yyr=2.8x 104, z,=0. The norms are taken
over the period 0 <t<10 after which the solution is essentially zero.

zi | 2h | Jlus(Oxr )2 | [fa(xr, ) —us(Xr,)ll2 | p2 | lu(xr, ) —us(xr,)|[eo | Poo
4000 | 400 | 2.52x 101! 1.53x101 - 6.16 107! -
4000 | 200 485x102 1.66 2.26%x1071 1.45
4000 | 100 1.25x10°2 1.96 5.88x 102 1.94
2100 | 400 | 2.87x10° 1 1.99%x 101 - 741x10°1 -
2100 | 200 5.96x102 1.74 2.64%x1071 1.49
2100 | 100 1.34x 102 2.15 6.37x102 2.05

In a second test, we calculate the error as function of the source depth z,, for grid
sizes h =100 and 2h =200 in the refined and base grids, respectively. The results shown
in Fig. 10 demonstrate that the error is essentially independent of the distance between
the source and the grid refinement boundary.

6.4 The layer over half-space problem

Here we consider a variation of the layer over half-space problem which was used by Day
et al. [9] to evaluate the accuracy of various seismic wave propagation codes. We consider
the half-space z > 0, where the material properties in the top layer (0 <z <2,000) are
p=2,500, c,=2,000, and ¢s=1,000. Below the top layer (z>2,000), the material properties
are p=2,650, ¢, =4,000, and cs =2,000. Because of the slow material in the top layer, the
solution is more complex compared to a homogeneous material, and we increase the size
of the computational domain to (x,y,z) € [0,5 x 10*] to further reduce artificial reflections
from the outer boundaries. As before, we impose a free surface boundary condition on
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Figure 10: Errors in the numerical solution on a composite grid, with a moment tensor source at depth z,
measured at the receiver location xr:2.6><104, yr=2.8><104, zy=0. The Lp-norm is shown in red '+’ and
the max norm in blue 'o’. The norms are taken over the period 0 <t <10 after which the solution is essentially
zero. The grid size is 2h=200 in the base grid and #=100 in the refined grid.

the z=0 surface and homogeneous Dirichlet conditions together with a sponge layer on
all other boundaries. Similar to Section 6.3, we place a point moment tensor source with
mo=10'%, dip=90°, rake=0°, and strike=0°, at the center of the (x,y)-plane at depth z,

X, = (2.5x10%,2.5x10%,z,)T,

and use the Gaussian time-function (6.4).

The velocity structure of this problem makes it an ideal candidate for grid refine-
ment and we use a refined grid with size & =50 in the top layer (0 <z <2,000), and a
base grid with size 2h =100 in z > 2,000. The example from the introduction shown in
Fig. 2 reports the L,-norms of the solution and the error as function of time at receiver
location x, = (3.1x10%,3.3x10%,0)T when the source is located at z, =2,550. As in the
previous section, the error is evaluated by comparing the numerical simulation with a so-
lution from the semi-analytical FK code [36]. Since the source is separated by more than
two grid sizes from the grid interface, we use the uniform source discretization formula.
To further demonstrate the importance of the conservative interpolation, we compare it
with a 3-D generalization of the straight forward non-conservative interpolation formula
(5.18). Due to the material discontinuity, the gradient of the solution is discontinuous at
z =2,000, which also coincides with the grid refinement interface. The accuracy of the
non-conservative interpolation is therefore reduced, even though the source is separated
from the grid refinement interface. As a result the solution error is larger for the non-
conservative approach compared to the conservative interpolation, see Table 4. A more
serious problem occurs at later times, when the non-conservative interpolation formula
makes the simulation go unstable, while the conservative approach remains stable, see
Fig. 2. For this simple material model, the instability can be controlled by adding arti-
ficial dissipation to the non-conservative scheme, but for more complex heterogeneous
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Table 4: Errors in the numerical solutions of the layer over half-space problem.

Case Grid size | ||u(xy,-) —us(x,-) |2 | [[u(xr, ) —us(Xr,") oo
Conservative 100/50 4.88x1072 2.77x1071
Non-conservative | 100/50 1.41x10°1 558 %101
Uniform grid 50 8.61x10 2 3.76 x 10T

Table 5: Computational requirements for different simulation approaches for solving the layer over half-space
problem to time t=25.

Grid type | Grid points Interpolation Cores | Wall clock [s] | Total CPU [s]
Composite | 1.62x10° Conservative 80 1,525 1.22x10°
Composite | 1.62x10% | Non-conservative | 80 2,660 2.13x10°

Uniform 1.00 x 10° N/A 1024 1,534 1.57 x10°

materials it is difficult to automatically choose both the strength of the dissipation and
the time step. Furthermore, artificial dissipation requires additional computational re-
sources, often slowing down the simulation by 50 percent or more.

For comparison, we also simulated the layer over half-space problem on a uniform
grid with size h =50, see Fig. 2. In this case, no jump conditions are enforced at the
material discontinuity and the finite difference stencil is applied across the discontinuous
material properties without any special treatment. This leads to significant numerical
errors in the solution, and the uniform grid simulation produces larger errors compared
to the conservative composite grid case, see Table 4.

