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Abstract. This work deals with the simulation of two-dimensional Lagrangian hydro-
dynamics problems. Our objective is the development of an artificial viscosity that is to
be used in conjunction with a staggered placement of variables: thermodynamics vari-
ables are centered within cells and position and fluid velocity at vertices. In [J. Com-
put. Phys., 228 (2009), 2391-2425], Maire develops a high-order cell-centered scheme
for solving the gas dynamics equations. The numerical results show the accuracy and
the robustness of the method, and the fact that very few Hourglass-type deformations
are present. Our objective is to establish the link between the scheme of Maire and the
introduction of artificial viscosity in a Lagrangian code based on a staggered grid. Our
idea is to add an extra degree of freedom to the numerical scheme, which is an ap-
proximation of the fluid velocity within cells. Doing that, we can locally come down to
a cell-centered approximation and define the Riemann problem associated to discrete
variable discontinuities in a very natural way. This results in a node-centered artificial
viscosity formulation. Numerical experiments show the robustness and the accuracy
of the method, which is very easy to implement.

AMS subject classifications: 65M08, 76E06, 65Z05, 80M12
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1 Introduction

In the context of multimaterial flows modeling, calculations are traditionally carried out
using Lagrangian numerical methods which are accurate and well tested for tracking ma-
terial properties. In this paper, we are interested in Lagrangian numerical based codes for
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the simulation of two dimensional hydrodynamics problems. A possible method to treat
these problems is to consider a staggered localization of variables: thermodynamics vari-
ables are centered within cells and position and fluid velocity are at vertices. This allows
the mesh to be trivially moved with the fluid velocity. Basic principles and difficulties
in the discretization of the equations of fluid dynamics written in Lagrangian form can
be found in [20]. More recently, Caramana et al. [4] showed how to construct compatible
hydrodynamics algorithms. The problem of the elimination of Hourglass-type motions
and artificial grid distortions is investigated in [21]. In the presence of solution discon-
tinuities, a special treatment is necessary to model shock waves. It is usual to introduce
an artificial viscosity term to smear out numerical shock profiles over a number of zones
to reduce post-shock oscillations. The pioneering method is due to Von Neumann and
Richtmyer and concerns one- dimensional flows [1]. They introduce an explicit artificial
viscosity term to smear a shock discontinuity in space without affecting the Hugoniot
conditions across the shock. The viscous stress is represented by a scalar pressure of the
form

q=−ρ|∆u|∆u.

This term is quadratic in ∆u, where ∆u is the velocity jump across the element. The work
done by the viscosity is identified with the thermodynamic irreversibility of the shock.
Von Neumann and Richtmyer are at the origin of all the progress that occurred on the
design of artificial viscosity afterwards. Landshoff notices in [15] that with a quadratic
viscosity formulation, small oscillations still occur after the shock. He proposes a linear
combination of a linear and a quadratic viscosities

q=C1ρ(∆u)2+C2aρ|∆u|,

where a is the local sound speed and C1 and C2 are non-dimensional constants. In [8],
Wilkins recalls that Kurapatenko has established another form of the viscosity term from
the pressure jump across a shock in an ideal gas. By considering the limit of Kurap-
atenko’s solution when the velocity jump tends to zero, a linear viscosity is obtained.
The formulation reduces to a quadratic term as ∆u becomes large. This provides a sup-
plementary justification of the formulation proposed by Landshoff [15].

The generalization of the method for multidimensional flows raises many difficulties.
The first one is concerned with the determination of the tensor character of the viscosity
due to the velocity gradient. Then, one has to choose an approximation of the shock di-
rection and a length scale. This last one has a non negligible effect on the computation
robustness when quadrilateral cells have very different sizes for adjacent edges (typi-
cally large aspect ratio), which occurs very frequently in Lagrangian simulations. The
simplest extension of the viscosity from one to two dimensions is to consider a viscosity
as a pressure term. We have to compute a velocity jump across the shock in the element.
Numerical results are strongly dependent on the approximation of the shock direction.
The work associated to the viscosity term is treated as a pressure (the viscosity has the
same effect in all the directions), which results in shock overheating. In [2], Schulz gen-
eralizes the scalar artificial viscosity into a tensor artificial viscosity in 2D. He develops a



A. Burbeau-Augoula / Commun. Comput. Phys., 8 (2010), pp. 877-900 879

method in which the artificial viscosity is computed at cell edges rather than cell centers.
By this way, the viscosity has no effect along a wave of constant phase. More recently,
Caramana et al. [3] published a very complete paper devoted to the presentation of an
edge-centered viscosity based on Schulz’s ideas [2]. Authors propose a set of criteria
that any artificial viscosity should satisfy. The paper reverts to some fundamentals and
many references are given. In this work, Caramana et al. end at the development of the
most efficient edge-centered viscosity. The edge-centered methods work reasonably well,
but they suffer from the appearance of a non physical vorticity in particular cases. Let’s
consider the Noh problem [16] with Lagrangian grid not aligned with the flow (for ex-
ample the spherical Noh problem with an initially square grid). Jets are formed along
the axis which result in a highly deformed mesh. This problem is analyzed by Camp-
bell and Shashkov in [13]. In their opinion, ”the reason for this is that the edge viscosity
does not model physical viscosity and therefore does not have a well defined continuum
limit”. Campbell and Shashkov propose a method based on an approximation to a quan-
tity which may be related to physical viscosity and has a tensor nature. The results for
the spherical Noh problem on a Cartesian mesh are very good. The spherical symmetry
of the flow is well preserved. For a review of viscosity formulations, the reader can refer
to [20] and the references proposed in [3]. Up to now, we have mentioned methods for
shock capturing all based on the introduction of an explicit viscosity term into the equa-
tions. A radically different method, applied in an Eulerian context and introduced by
Godunov [7] has to be cited. It consists of considering all quantities in a computational
cell to be constant at the start of a time step and to resolve the resultant discontinuities
at the cell edges by the solution of a Riemann problem. The advantage of this method is
that it does not require the addition of an explicit artificial viscosity. Numerical diffusion
is added implicitly in the Riemann solution in a very natural way. The two approaches
for the capture of shock waves (either by adding an explicit artificial viscosity force or by
using approximate Riemann solvers) are similar [5, 6]. It just so happens that in the con-
text of Lagrangian codes based on staggered grids, shocks are principally treated with
artificial viscosity.

