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Dipartimento di Matematica, Università di Roma Tre, L.go S. Leonardo Murialdo, 1,
00146 Roma, Italy.

Received 7 July 2009; Accepted (in revised version) 1 December 2009

Communicated by Chi-Wang Shu

Available online 7 April 2010

Abstract. We consider in this paper a high-order, semi-Lagrangian technique to treat
possibly degenerate advection-diffusion equations, which has been proposed in sim-
ilar forms by various authors. The scheme is based on a stochastic representation
formula for the solution, which allows to avoid the splitting between advective and
diffusive part of the evolution operator. A general theoretical analysis is carried out in
the paper, with a special emphasis on the possibility of using large Courant numbers,
and numerical tests in one and two space dimensions are presented.
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1 Introduction

This paper is devoted to a semi-Lagrangian type treatment of second order terms in
advection-dominated, possibly degenerate, parabolic equations. Although several ex-
tensions are possible, we will use the advection-diffusion equation,











vt(x,t)=
N

∑
i,j=1

aij
∂2

∂xi∂xj
v(x,t)+ f (x)·∇v(x,t)+g(x),

v(x,0)=v0(x),

(1.1)

(with x ∈RN , t∈ [0,T], v0 compactly supported in RN) as a model problem to describe
the technique and to carry out a general convergence analysis. Here, we assume that
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A = (aij) ∈ RN×N is a positive semidefinite matrix, thus including degenerate second-
order operators. In order to have more explicit results, we will possibly assume in the
sequel that the advection term is driven by a constant vectorfield:

f (x)≡







f1
...

fN






. (1.2)

The semi-Lagrangian (SL) schemes stem from the so-called Courant-Isaacson-Rees
scheme (see [5]), and at the moment they are very popular in the Numerical Weather
Prediction community. In this setting, they have been introduced by Wiin-Nielsen in [26]
and brought to the present form by Robert in the 80s (see [23] and the review paper [25]).
In a partly independent way, SL schemes have also been proposed in [4] and widely
applied to plasma physic problems since (see, e.g., [14, 24]).

The general idea of SL methods is to reconstruct the solution by integrating numer-
ically the equation along the characteristics starting from any grid point, not over the
whole time interval (as it would be the case in the particle method), but over a single
time step. The scheme is constructed by coupling a numerical method for ODEs (to com-
pute the upwind points with respect to the grid nodes) with an interpolation formula
(to recover the value of the solution in such points, which are not in general grid points
themselves). The comparison with more classical Eulerian difference schemes shows that
in general SL schemes have a higher computational cost per time step, but that they also
allow for larger time steps.

If A = 0 (i.e. in the case of pure advection), the schemes rely on the representation
formula

v(x,t)=
∫ t

0
g(y(s))ds+v0(y(t)), (1.3)

where y(t) is the solution of
{

ẏ(s)= f (y(s)),

y(0)= x.
(1.4)

Although using the representation formula (1.3) is very natural in the case of (linear)
first order equations, the situation gets more complex when a diffusion term appears.
In this situation, the usual response is to split the evolution operator and treat in semi-
Lagrangian way only the first order part. This results either in very severe time-step
bounds, or in the additional computational effort of solving an implicit scheme for the
second order term, with the further drawback that the splitting itself introduces a limita-
tion in the consistency rate of the scheme. A second approach is related to the so-called
Lagrange-Galerkin schemes (proposed independently in [7] and [22]) which however
cannot be exactly implemented in general (see [21]).

On the other hand, a natural extension of the technique used for pure advection equa-
tions can be provided by the stochastic representation (Feynman-Kac) formula for the
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solution of (1.1):

v(x,t)=E

{

∫ t

0
g(y(s))ds+v0(y(t))

}

, (1.5)

where y(t)=y(x,t) is now the solution of the stochastic differential equation (SDE):

{

dy(s)= f (y(s))ds+
√

2BdW,

y(0)= x.
(1.6)

In (1.6), B is a matrix such that BBt = A and E{·} is the expectation with respect to the
Wiener measure (i.e. the probability measure of the Brownian process W in (1.6)). The
solution of (1.6) must be understood in the Ito sense (although of course in the case of
constant B as in (1.1) it coincides with the solution in the Stratonovich sense). Typically,
the representation formula (1.5)-(1.6) may be applied for any bounded and uniformly
continuous solution v of (1.1), despite of the possible degeneracy of the second-order
operator. This leads to consider solutions of (1.1) in the viscosity sense (see [6]), although
different analytical tools have been developed for such problems.