The computational requirements of the different computational approaches are sum-
marized in Table 5. Not surprisingly, the uniform grid calculation requires more than
six times the number of grid points, and has to be run on a much larger partition of the
parallel machine. Since the conservative composite grid case has a grid size which is
in perfect parity with the material velocities, it only requires 1,530 time steps to get to
time t =25, while the uniform grid approach has to use 3,061 time steps. The total CPU
time for the uniform grid case is therefore about 13 times longer than in the conservative
composite grid case. The computation with non-conservative interpolation also requires
3,061 time steps because the ghost points and the grid points on the material interface
in the refined grid must use the faster velocities of the half-space to produce a solution
with reasonable accuracy. As a result, that calculation took about 75 percent longer than
the conservative case, even though the conservative method requires additional compu-
tations to satisfy the jump conditions. This example illustrates the significant savings
that can be realized by using a composite grid in seismic applications. In more realistic
material models, where the material velocities often vary by a factor of ten, several levels
of grid refinements can be used to further improve on the efficiency.

To make it straight forward to display the solution in a vertical plane extending
through both the source and the receiver, we rotate the computational grid clock-wise



1106

N. A. Petersson and B. Sjogreen / Commun. Comput. Phys., 8 (2010), pp. 1074-1110

1f K . 1
K VA AW /\
T 0 L N |y i\ I \/\ \ )
: A YAy
-1f ‘ \J ‘ ‘ ]
0 5 10 15 20
8 1 L /f\ 4
o \ A
2 ) \ M
"/ \
% 0 \v/&_\l \\//J \ /
}: -1t I I I ! ]
0 5 10 15 20
_ 1y ‘ﬂ ]
5 7\ /\ /7
8 . - ) \
=Y ﬁ,/\ \ / \ /\\/\/,/ \\\\ /V\/ \ \[\/\\,
> \/ Vi
_1 L L L L 1
0 5 10 15 20
Time

Figure 11: Radial, transverse and vertical velocity components as function of time at x,=3.5x10%, yy:2.5><104,
zy=0. The dashed black line is the semi-analytical FK solution and the red solid line is the numerical solution
on the composite grid.
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in the horizontal plane by the angle cos~!(0.6) ~253.13°. In the rotated coordinate system,
the receiver is located at x,=35,000, y, =25,000, z, =0, and the strike angle in the moment
tensor source is now —51.13° relative to the rotated x-direction. In Fig. 11, we plot the
three velocity components as function of time at the receiver location, providing a visual
comparison of the solutions from the numerical simulation and the semi-analytical FK
code. Overall, the wave forms agree very well, in particular for the transverse compo-
nent. There are however some small amplitude errors in the radial and vertical compo-
nents around time 12, and in the vertical component around time 16. To estimate the reso-
lution in terms of grid points per shortest wave length, we approximate the upper power
frequency in the Gaussian time function (6.4) by fmax ~2.5fo, where the fundamental fre-
quency is fy=1/2m0~0.6366. This results in the shortest wave length L=c;/ fmax~628.3,
corresponding to approximately P=L/h~12.6 grid points per wave length.

Note the three main wave pulses in the transverse velocity arriving around times 8,
12, and 15.5. Snap-shots at times 8, 12, and 16, of the same velocity component along
a vertical cross-section through the source-receiver plane are shown in Fig. 12. Note
that the top layer acts as a wave guide, and the motion is dominated by waves trapped
between the material interface and the free surface. As expected, the wave lengths in
the fast material below z = 2,000 are significantly longer than in the top layer, further
illustrating the sensibility of using a refined grid where the velocities are low.

7 Conclusions

We have described a second order accurate and energy conserving discretization of the
elastic wave equation in second order formulation on a composite grid. The composite
grid consists of a set of structured rectangular component grids with hanging nodes on
the grid refinement interface, allowing the grid size to approximately follow the material
velocity structure in seismic applications. We have also developed second order accurate
discretizations of singular source terms of point force and point moment tensor type, that
work in the vicinity of grid refinement interfaces. This allows complex ruptures to be
modeled on a composite grid, where the fault surface extends through grid refinement
interfaces. The composite grid method and the source discretization have been imple-
mented as part of version 2.0 of the open source software WPP [29], which also handles
free surfaces on a realistic topography.

Plans for the near future include generalizations to visco-elastic materials. As a longer
term goal, it would be desirable to raise the spatial and temporal accuracy to fourth order.
This would improve the efficiency of the method in terms of the number of grid points
per wave length that is required to obtain a given accuracy. The main challenge is clearly
to develop a stable fourth order spatial discretization, because the temporal accuracy can
easily be matched by using a modified equation approach, see for example [8].

Much work is needed to develop a higher order accurate summation by parts opera-
tor for the elastic wave equation with heterogeneous material properties. A good starting
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point would be to first develop a higher order accurate approach for a uniform grid, us-
ing the framework developed for higher order approximations of second derivatives in
1-D [22]. Cross-derivatives could be discretized as first derivatives in each spatial direc-
tion using the higher order approach in [31]. The combined scheme would need to satisfy
the free surface boundary condition to higher order accuracy, and handle heterogeneous
material properties in a stable fashion. Once a higher order accurate uniform grid dis-
cretization has been established, the remaining challenge would be a stable and higher
order accurate treatment of grid refinement interfaces with hanging nodes.

To accurately handle elastic wave propagation through complex 3-D geological struc-
tures in the earth, jump conditions should be enforced across the material interfaces. For
this purpose it would be desirable to generalize the embedded boundary method with
jump conditions for the scalar wave equation [19].
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