We propose here an alternative view point to introduce artificial viscosity in a code
based on a staggered mesh. This work is motivated by recent progress in the design
of cell-centered schemes for equations of gas dynamics written in a Lagrangian formal-
ism [10–12,14]. A node-based discretization of the numerical fluxes has been developed.
The extensive numerical results presented by Maire et al. [10–12] show very few ”Hour-
glassing modes” in comparison with our past experience. Their scheme is very robust
and accurate. Despite the fact that the Finite Volume scheme proposed by Maire et al. is
based on a centered placement of variables, it seems to be very close to that of Wilkins. We
established the link between the scheme of Maire et al. [10] and a finite volume scheme
based on a staggered grid with artificial viscosity. As a result, we propose a new formu-
lation for artificial viscosity. The principal interests of this work are:

• the simplicity of the method which can be easily implemented in an existing code
based on a staggered grid (in the context of codes based on multi-physics modelling, the
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modification of the hydro scheme can raise many difficulties);

• its original construction which could participate in a better understanding of the
difficulties encountered in Lagrangian simulations (production of non-physical vorticity,
presence of ”Hourglass-type” deformations,···,);

• the robustness and the accuracy of the algorithm are entirely reasonable.

In Section 2, Lagrangian hydrodynamics equations are presented. Section 3 is de-
voted to the presentation of the spatial discretization of the equations in the absence of
shock waves. Then, in Section 4, the problem of shock capturing is treated. In Section 5,
numerical experiments are proposed.

2 Equations of Lagrangian hydrodynamics

Let Ω(t) be a moving control volume. We denote by ρ the mass density, −→u =(u,v)t the
fluid velocity, P the pressure, E the specific total energy and ǫ the specific internal energy
of the fluid. We consider the conservation equations of mass, momentum, total energy
and volume in the Lagrangian formalism (d/dt is the total time derivative following the
fluid element)

d

dt

∫

Ω(t)
ρ dv=0, (2.1)

d

dt

∫

Ω(t)
ρ−→u dv+

∫

Ω(t)

−→
∇P dv=0, (2.2)

d

dt

∫

Ω(t)
ρE dv+

∫

Ω(t)

−→
∇ ·

(

P−→u
)

dv=0, (2.3)

d

dt

∫

Ω(t)
dv=

∫

Ω(t)

−→
∇ ·−→u dv. (2.4)

Eq. (2.4) is named Geometric Conservation Law (GCL). It states that the velocity displace-
ment of a moving control volume is locally equal to the fluid velocity. The discretization
of this equation is a key point in the construction of a purely Lagrangian scheme, the
difficulty being to ensure consistency with the GCL discretization.

In the absence of shock waves, the equation for the total energy can be replaced by an
equation on the internal energy

d

dt

∫

Ω(t)
ρǫ dv+

∫

Ω(t)
P
−→
∇ ·−→u dv=0. (2.5)

3 Spatial discretization

In this section, some useful notations are introduced. Then, the spatial discretization is
briefly recalled.
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3.1 Notations

We consider an unstructured grid made of quadrangular elements. A cell Q is defined
by points j. The median mesh is formed by connecting the cell centers to the mid-side
points of edges surrounding node j. The dual cell associated to node j is denoted by Cj

(see Fig. 1).

The following notations will be used throughout the paper.

• The notation j (resp. Q) always refers to a node (resp. a cell);

• ∑Q denotes the sum over all the mesh cells; ∑j denotes the sum over all the mesh

nodes; ∑Q,Q∋j denotes the sum over cells Q surrounding node j; ∑j,j∈Q denotes the sum
over nodes j of cell Q;

⋃

Q,Q∋j denotes the set of cells Q that share point j;
⋃

j,j∈Q denotes
the set of vertices j of cell Q;

• The corner volume CQ,j is associated with the grid point j and the cell Q: it is defined
by the volume inside the surface defined through the point j, the center point of cell Q
and the midpoints of the edges through point j of cell Q (see Fig. 1). It follows that

Cj =
⋃

Q,Q∋j

CQ,j,
⋃

j,j∈Q

CQ,j =Q;

• A subscript is used to indicate if the variable is associated to (or computed at) a

node, a cell or an edge. For example, f j is the approximate value of function f at node j.
If there is a possible ambiguity, or if further precise details are necessary, a superscript is

used. For example, f Q
j is the discrete value of function f at the node point j, associated

to cell Q;

• The point associated to node j is denoted by Mj;

• Consider the point Mj. This point belongs to a cell Q. The nodes of the cell are
now locally numbered anti-clockwise. The node j corresponds to the point Mj, and we

introduce the nodes j±1 which correspond to the points MQ
j±1 represented on Fig. 2.