Note that if the parabolic operator is nondegenerate, then the matrix A has full rank
and the factor B must be a N×N matrix (for instance, a Cholesky factor of A). If the
operator is degenerate along N−M directions, then B might be constructed to have di-
mension N×M (such an example will be considered in the section on numerical tests). It
is also easy to see that if A=0, then (1.5) reduces to (1.3).

The use of the Feynman-Kac formula for numerical purposes was first proposed by
Kushner in the 70s (see [16] for an up-to-date review) in the field of stochastic Dynamic
Programming equations, which of course include problem (1.1). Kushner’s approach
results in a first order, Eulerian scheme. A first order, SL scheme have then been pro-
posed in [2], in which use of the Feynman-Kac formula is blended with large time-step
techniques. Independently, the same approach was proposed in [18–20] and developed
in a series of papers, mainly focused on semilinear parabolic equations and Fluid Dy-
namics problems. In this latter line of research, high-order discretizations are considered
with respect to time but not to space, and although the case of large Courant number is
considered, still the interaction between the two discretizations remains essentially un-
clear. We mention that a similar technique is also considered in [27] with a specific focus
on degenerate elliptic equations, and that techniques of stochastic derivation have been
successfully applied to degenerate nonlinear second order equations, in particular the
equation of Mean Curvature Motion (see [3, 9] and the references therein).

The purpose of this paper is to analyse (in the simplified setting of linear advection-
diffusion equations) a general version, high-order both in time and space, of the above
schemes. To this end, we will make extensive use of the theory of weak approximation
for Stochastic Differential Equations, along with the convergence results obtained for the
first-order advection equation. Consistency and stability, as well as the behaviour of the
numerical domain of dependence, will be studied in a form as independent as possible of
the relationship between discretization steps. The effectiveness of this approach will be
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discussed with an accent on the possibility of using large Courant numbers, which char-
acterizes SL schemes. We explicitly point out that the analysis carried out in the paper
can in principle be applied to more general advection-diffusion equations (in particular,
with nonconstant coefficients), although in practice this may result in an overly complex
scheme.

The outline of the paper is the following. Section 2 reviews some basic approxima-
tion results for Stochastic Differential Equations. Section 3 deals with time and space
discretization, whereas in Section 4 we carry out a general consistency and stability anal-
ysis, and a Fourier analysis of the scheme for the simplified one-dimensional, constant
coefficient case. Finally, we study in Section 4 the behaviour of the numerical domain of
dependence under large Courant numbers, and present in Section 5 the results of some
numerical tests in R1 and R2.

2 Approximation of Stochastic Differential Equations

We will review in this section some useful points in the theory of approximation for SDEs.
For an extensive treatment of the problem, the reader is referred to [15, 17].

To fix ideas, we assume that the functions f : RN →RN and g : RN →R are bounded
along with their derivatives, up to the order required by the desired consistency rate.

The approximation of the SDE (1.6) is a widely studied problem in probability theory.
It turns out that (1.6) can be approximated at least in two different senses. Strong conver-
gence (with order p) means that, using in the numerical scheme suitable increments of a
particular trajectory of the Brownian process, the numerical trajectory of (1.6) converges
in probability to the exact trajectory (with order p), that is

E{|yk−y(k∆t)|}→0 (E{|yk−y(k∆t)|}≤∆tp), (2.1)

whereas weak convergence means that the same holds only for expected values, that is

|E{h(yk)}−E{h(y(k∆t))}|→0 (|E{h(yk)}−E{h(y(k∆t))}|≤∆tp ). (2.2)

for any smooth function h, and any k such that 0≤k∆t≤T (we have denoted by |·| a given
norm in RN). In general, it happens that the convergence rate of the approximation is
higher for weak approximations. Moreover, under suitable assumptions, the averaging
of the trajectories in (2.2) (which is in principle a Monte Carlo type algorithm) needs only
to be computed on a limited number of trajectories, this number depending on the order
of the scheme.

Since our interest is in computing the expectation in (1.5), we will focus on weak
approximations. The examples in Table 1 (which are all from [15]) show the stochastic
versions of some well known one-step schemes. Here, FE and BE stand for respectively
Forward and Backward Euler, H for Heun and CN for Crank-Nicolson. Clearly, obtaining
the maximum convergence rate for the scheme requires suitable regularity assumptions
on the various terms of the SDE. This work, however, is not focused on a particular recipe
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Table 1: Stochastic explicit and implicit first- and second-order schemes.

scheme form order

FE yk+1 =yk+∆t f (yk)+
√

2B∆Wk p=1

BE yk+1 =yk+∆t f (yk+1)+
√

2B∆Wk p=1

H yk+1 =yk+
∆t
2 ( f (yk)+ f (yk+∆t f (yk)+

√
2B∆Wk))+

√
2B∆Wk p=2

CN yk+1 =yk+
∆t
2 ( f (yk)+ f (yk+1))+

√
2B∆Wk p=2

and therefore, in what follows, we will simply assume (2.2) (possibly, for some order p),
with the standing hypothesis that data are smooth enough for it to hold.

Although the increments ∆Wk should be understood as vectors of independent gaus-
sian variables with zero mean and variance ∆t, in practice (see [15,17]) in order to achieve
first order weak convergence in Euler schemes it suffices to use for any component ∆Wk,i

of ∆Wk, a two-point distributed variable with probability density

P(∆Wk,i =±
√

∆t)=
1

2
, (2.3)

whereas second order weak convergence for Heun and Crank-Nicolson schemes may be
achieved provided the variables ∆Wk,i satisfy for example

P(∆Wk,i =±
√

3∆t)=
1

6
, P(∆Wk,i =0)=

2

3
. (2.4)

Probability density for the whole vector ∆Wk is then obtained by product of independent
one-dimensional densities. For instance, in two space dimensions, (2.3) would result in
the discrete probability distribution

P

(

∆Wk =

(

+
√

∆t

+
√

∆t

))

= P

(

∆Wk =

(

+
√

∆t

−
√

∆t

))

= P

(

∆Wk =

(

−
√

∆t

+
√

∆t

))

= P

(

∆Wk =

(

−
√

∆t

−
√

∆t

))

=
1

4
. (2.5)

In general, higher order schemes may be constructed either by some generalization of
deterministic schemes, or by extrapolation on second or third order schemes (see [15] for
details). In both cases, the increase in computational complexity may be considerable.

3 Time and space discretization

We will first obtain in this section a discrete time approximation of the representation
formula (1.5), by a stochastic one-step time discretization of order p≥1, in the form:

{

yk+1 =yk +∆tΦ(yk ,yk+1,∆Wk)

y0 = x.
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Table 2: Stochastic first- and second-order schemes for the augmented system (3.1).

scheme form

FE Φ f (x, ȳ,∆W)= f (x)+
√

2B∆W

Φg(x, ȳ,∆W)= g(x)

BE Φ f (x, ȳ,∆W)= f (ȳ)+
√

2B∆W

Φg(x, ȳ,∆W)= g(ȳ)

H Φ f (x, ȳ,∆W)= 1
2 ( f (x)+ f (x+∆t f (x)+

√
2B∆W))+

√
2B∆W

Φg(x, ȳ,∆W)= 1
2 (g(x)+g(x+∆t f (x)+

√
2B∆W))

CN Φ f (x, ȳ,∆W)= 1
2 ( f (x)+ f (ȳ))+

√
2B∆W

Φg(x, ȳ,∆W)= 1
2 (g(x)+g(ȳ))

Following [8], it is convenient to consider the dynamical system:

(

dy(s)
dγ(s)

)

=

(

f (y(s))ds+
√

2BdW
g(y(s))ds

)

(3.1)

with the initial conditions y(0) = x, γ(0) = 0. Applying a stochastic one-step scheme to
(3.1), and restricting to the first time step, we have:

(

ȳ
γ̄

)

=

(

x
0

)

+∆t

(

Φ f (x,ȳ,∆W)
Φg(x,ȳ,γ̄,∆W)

)

(3.2)

where we split the function Φ according to (3.1). In (3.2), ȳ is an approximation of y(∆t),
whereas γ̄ approximates the integral between 0 and ∆t in (1.5) (note that the diffusion
appears only in the components of y). If an implicit scheme is used, ȳ and γ̄ are under-
stood as the solutions of equation (3.2). In any case, we will sometimes use in the sequel
the notations ȳ(x,∆W) or γ̄(x,∆W) to denote the left-hand side of (3.2). In order to clarify
the previous construction, we rewrite in Table 2 the schemes of Section 2 in the form (3.2).
Note that all the scheme still keep the same weak convergence rate in this version.