MQ
j+1/2 (resp. MQ

j−1/2) is the midpoint of edge [MQ
j ,MQ

j+1] (resp. [MQ
j−1,MQ

j ]) of cell Q;

• Consider a cell Q. The subscript e(j, j+1) is used for a variable associated to the

edge [MQ
j ,MQ

j+1]. Thus, f Q
e(j,j+1)

is the discrete value of function f associated to the edge

e(j, j+1) of cell Q;

• According to this convention, −→n Q
e(j,j+1)

(resp. −→n Q
e(j−1,j)

) is the outward unit normal

vector of edge [MQ
j ,MQ

j+1] (resp. [MQ
j−1,MQ

j ]) of cell Q;

• The subscript (e/2)(j, j+1/2) is used for a variable associated to the half-edge

[MQ
j ,MQ

j+1/2]. Thus, f Q
1
2 e(j,j+1/2)

is the discrete value of function f associated to the half-

edge (e/2)(j, j+1/2) of cell Q;

• The length of the half-edge[MQ
j ,MQ

j+1/2] (resp. [MQ
j−1/2,MQ

j ]) is LQ
1
2 e(j,j+1/2)

(resp.

LQ
1
2 e(j−1/2,j)

).
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Figure 1: Grid with respect to cell Q and point j.
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Figure 2: Notations with respect to the mesh point Mj, shared by two cells Q and E.

3.2 Numerical scheme

We consider Cartesian (X,Y) coordinates (the case of cylindrical coordinates with sym-
metry about an axis is discussed in Section 4.5). The conservation equations for mass, mo-
mentum and internal energy are semi-discretized in space using a finite volume scheme
on a staggered grid [9]. The position and velocity are defined at grid points and density,
internal energy and the pressure are defined at cell centers.

We introduce

ρQ ≃

∫

Q
ρ dXdY

∫

Q dXdY
, −→u j ≃

∫

Cj
ρ−→u dXdY

∫

Cj
ρ dXdY

,

ǫQ ≃

∫

Q ρǫ dXdY
∫

Q
ρ dXdY

, VQ =
∫

Q
dXdY.

The approximation of the pressure on cell Q is denoted by PQ.

We define the element mass

mQ =ρQVQ. (3.1)
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Eq. (2.1) is integrated on cell Q to give

d

dt
mQ =0. (3.2)

In practice, the volume of the cell is updated at each time iteration with its node coordi-
nates. Then, the density is computed using Eq. (3.1).

If we consider the equation of continuity for the cell density
(

with ρQ defined as

ρQ(t)=mQ/VQ(t)
)

, one obtains a definition of the discrete divergence operator

1

VQ

dVQ

dt
=(

−→
∇ ·−→u )Q. (3.3)

This equation is used for the internal energy equation discretization. The fluid velocity
being computed on nodes j, equation for momentum conservation (2.2) is integrated on
the dual mesh elements

d

dt

∫

Cj

ρ−→u dXdY+
∫

Cj

−→
∇P dXdY=0. (3.4)

We introduce the nodal mass

mj =
∫

Cj

ρ dXdY, (3.5)

and by supposing that the nodal mass is Lagrangian, we get

mj

d−→u j

dt
+ ∑

Q,Q∋j

PQ

∫

(∂Cj)∩Q

−→n dS=0. (3.6)

Equation for internal energy (2.5) is integrated on each cell Q

mQ
dǫQ

dt
+PQ

∫

Q

−→
∇ ·−→u dXdY =0. (3.7)

Using Eq. (3.3), the divergence operator is chosen consistent with the mesh displacement

mQ
dǫQ

dt
+PQ

dVQ(t)

dt
=0. (3.8)

This scheme in its semi-discrete form satisfies a local entropy equality. Indeed, the time
rate of change of the specific entropy SQ in cell Q is

mQTQ
dSQ

dt
=mQ

dǫQ

dt
+PQ

dVQ

dt
, (3.9)

and from Eq. (3.8), we get

mQTQ
dSQ

dt
=0. (3.10)
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This equality has to be replaced by an inequality of the form

mQTQ
dSQ

dt
>0,

in the presence of shock waves. This is precisely the goal of artificial viscosity that con-
verts kinetic energy into internal energy consistently with the second law of thermody-
namics.

4 Artificial viscosity

The definition of the viscosity term in the case of a staggered placement of variables is a
difficult task. Indeed, the definition of the Riemann problem (at the origin of any artificial
viscosity method, whereas it is not always clearly mentioned) is not trivial.

To get round this difficulty, we suppose the approximation of both thermodynamics
and velocity variables are cell-centered. The definition of the cell-velocity is established
in the construction of the artificial viscosity.