3.1 Time-discrete scheme

If we denote by v̄k a time-discrete approximate solution at time tk =k∆t, obtained rewrit-
ing (1.5) on a single time step and introducing the previous one-step approximation of
(1.6), we obtain:

v̄k+1(x)=E

{

γ̄(x,∆W)+ v̄k(ȳ(x,∆W))
}

. (3.3)

Now, relying on the assumption of weak convergence, we further compute the expec-
tation with respect to ∆W by working on a ”small” number of realisations as shown in
Section 2. We associate a weight wi to a realisation ∆i of the variable ∆W so as to have

P(∆W =∆i)=wi (i=1,··· ,s) (3.4)



R. Ferretti / Commun. Comput. Phys., 8 (2010), pp. 445-470 451

with the obvious conditions

wi≥0,
s

∑
i=1

wi =1 (3.5)

and the further assumptions (see [15]):

s

∑
i=1

wi∆i =0, (3.6)

s

∑
i=1

wi∆
2
i =∆t (3.7)

(this latter condition should be understood in one dimension, and extended to multiple
dimensions as in (2.3), (2.5)).

Using the discrete probability density (3.4) in (3.3), we obtain a second time-discrete
approximation in the form

vk+1(x)=
s

∑
i=1

wi

{

γ̄(x,∆i)+vk(ȳ(x,∆i))
}

(3.8)

in which the initial condition v0(x) for k=0 coincides with v0(x)=v(x,0).

3.2 Fully discrete scheme

The following step to obtain a fully discrete scheme is to discretize (3.8) with respect
to space variables, by setting up a space grid in the computational domain. Although
unnecessary in principle, we will assume that the grid is orthogonal and uniform, with
space step ∆x and nodes xj= j∆x, for a multiindex j∈ZN). We denote by vk

j be the desired

approximation of v(xj,tk), by Vk and U (respectively, U(t)) the set of nodal values of
respectively the numerical solution at time tk and of a generic function u(x) (respectively,
u(x,t)).

In particular, if N = 1, nodal values are represented as infinite vectors of samples so
that

Vk :=
(

··· vk
−1 vk

0 vk
1 ···

)t
,

U :=
(

··· u(x−1) u(x0) u(x1) ···
)t

,

U(t) :=
(

··· u(x−1,t) u(x0,t) u(x1,t) ···
)t

.

Then, (3.8) is computed at each node, replacing the ”upwind” value vk(ȳ(x,∆i)) with
a suitable polynomial reconstruction I[Vk](x) such that I[U](xj) = uj, and if u(x) is a
function of Wr,∞ then, for any x,

|I[U](x)−u(x)|≤C∆xr . (3.9)
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Practical examples of reconstruction operators include Lagrange, monotonic or non-
oscillatory nonlinear interpolations, as well as finite element reconstructions which would
also allow for an unstructured grid. In all such situations, r = m+1, where m represents
the order of the interpolating polynomial (we will assume in the sequel that m≥1, so that
constant and linear functions are reconstructed with no interpolation error).

The fully discrete scheme may finally be written as










vk+1
j =

s

∑
i=1

wi

{

γ̄(xj,∆i)+ I[Vk](ȳ(xj,∆i))
}

,

v0
j =v0(xj),

(3.10)

or, in a compact form,
Vk+1 =S∆x,∆t(Vk). (3.11)

Remark 3.1. Note that (3.10) shows that the computational complexity of the complete
scheme is s times the complexity of the inviscid version. The factor s can be quite large,
however — typically s = 2N for first order schemes, s = 3N for second order schemes,
in case of nondegenerate diffusions. Nevertheless, the overall complexity of the scheme
remains linear with respect to the number of points in the space-time grid, so that (at least
asymptotically) it has the lowest possible growth rate. Moreover, situation improves in
case of degenerate diffusions.

4 Convergence and error analysis

In examining the convergence of the fully discrete scheme (3.10), we should take into
account that convergence theory for SL schemes applied to first-order equations is itself
somewhat incomplete. More precisely (see [1, 8, 11]), the unconditional stability of SL
schemes, which is a widely observed fact in practice, has only been theoretically proved
for the case of constant coefficient equation (although an extension to more general linear
equations is in progress [12]). In what follows, the convergence analysis will be per-
formed in a normalized Hölder norm, so that

‖V‖α :=











(

∆xN ∑
j

|vj|α
)1/α

, if α<∞,

maxj |vj|, if α=∞.

We recall that setting A=0 in (1.1), we obtain the first order advection equation
{

vt(x,t)= f (x)·∇v(x,t)+g(x),

v(x,0)=v0(x).
(4.1)

Accordingly, we could define a family of inviscid schemes in the form

ui,k+1
j = γ̄(xj,∆i)+ I[Ui,k](ȳ(xj,∆i)), (4.2)
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with Ui,k set of nodal values associated to the scheme (4.2) and to ∆i, in particular

Ui,k =
(

··· ui,k
−1 ui,k

0 ui,k
1 ···

)t
,

if N =1. Then, the SL scheme for (4.1) corresponds to the case ∆i =0, and a time step of
the scheme (3.10) is performed by a convex combination of schemes in the form (4.2).