4.1 Presentation of a node-based viscosity method

We use the sub-cell forces formalism first introduced in the framework of staggered La-
grangian scheme [4] and used by Maire [11] in the elaboration of its cell-centered La-
grangian scheme. Eq. (3.6) is re-written as

mj

d−→u j

dt
=
−→
f

pres
j = ∑

Q,Q∋j

(−→
f Q

j

)pres
, (4.1)

with

(−→
f Q

j

)pres
=−PQ

∫

(∂Cj)∩Q

−→n dS= PQ

∫

Cj∩(∂Q)

−→n dS

= PQ

(

−→n Q
e(j−1,j)

LQ
1
2 e(j−1/2,j)

+−→n Q
e(j,j+1)

LQ
1
2 e(j,j+1/2)

)

, (4.2)

where we apply the trivial relation

∫

(∂Cj)∩Q

−→n dS+
∫

Cj∩(∂Q)

−→n dS=0. (4.3)

By noting that [23]

dVQ

dt
= ∑

j,j∈Q

−→u j ·
(

−→n Q
e(j−1,j)

LQ
1
2 e(j−1/2,j)

+−→n Q
e(j,j+1)

LQ
1
2 e(j,j+1/2)

)

, (4.4)
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Eq. (3.8) becomes

mQ
dǫQ

dt
=− ∑

j,j∈Q

−→u j ·
(−→

f Q
j

)pres
. (4.5)

Our objective now is to build a viscous force that is introduced in the equations as follows:

mj

d−→u j

dt
=
−→
f

pres
j +

−→
f visc

j ,
−→
f visc

j = ∑
Q,Q∋j

(−→
f Q

j

)visc
, (4.6a)

mQ
dǫQ

dt
=− ∑

j,j∈Q

−→u j ·
(

(−→
f Q

j

)pres
+

(−→
f Q

j

)visc
)

. (4.6b)

We proceed like in the framework of the cell-centered finite volume scheme of Maire et

al. [10, 11]: on the half-edge [MQ
j ,MQ

j+1/2] (resp. [MQ
j−1/2,MQ

j ]), we introduce a pressure

term Π
Q
1
2 e(j,j+1/2)

(resp. Π
Q
1
2 e(j−1/2,j)

). These half-pressures are considered in the place of

the cell pressure in the momentum equation to give

mj

d−→u j

dt
= ∑

Q,Q∋j

(

Π
Q
1
2 e(j−1/2,j)

−→n Q
e(j−1,j)

LQ
1
2 e(j−1/2,j)

+Π
Q
1
2 e(j,j+1/2)

−→n Q
e(j,j+1)

LQ
1
2 e(j,j+1/2)

)

, (4.7)

and then

(−→
f Q

j

)visc
=

(

Π
Q
1
2 e(j−1/2,j)

−PQ

)−→n Q
e(j−1,j)

LQ
1
2 e(j−1/2,j)

+
(

Π
Q
1
2 e(j,j+1/2)

−PQ

)−→n Q
e(j,j+1)

LQ
1
2 e(j,j+1/2)

. (4.8)

We see that the method depends only on the definition of the scalar terms associated to
each half-edge.

At this point, we slightly modify the discrete problem to be solved. We began the
method by considering a staggered grid formulation with momentum defined at the
nodes and density and energy in the cells. Now, we introduce an extra degree of free-
dom −→u ⋆

Q and we suppose it is an approximate fluid velocity within element Q. To
summarize:

• We compute a piecewise constant approximation of the whole solution (ρ,−→u ,P) on
each element Q:

ρQ, −→u ⋆

Q, ǫQ,

- the cell density ρQ is obtained from Eq. (3.2);

- the internal energy ǫQ is given by the resolution of the second equation of (4.6). Of
course, the viscous force has to be fully defined first;

- the method for the computation of −→u ⋆

Q has not been established yet.



886 A. Burbeau-Augoula / Commun. Comput. Phys., 8 (2010), pp. 877-900

• We compute a piecewise constant approximate solution of the fluid velocity on the
dual cell associated to node j, −→u j, by solving momentum evolution equation (4.7).

The next step in our derivation of the method is the specification of the half-edge
pressure terms.

One natural way to proceed consists in solving two half-Riemann problems on each

cell edge. First, on the half edge [MQ
j ,MQ

j+1/2] (the arguments are the same for any half

edge), we can suppose the velocity is equal to the point velocity −→u j. Second, on element

Q, we also consider −→u ⋆

Q as an approximation of the fluid velocity. Consequently, the
one-dimensional problem is defined by the discontinuity of the fluid velocity on the cell

boundary (−→u j ·
−→n Q

e(j,j+1)
and −→u ⋆

Q ·
−→n Q

e(j,j+1)
), with two states that are uniform vs ρ and P

(ρ=ρQ and P= PQ) (see Fig. 3).

Q1

Q
2

j
M

n

n

Riemann problem

u
P

L

L

L =

ρ
R

ρQ1
= PR PQ1

uj
. n , u R= uQ1

ρ = =

=

. n*

2
e(j−1,j)

e(j,j+1)

1
e(j,j+1)

Q1
e(j,j+1)

Q

Q

Q
1

j

j+1
j−1

j
j+1

j−1

Q1

Q
2

j
M

Q2

1/2e(j−1/2,j)π
π Q 1

1/2e(j,j+1/2)

j+1
j−1

jj

Figure 3: Riemann problems and scalar viscosities
associated to half-edges.