4.1 Stability

It is immediate to show that the scheme (3.10) is stable provided its inviscid counterparts
(4.2) are stable, as stated by the following result.

Theorem 4.1. Let the family of schemes (4.2) be Lα-stable for any i∈ [1,··· ,s], that is

‖Ui,k+1‖α≤ (1+C∆t)‖Ui,k‖α (4.3)

for a positive constant C independent of ∆x, ∆t. Then,

‖Vk+1‖α≤ (1+C∆t)‖Vk‖α (4.4)

with Vk solution of (3.10).

Proof. Define

v̄i,k+1
j = γ̄(xj,∆i)+ I[Vk](ȳ(xj,∆i)) (4.5)

with V̄ i,k+1 =(v̄i,k+1
1 ··· v̄i,k+1

q )t. Then, the scheme (3.10) may be written as

vk+1
j =

s

∑
i=1

wiv̄
i,k+1
j .

Using (4.5) and (3.5), we get therefore

‖Vk+1‖α≤
s

∑
i=1

wi‖V̄ i,k+1‖α ≤
s

∑
i=1

wi(1+C∆t)‖Vk‖α,

which, by (3.5), coincides with (4.4).

Remark 4.1. Relating stability of (3.10) to the stability of (4.2) allows to apply at least two
theoretical frameworks:

• Low order (P1, Q1) space reconstructions for which the inviscid scheme is mono-
tone and therefore L∞ stable (in fact, the complete scheme (3.10) is also monotone
in this case);

• Constant coefficient equations obtained assuming (1.2). In this case, two kind of
stability proof have been given for the inviscid case:



454 R. Ferretti / Commun. Comput. Phys., 8 (2010), pp. 445-470

– Von Neumann analysis in one space dimension as proved in [8], [1] for La-
grange reconstructions. We mention that, in the line of Von Neumann analysis,
a first result on finite element reconstruction has been proved in [13].

– Equivalence between the SL scheme and a stable Lagrange-Galerkin scheme.
This technique has been recently proposed in [11] in the situation of high-order
Lagrange reconstructions of odd degree, or interpolatory wavelets, in multi-
ple space dimensions. Its extension to the nonconstant coefficient advection
equation (4.1) is in progress (see [12]).

4.2 Consistency

The second part in the study of convergence is given by the consistency estimate which
follows.

Theorem 4.2. Let f be a smooth vector field, g be a smooth bounded function, v(·,·) be a smooth
solution of (1.1). Assume moreover that (2.2) and (3.9) hold. Then the local truncation error
satisfies the bound

1

∆t

∥

∥

∥V(tk+1)−S∆x,∆t(V(tk))
∥

∥

∥

α
≤C

(

∆tp+
∆xr

∆t

)

. (4.6)

Proof. We estimate a single component in the left-hand term of (4.6) as

1

∆t

∣

∣

∣

∣

∣

v(xj,tk+1)−
s

∑
i=1

wi{γ̄(xj,∆i)+ I[V(tk)](ȳ(xj,∆i))}
∣

∣

∣

∣

∣

≤ 1

∆t

∣

∣

∣

∣

∣

v(xj,tk+1)−
s

∑
i=1

wi{γ̄(xj,∆i)+v(ȳ(xj,∆i),tk)}
∣

∣

∣

∣

∣

+
1

∆t

∣

∣

∣

∣

∣

s

∑
i=1

wi{γ̄(xj,∆i)+v(ȳ(xj,∆i),tk)}−
s

∑
i=1

wi{γ̄(xj,∆i)+ I[V(tk)](ȳ(xj,∆i))}
∣

∣

∣

∣

∣

. (4.7)

We recall that the representation formula (1.5) gives for v(xj,tk+1):

v(xj,tk+1)=E

{

∫ ∆t

0
g(y(xj,s))ds+v(y(xj ,∆t),tk)

}

. (4.8)

The first term in the right-hand side of (4.7) can be estimated by (4.8) and the weak
convergence assumption (2.2) as

1

∆t

∣

∣

∣

∣

∣

v(xj,tk+1)−
s

∑
i=1

wi{γ̄(xj,∆i)+v(ȳ(xj,∆i),tk)}
∣

∣

∣

∣

∣

≤C∆tp (4.9)
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(note that we are working on a single time step and that v is supposed to be smooth).
Using (3.9), the second term may be estimated as