This problem is approximately solved using the HLL Riemann solver [5] that gives
the expression for the pressure jump across the solution discontinuity:

PQ−Π
Q
1
2 e(j,j+1/2)

=−µQ
1
2 e(j,j+1/2)

(−→u ⋆

Q−
−→u j)·

−→n Q
e(j,j+1)

, (4.9a)

PQ−Π
Q
1
2 e(j−1/2,j)

=−µQ
1
2 e(j−1/2,j)

(−→u ⋆

Q−
−→u j)·

−→n Q
e(j−1,j)

. (4.9b)

The coefficients µQ
1
2 e(j,j+1/2)

and µQ
1
2 e(j−1/2,j)

are determined following the approach sug-

gested by Dukowicz [5] and considered by Maire [11]:

µQ
1
2 e(j,j+1/2)

=ρQ

(

α
∣

∣(−→u ⋆

Q−
−→u j)·

−→n Q
e(j,j+1)

∣

∣+aQ

)

, (4.10a)

µQ
1
2 e(j−1/2,1)

=ρQ

(

α
∣

∣(−→u ⋆

Q−
−→u j)·

−→n Q
e(j−1,j)

∣

∣+aQ

)

. (4.10b)
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In (4.9), aQ is the local isentropic speed of sound and α is a material dependent quan-
tity which can be derived from the equation of state. −→u ⋆

Q is still unknown and will be
determined later.

A matrix formalism can be introduced to obtain a generic expression for the viscous
force. By setting

MQ
j =MQ

1
2 e(j−1/2,j)

+MQ
1
2 e(j,j+1/2)

, (4.11)

with

MQ
1
2 e(j−1/2,j)

=µQ
1
2 e(j−1/2,j)

−→n Q
e(j−1,j)

⊗−→n Q
e(j−1,j)

LQ
1
2 e(j−1/2,j)

, (4.12a)

MQ
1
2 e(j,j+1/2)

=µQ
1
2 e(j,j+1/2)

−→n Q
e(j,j+1)

⊗−→n Q
e(j,j+1)

LQ
1
2 e(j,j+1/2)

, (4.12b)

we get
(−→

f Q
j

)visc
=MQ

j (−→u ⋆

Q−
−→u j). (4.13)

As expected, this expression is similar to the constitutive relation established by Maire [11]
in the construction of the viscous sub-cell force for its cell-centered scheme. This equation
links the cell velocities and the node velocities. In the case of a linear solver (α = 0) the
matrix MQ

j only contains geometrical information. The following important problems
arise:

1. The half-edge pressures are discontinuous through the edge (see Fig. 3). How to
ensure momentum and energy conservations?

2. Does the scheme satisfy an entropy inequality?

3. How to compute the velocities −→u ⋆

Q ?

All these problems are solved from the same argument: an entropy inequality imme-
diately follows from the derivation of sufficient conditions for the scheme to be conser-
vative [11,14]. These conditions are precisely imposed in the computation of the element
velocity −→u ⋆

Q.
First, we establish a sufficient condition to get conservation properties. Momentum is

conserved if (by supposing the nodal mass is Lagrangian)

d

dt

(

∑
j

mj
−→u j

)

=∑
j

(−→
f

pres
j +

−→
f visc

j

)

=0. (4.14)

Since the pressure forces are computed with respect to the median mesh of the staggered
spatial grid discretization, it is trivial to check that

∑
j

−→
f

pres
j =

−→
0 .

Indeed,

∑
j

−→
f

pres
j =∑

j

(

∑
Q,Q∋j

(−→
f Q

j

)pres
)

=∑
Q

(

∑
j,j∈Q

(−→
f Q

j

)pres
)

,
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and on each cell Q, we have

∑
j,j∈Q

(−→
f Q

j

)pres
= PQ ∑

j,j∈Q

(

−→n Q
e(j−1,j)

LQ
1
2 e(j−1/2,j)

+−→n Q
e(j,j+1)

LQ
1
2 e(j,j+1/2)

)

=0.

In the same way, for the viscous forces we have

∑
j

−→
f visc

j =∑
j

(

∑
Q,Q∋j

(−→
f Q

j

)visc
)

=∑
Q

(

∑
j,j∈Q

(−→
f Q

j

)visc
)

.

A sufficient condition to get the momentum conservation property is then [11]

∑
j,j∈Q

(−→
f Q

j

)visc
=0. (4.15)

Before we explain how this condition is imposed, we show that the total energy is con-
served in semi-discrete form. The total energy balance for the entire domain is

d

dt

(

∑
Q

mQǫQ+∑
j

mj
−→u 2

j

2

)

=∑
Q

mQ
dǫQ

dt
+∑

j

mj
−→u j ·

d−→u j

dt

=∑
Q

(

− ∑
j,j∈Q

−→u j ·
(−→

f Q
j

)

)

+∑
j

−→u j ·
(

∑
Q,Q∋j

(−→
f Q

j

)

)

, (4.16)

where

(−→
f Q

j

)

=
(−→

f Q
j

)pres
+

(−→
f Q

j

)visc
. (4.17)

By interchanging the order of the double sum, one trivially check that total energy is
conserved. Thus, the scheme is conservative in its semi-discretized form if the condition
(4.15) is satisfied.

Second, we want the scheme to satisfy an entropy inequality. Actually, the introduc-
tion of artificial viscosity into the scheme modifies the time rate of entropy on cell Q:

mQTQ
dSQ

dt
=− ∑

j,j∈Q

(−→
f Q

j

)visc
·−→u j = ∑

j,j∈Q

(−→
f Q

j

)visc
·(−→u ⋆

Q−
−→u j)− ∑

j,j∈Q

(−→
f Q

j

)visc
·−→u ⋆

Q

= ∑
j,j∈Q

[

MQ
j (−→u ⋆

Q−
−→u j)

]

·(−→u ⋆

Q−
−→u j)−

(

∑
j,j∈Q

(−→
f Q

j

)visc
)

·−→u ⋆

Q.

The matrix MQ
j is a 2×2 symmetric positive definite matrix, then the first term on the

right hand side is positive. The second term is zero if condition (4.15) is satisfied.
We derived a single condition which is sufficient to get a conservative and entropic

scheme. Now, since this condition is not satisfied, we have to do something to force
the viscous force to satisfy it. Our idea is to make use of the fact that the degrees of



A. Burbeau-Augoula / Commun. Comput. Phys., 8 (2010), pp. 877-900 889

freedom {−→u ⋆

Q} are still unknown. The condition (4.15) can be rewritten using the matrix
formalism

∑
j,j∈Q

MQ
j

(−→u ⋆

Q−
−→u j

)

=0. (4.18)

This can be interpreted as a non-linear problem with −→u ⋆

Q as unknown. Then, the cell
approximate velocity is defined by

−→u ⋆

Q =
[

∑
j,j∈Q

MQ
j

]−1

∑
j,j∈Q

(

MQ
j
−→u j

)

. (4.19)

The system (4.19) is non linear. It can be solved utilizing an iterative algorithm (we get
satisfaction with a fixed point method).

To end this section, it is interesting to notice that the half Riemann problems introduce
the necessary coupling between the extra degree of freedom {−→u ⋆

Q} and the nodes veloc-

ity {−→u j}. It is surprising to state that the solution (4.19) can actually be interpreted as a
cell velocity approximation. To be convinced of that, one could express the exact solution
of system (4.18) for some particular trivial cases. It appears that −→u ⋆

Q is a balance average
of the cell node velocities.

4.2 Limiter function

The viscous force previously described is active even in the case of isentropic flows,
which results in an extra entropy production. Following [3], a limiter function is in-
troduced to eliminate linear velocity fields. This section is devoted to the presentation of
its construction.

The viscous force acting on node j from cell Q is the sum of two forces:

(−→
f Q

j

)visc
=MQ

1
2 e(j−1/2,j)

(−→u ⋆

Q−
−→u j)+MQ

1
2 e(j,j+1/2)

(−→u ⋆

Q−
−→u j)

=
−→
f Q

1
2 e(j−1/2,j)

+
−→
f Q

1
2 e(j,j+1/2)

. (4.20)

For each half-edge (for example [Mj,Mj+1/2]) containing the node j, we compute a
function

ϕQ
1
2 e(j,j+1/2)

∈ [0,1],

which turns the force
(−→

f Q
1
2 e(j,j+1/2)

)visc
,

off for situations in which the velocity difference with respect to the normal direction
−→n Q

1
2 e(j,j+1/2)

is a linear function of the local coordinates. This limiter function is described

in [3].
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Figure 4: Notations for the limiter function.

We introduce the nodes g and d which are the nearest neighbors to the end points j
and j−1 (Fig. 4). We define

Sd =
(−→u d−

−→u j)·
−→n Q

1
2 e(j,j+1/2)

(−→x d−
−→x j)·

−→n Q
1
2 e(j,j+1/2)

/

(−→u j−
−→u j−1)·

−→n Q
1
2 e(j,j+1/2)

(−→x j−
−→x j−1)·

−→n Q
1
2 e(j,j+1/2)

, (4.21)

Sg =
(−→u j−1−

−→u g)·
−→n Q

1
2 e(j,j+1/2)

(−→x j−1−
−→x g)·

−→n Q
1
2 e(j,j+1/2)

/

(−→u j−
−→u j−1)·

−→n Q
1
2 e(j,j+1/2)

(−→x j−
−→x j−1)·

−→n Q
1
2 e(j,j+1/2)

. (4.22)

The limiter function is defined by

ϕQ
1
2 e(j,j+1/2)

=max
{

0,min
{Sd+Sg

2
,2Sd,2Sg,1

}}

. (4.23)

At the end, the viscous force
−→
f Q

1
2 e(j,j+1/2)

is replaced by

(

1−ϕQ
1
2 e(j,j+1/2)

)−→
f Q

1
2 e(j,j+1/2)

.

The entropy inequality is still valid in the presence of the limiter function. Another in-
teresting point is that with the limiter function, the viscous force has no effects along a
constant wave front. The weak point in such an approach is that a shock direction ap-
proximation is implicitly introduced by construction.

The role of the limiter function can be interpreted in a quiet different way. It can
be viewed as ”a sort of” second order accurate reconstruction of the velocity field in
specific directions, or like a modification of the velocity gradients which are reduced by
the limiter function in the regions where the flow is smooth.

4.3 Compression criterion

There is a major difference between non conservative schemes based on the introduction
of an artificial term and Godunov type ones. In the first approach (and contrary to the sec-
ond one), it is common practice to maintain the viscosity term only in compression and
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to set it to zero everywhere else. Indeed, rarefactions in gases usually do not need viscos-
ity. A switch term is introduced in the method to determine compression and expansion
(typically based on the sign of the velocity divergence on the cell or the compression of
each individual edge). Therefore, the artificial viscous force does not vary continuously.
This can produce numerical instabilities. As the positivity of the performed work is usu-
ally ensured with the test used to determine whether a cell is in compression or not, there
is not any other possible choice.

Our form of artificial viscosity is dissipative independently of any compression cri-
teria. In practice, the viscous force is computed at each time iteration (with the limiter
function) and it is systematically taken into account in the equations.

4.4 Time discretization

A central difference method is used for time discretization. The velocity is staggered in
time with respect to the displacement to get an explicit second order accurate integration
rule [20]. We define

∆tn = tn+1−tn.