1

∆t

∣

∣

∣

∣

∣

s

∑
i=1

wi{γ̄(xj,∆i)+v(ȳ(xj,∆i),tk)}−
s

∑
i=1

wi{γ̄(xj,∆i)+ I[V(tk)](ȳ(xj,∆i))}
∣

∣

∣

∣

∣

≤ 1

∆t

s

∑
i=1

wi|v(ȳ(xj,∆i),tk)}− I[V(tk)](ȳ(xj,∆i))|

≤ 1

∆t

s

∑
i=1

wiC∆xr =C
∆xr

∆t
, (4.10)

which, put together with (4.9) and accumulated over all components, proves (4.6).

Remark 4.2. A different interpretation of the consistency of the scheme can also be given
with no use of stochastic arguments. Consider the difference operator obtained by ne-
glecting the interpolation phase in the weighted sum on the right-hand side of (3.8), in
the simplest case given by (2.3), and in one space dimension with g ≡ 0. By a Taylor
expansion, and collecting all higher order terms in some O(∆t2), we have

v
(

xj+a∆t±
√

2ν∆t
)

=v(xj)+
(

a∆t±
√

2ν∆t
)

vx(xj)+
1

2!

(

a∆t±
√

2ν∆t
)2

vxx(xj)

+
1

3!

(

a∆t±
√

2ν∆t
)3

vxxx(xj)+O(∆t2)

=v(xj)+
(

a∆t±
√

2ν∆t
)

vx(xj)+
1

2!

(

2ν∆t±2a∆t
√

2ν∆t
)

vxx(xj)

+
1

3!

(

±
√

2ν∆t
3
)

vxxx(xj)+O(∆t2),

so that

1

2

[

v
(

xj+a∆t+
√

2ν∆t
)

+v
(

xj+a∆t−
√

2ν∆t
)]

=v(xj)+∆t
[

a vx(xj)+νvxx(xj)
]

+O(∆t2).

Note that, in the right-hand side, the term in square brackets is precisely the evolution
operator computed at xj.

4.3 Convergence rate

We finally sum up the analysis performed so far in a convergence theorem.
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Theorem 4.3. Let the family of schemes (4.2) satisfy (4.3) (in particular, in the cases stated in
Remark 4.1). Then, for any k∈ [1,T/∆t],

∥

∥

∥
Vk−V(tk)

∥

∥

∥

α
→0 (4.11)

for ∆t → 0, ∆x = o
(

∆t1/r
)

. If, in addition, (2.2) holds with order p and, for any t ∈ [0,T],
v(·,t)∈Cr(RN), then

∥

∥

∥Vk−V(tk)
∥

∥

∥

α
≤C

(

∆tp+
∆xr

∆t

)

. (4.12)

Remark 4.3. Note that the convergence estimate requires the regularity of the solution,
but not the uniform parabolicity of the equation, since both the representation formula
(1.5) and the weak discretization of SDEs are suitable for the degenerate case.

Remark 4.4. The condition ∆x=o(∆t1/r) is required in order for the estimate (4.6) to van-
ish. The scheme is therefore unconditionally stable, but conditionally consistent. More-
over, (4.6) shows a nontrivial interplay between the two discretization steps (see [10] for
an in-depth discussion of this point); the order of consistency of the scheme is maximized
by setting

∆t∼∆x
r

p+1 , (4.13)

and with this choice the theoretical convergence rate of the scheme is
rp

p+1 (with respect

to the only independent discretization step ∆x).

In practice, if both space and time discretizations are of the same order (e.g., P1 in
space and Euler in time), (4.13) results in a conventional hyperbolic-type CFL condition.
If the order of time discretization is higher, consistency rate would be maximized with
∆t = o(∆x), although, in practical implementations, higher order space reconstructions
are rather used as a tool to reduce undesired numerical dissipation, and no optimization
of the rate is performed. In the opposite situation (time discretization of higher order),
consistency rate is maximized under an inverse CFL condition ∆x = o(∆t). The only
discretization of interest in this case, e.g. P1 in space, Heun or Crank-Nicolson in time,
will be considered in the numerical test section, since it combines monotonicity with a
theoretical consistency rate beyond the unity.

4.4 Fourier analysis of the scheme

A different insight into the mechanism of the scheme may be given by directly prov-
ing convergence with Fourier analysis tools. We consider therefore the behaviour of the
scheme on a one-dimensional, homogeneous, constant coefficient equation, that is

{

vt =νvxx +avx , x∈R,

v(x,0)=v0(x),
(4.14)
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whose exact solution is given by the convolution

v(x,t)=
e−

(x+at)2

4νt√
4πνt

∗v0(x). (4.15)

According to (3.10), the fully discrete approximation of (4.14) reads

Vk+1 =ΨVk =
s

∑
i=1

wiΨ
(i)Vk, (4.16)

where the banded infinite matrices Ψ(i) correspond to the matrices used in approximating
the advection equations

{

ut =
(

a+
√

2ν∆i
∆t

)

ux, x∈R,

u(x,0)=u0(x).
(4.17)

In this setting, Ψ(i) =
(

ψ
(i)
jl

)

, so that

I[Vk](xj+a∆t+
√

2ν∆i))=∑
l

ψ
(i)
jl vk

l , (4.18)

with xj = j∆x and the condition ψ
(i)
jl = ψ

(i)
j+1,l+1. This condition requires both linearity

and translation invariance of the reconstruction operator I[·], and in practice typically
corresponds to the case of Lagrange interpolation (usually, the stencil is symmetric and
therefore the degree of the interpolating polynomial is odd). In this situation (see [11])
the reconstruction can be set in the form

I[U](x)=∑
l

ul φ

(

x−xl

∆x

)

(4.19)

for a suitable reference basis function φ, piecewise polynomial of degree m= r−1≥1.

Carrying out the transformations in the Fourier domain, we obtain from (4.15):

v̂(ω,t)=F [v](ω,t)= eiatω−νtω2
v̂0(ω). (4.20)

where i denotes the imaginary unit. On the other hand, we get from (4.16)

V̂k+1(ω)= Ψ̂(ω)V̂k(ω) (4.21)

and hence

V̂k(ω)= Ψ̂(ω)kV̂0(ω), (4.22)

where the (infinite) matrix product in the right-hand side of (4.16) is understood as a
discrete convolution, and the Fourier transform of a sequence as the transformation of its
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pulsed continuous equivalent, more precisely:

V̂k(ω)=F
[

∑
j

vk
j δ(x−xj)

]

(ω),

Ψ̂(ω)=F
[

∑
j

ψ0j δ(x−xj)

]

(ω).

By (4.19), it is clear that the reconstructed numerical solution I[Vk] amounts to a convo-
lution of the sequence Vk with the scaled basis function φ̃(x)= φ(x/∆x). Turning to the
Fourier domain, this gives

F
[

I[V0]
]

(ω)= V̂0(ω)F [φ̃](ω), (4.23)

F
[

I[Vk]
]

(ω)= V̂k(ω)F [φ̃](ω), (4.24)

so that, using also (4.22):

F
[

I[Vk]
]

(ω)= Ψ̂(ω)kV̂0(ω)F [φ̃](ω)= Ψ̂(ω)kF
[

I[V0]
]

(ω). (4.25)

Since (under reasonable smoothness assumptions) F
[

I[V0]
]

(ω)→ v̂0(ω) as ∆x→0, this

proves that F
[

I[Vk]
]

(ω)→ v̂(ω,t) as soon as Ψ̂(ω)k → eiatω−νtω2
.

Recovering the asymptotic behaviour of (Ψ̂)k is a well-known problem in probability
theory, and the answer is given by the central limit theorem as far as the sequence ψ0l is
made of positive elements. This condition fails in general in our case, but we will follow
similar steps.

Step 1. As a start, we show that |Ψ̂(ω)|≤1. In fact, this is equivalent to the Von Neumann
condition of L2 stability. Recalling (4.3), we have

|Ψ̂(ω)|≤
s

∑
i=1

wi|Ψ̂(i)(ω)|≤1. (4.26)

The last inequality in (4.26) follows from the L2 stability of the schemes which approxi-
mate equation (4.17) for any ∆i, this being proved in [8], [1]. We remark that (4.26) implies
that Ψ̂(ω)k≤1 for any k≥0.