We compute

−→u
n+ 1

2
j =−→u

n− 1
2

j +
(−→

f n
j

/

mj

)

∆tn,

−→x n+1
j =−→x n

j +−→u
n+ 1

2
j ∆tn+ 1

2 ,

with

∆tn+ 1
2 =

1

2

(

∆tn +∆tn+1
)

.

Thermodynamics variables (density and internal energy) are computed at time tn.
Two time step limitations are used. The first one is a CFL like criterion. We define

∆tn
c f l =Cc f l min

Q

( Ln
Q

an
Q

)

,

where Ln
Q is the minimal value of the distance between two points of the cell and Cc f l is

a positive constant. The value Cc f l =0.3 provides stable results.
For the second criterion, based on the variation of the volume, we compute

∆tn
ρ =

∆tn−1

max
Q

(

(∆ρ)Q

ρn
Q

) ,

where ∆ρ is the density growth over the previous time iteration.
At the end,

∆tn =min
{

∆tn
c f l ,∆tn

ρ

}

.
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z

Figure 5: Cylindrical coordinates with rotational symmetry about the z-axis.

4.5 Cylindrical geometry

Some problems with axisymmetrical geometry are presented in this paper. In this sec-
tion, we explain how we proceed. We denote by (r,z) the cylindrical coordinates with
rotational symmetry about the z-axis (see Fig. 5).

The formulations are written in terms of (r,z) coordinates by introducing the elemen-
tal volume rdrdz in place of dxdy. We want the scheme to preserve spherical symmetry
for equal angle zoning.

Following Caramana and Whalen [22], we use the area-weighted discretization. In
the equation for momentum, the pressure gradient is approximated by

∫

Cj

−→
∇P rdrdz≃ rj

∫

Cj

−→
∇P drdz. (4.24)

The cartesian node mass is denoted by mc
j and

mj =
∫

Cj

ρ rdrdz≃ rj ∑
Q,Q∋j

ρQ

∫

Q∩Cj

drdz= rjm
c
j . (4.25)

At the end, it comes to integrate the equation for momentum in cartesian coordinates

mc
j

d−→u j

dt
+ ∑

Q,Q∋j

∫

(∂Cj)∩Q
P−→n dS=0. (4.26)

The internal energy equation (3.8) is now modified to take into account the work done by
the viscous force:

mQ
dǫQ

dt
+PQ

dVQ(t)

dt
=− ∑

j,j∈Q

(−→
f Q

j

)visc
·
(

r−→u
)

j
≃−rQ ∑

j,j∈Q

(−→
f Q

j

)visc
·−→u j, (4.27)

where rQ is a mean value of r on element Q. In the present study, rQ is the r coordinate
of the center point of the element. Total energy is not conserved by this scheme. In [4],
compatible Area-weighted schemes are proposed.

There is no specific treatment for the computation of the viscous force in the case of
cylindrical geometry.
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Figure 6: Sod’s shock tube problem.

5 Numerical experiments

All the numerical experiments presented in the following section are performed without
any Hourglass stabilization [19]. The viscous force is computed all the time, for compres-
sions as well as expansions.

5.1 Sod’s shock tube problem

We consider first a one-dimensional shock tube problem, to test the capability of the
method to handle solutions with discontinuities. At initial time, the left state is ρL = 1,
PL =1, uL =1, the right state is ρR =0.125, PR =0.1 and uR =0. The computational domain
is defined by (x,y)∈ [0,1]×[0,0.1]. The interface is located at x=0.5. The initial mesh is a
Cartesian grid with nx×2 equally spaced cells. We impose wall boundary conditions at
each boundary. The results obtained with nx =100, nx =200 and nx =400 are presented in
Fig. 6. Almost converged solutions are provided with nx =400.

5.2 Saltzman problem

This well-known problem consists in solving a one-dimensional problem on a slightly
non-uniform mesh [18]. The computational domain is defined by (x,y)∈ [0,1]×[0,0.1].
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Figure 7: Saltzman problem. Mesh at time t=0.7.

Figure 8: Saltzman problem. Density as a function of the position at time t=0.7. Exact solution (solid lines)
and approximate solution (⋆).

The left end of the box is a piston, which moves into the box with a constant velocity of
1.0.

The initial mesh is composed of 100×10 non uniform cells defined as

x(i, j)= i∆x+(10− j)∆ysin(0.01πi),

y(i, j)= j∆y,

where

∆x=∆y=0.01.

At initial time, the box is filled with a perfect gas (γ =5/3) of unit density and very low
internal energy (ǫ = 10−6). Fig. 8 shows the density on each element as a function of
the position of the cell gravity center. The one-dimensional symmetry is well preserved.
Considering that no Hourglassing treatment is used, the quality of the resulting mesh
at time t = 0.7 is good (Fig. 7). The resulting mesh at a latter time (t = 0.9) shows some
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Figure 9: Saltzman problem. Mesh at time t=0.9.

accumulations of grid points along the boundary axis (Fig. 9). We suspect a problem of
boundary conditions due to the staggered placement of variables.

5.3 Noh test

This test is detailed in [16]. The initial state of the fluid is uniform. The velocity has a
radial distribution (the velocity points to the origin and has unit magnitude, except at the
origin, where it is forced to zero). The density and pressure are ρ0 = 1 and P0 = 0. For
practical purposes, the initial pressure P0 = 10−10 is used. The fluid is an ideal gas with
γ=5/3. A shock wave is generated at the origin and propagates radially outward.

5.3.1 Polar grid

We first test the Noh problem in a cylindrical coordinates system, using a polar grid
with same angular zoning. The initial computational domain is defined by (r,θ)∈ [0,1]×
[0,θmax]. The initial mesh is composed by nr×nθ equally spaced cells. We take nθ = 2.
The peak post shock density should be ρ=64. Results are displayed for two meshes with
nr = 50 and θmax = 2 or θmax = 4 (Fig. 10). The wave front invariance property is well
satisfied. Results are shown for different radial zonings (Fig. 11). The method converges
to the correct solution.

An ultimate simulation is proposed to show the scheme actually preserves the spher-
ical symmetric property. It is performed on the region (r,θ)∈ [0,1]×[0,90] with nθ = 90
and nr =100 (see Figs. 12 and 13).

5.3.2 Cartesian grid

We test the Noh problem in a Cartesian coordinates system, using a Cartesian grid. The
initial computational domain is defined as (x,y)∈ [0,1]×[0,1]. In this case, the peak post
density is ρ = 16. The numerical results obtained with an edge-centered viscosity [3]
exhibit unphysical vorticity along boundary axes (Fig. 14). The solution obtained with
the proposed node-centered viscosity is good (see Fig. 15), especially on the axes. But the
solution of Campbell and Shashkov [13] is still better.
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Figure 10: Noh problem. Spherical geometry.
Density profiles at time 0.6 for two different angu-
lar zonings ((r,θ)∈ [0,1]×[0,2] and (r,θ)∈ [0,1]×
[0,4] with nθ = 2), same radial zoning (nr = 50).
Comparison with analytical solution.

Figure 11: Noh problem. Spherical geometry. Do-
main (r,θ)∈ [0,1]×[0,4]. Density profiles at time
0.6 for different radial zonings (nr =100, nr =200
and nr = 400), same angular zoning (1/2 angular
zoning per degree). Comparison with analytical
solution.

Figure 12: Noh problem. Spherical geometry. Do-
main (r,θ)∈ [0,1]×[0,90], nr =100, nθ =90. Den-
sity as function of the position for all the mesh
nodes. Comparison with analytical solution.

Figure 13: Noh problem. Spherical geometry. Do-
main (r,θ)∈ [0,1]×[0,90], nr =100, nθ =90. Mesh
(zoom) at time 0.6.

5.4 The Sedov blast wave problem

We consider the Sedov explosion test problem in cylindrical symmetry. It models the
expanding wave by an intense explosion in a perfect gas. The problem consists of an
ideal gas (γ = 1.4) with a delta-function energy source at the origin. The computational
domain is defined as (x,y)∈ [0,1.2]×[0,1.2]. The initial conditions are ρ0 = 1, P0 = 10−6

and −→u 0 = 0. The energy source at the origin is deposited in a volume V0 (which is the
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Figure 14: Noh problem. Cartesian geometry. Results obtained with an edge-centered viscosity. Mesh and
density at time 0.6.

Figure 15: Noh problem. Cartesian geometry. Results obtained with the proposed node-centered viscosity.
Mesh and density at time 0.6.

Figure 16: The Sedov blast wave problem. Cartesian meshes. Top: 51×51 elements. Bottom: 102×102
elements. Mesh and density as function of the position (for all the mesh nodes) at time 1.
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Figure 17: The Sedov blast wave problem. Initial unstructured mesh.

Figure 18: The Sedov blast wave problem. Unstructured mesh.

same for all the meshes) such as (ρ0V0ǫ0) = 0.244816. The solution is a diverging shock
whose front is located at radius 1 at time t=1. The value of the peak density is 6. Results
with different meshes are proposed. First, we consider two Cartesian grids composed by
51×51 and 102×102 elements. The results are shown in Fig. 16. The one-dimensional
symmetry of the solution is well preserved. The shock position is in agreement with the
theory. The solution converges to the correct value of the peak density. Then, we consider
the same problem on an unstructured grid displayed in Fig. 17. The initial grid quality is
intentionally bad (no smoothing). The same grid has been considered by Maire [11] who
obtained very good results with its high-order cell-centered Lagrangian scheme. The
quality of the mesh at t = 1 is good in the vicinity of the triple point (Fig. 18). We think
this is due to the absence of a compressive test in the proposed artificial viscosity.
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6 Conclusions

In this paper, we propose a new artificial viscosity for Lagrangian schemes based on a
staggered placement of variables. This work is motivated by [10, 14].

The method is defined by introducing a cell-centered approximation for the velocity.
The Riemann problem can be defined in a very natural way, by proceeding exactly like
in the case of a cell-centered finite volume scheme. The method is based on the double
shock approximate solver, like all other existing artificial viscosities. In our past experi-
ence, the numerical solutions obtained with the node-centered viscosity exhibit very few
Hourglass-type deformations. The numerical results exhibit good stability and accuracy
properties.

In the future, we intend to improve the solver by deriving a second-order extension
of the method. An higher-order reconstruction of the velocity gradients would result in
a production of entropy better adapted to the problem to be solved. The objective is also
to get a fully multidimensional method for the treatment of shock waves. Of course, this
would be an alternative to the limiter function which drawback is that it introduces a
shock direction approximation.

Acknowledgments

I thank Bernard Rebourcet for his encouragement and constructive suggestions. I am also
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