Step 2. Let us compute the Taylor series of Ψ̂(ω) centered in ω =0. By known properties
of the Fourier transform, the required derivatives can be computed starting from the
moments of the sequence ψ0l, so that

Ψ̂(0)=∑
l

ψ0l =
s

∑
i=1

wi∑
l

ψ
(i)
0l =1, (4.27)
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which follows from the fact that the reconstruction is exact on constant functions. On the
other hand,

Ψ̂′(0)=−i∑
l

xlψ0l =−i s

∑
i=1

wi∑
l

xlψ
(i)
0l

=−i s

∑
i=1

wi(a∆t+
√

2ν∆i)=−ia∆t−i√2ν
s

∑
i=1

wi∆i =−ia∆t. (4.28)

In (4.28), we have used both the fact that ∑l xlψ
(i)
0l is nothing but the reconstruction (which

has been supposed to be exact) of the linear function x in the point x= a∆t+
√

2ν∆i, and
the condition (3.6). From the second moment we have

Ψ̂′′(0)=−∑
l

x2
l ψ0l =−

s

∑
i=1

wi∑
l

x2
l ψ

(i)
0l =−

s

∑
i=1

wi(a∆t+
√

2ν∆i)
2

=−a2∆t2−2ν
s

∑
i=1

wi∆
2
i +O(∆xr) (4.29)

in which we have used again the facts that ∑l x2
l ψ0l is the reconstruction of the function

x2 at the point x = a∆t+
√

2ν∆i, that this reconstruction is performed with a worst-case
error of O(∆xr) (in fact, this error vanishes if m≥2) and that (3.6) holds. Using (3.7) and
the consistency condition ∆xr = o(∆t), we obtain at last

Ψ̂′′(0)=−2ν∆t+o(∆t). (4.30)

It is easy to show by means of the same arguments that, since a∆t+
√

2ν∆i =O(
√

∆t),
successive derivatives satisfy

Ψ̂(n)(0)=(−i)n
s

∑
i=1

wi(a∆t+
√

2ν∆i)
n+O(∆xr)=O(∆tn/2)+O(∆xr), (4.31)

and, by the condition ∆xr = o(∆t), that Ψ̂(n)(0)= o(∆t) as soon as n>2. We obtain there-
fore:

Ψ̂(ω)=1+∆t(aiω−νω2)+o(∆t). (4.32)

Step 3. Setting now k= t/∆t and letting ∆t→0:

Ψ̂(ω)
t

∆t → eiatω−νtω2
, (4.33)

which states the convergence (in terms of Fourier transforms) of the approximate evolu-
tion operator in (4.22) to the exact one. This finally shows that F

[

I[Vk]
]

(ω)→ v̂(ω,t).

Remark 4.5. We stress that the gaussian term in the Fourier transform (and hence, the
possibility of treating the second-order derivative) comes from the presence of a nonzero
centered second moment in the sequence ψ0l .
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Remark 4.6. Although convergence of Fourier transforms would in principle imply only
weak convergence of numerical solutions, in practice we expect that due to even minimal
smoothness assumptions, numerical solutions would converge in a stronger topology.
This is not necessarily true for the evolution operator, in the sense that F−1

[

Ψ̂k
]

(x) may
not converge (in a strong topology) to the kernel appearing in the convolution (4.15).
This point has a remarkable influence on the accuracy of the approximation and will be
further discussed in the next section.

5 Numerical domain of dependence

While under the parabolic CFL condition ∆t =O(∆x2), or in case of strongly advection-
dominated problems, the ”upwind” points xj±c

√
ν∆t can be adjacent to xj, with a stronger

diffusion or a less restrictive ∆t/∆x relationship they will fall in a ”far” cell of the grid,
and in practice this can lead to an unsatisfactory behaviour of the scheme, if no special
care is taken. In order to analyse in greater detail the behaviour of the scheme for equa-
tions with a relevant diffusion term, we consider the heat equation











vt =
1
2 vxx,

v0(x)=

{

1, if −0.5≤ x≤0.5,

0, else,

(5.1)

with Ω=(−1,1), v(−1,t)=v(1,t)=0.

0

0.1
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-1 -0.5 0 0.5 1

Figure 1: Approximate solution for problem (5.1), ∆t=∆x=0.01.

Fig. 1 shows the approximate solution at t =1 with an Euler/cubic discretization for
∆t = 0.01 (i.e., with 100 time steps), on a space grid of 201 nodes. The highly irregular
behaviour of the scheme can be explained by a more in-depth analysis. With the parame-
ters chosen, the two ”upwind” points for the node xj are xj±

√
2ν∆t=xj±10, which are the
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numerical domain of dependence at the previous time step. Going backwards one more
time step, the numerical domain of dependence is made by the points xj, xj−20 and xj+20,
and so forth. The resulting “discrete Green function”, associated to the initial condition

v0(xj)= e0 =

{

1, if j=0,

0, else,

is shown in the uppermost row of Fig. 2, with respectively P1 and cubic interpolation.
It is apparent that the domain of dependence develops “holes” which cause the os-

cillations seen in Fig. 1. However, the situation in which the upwind points precisely
coincide with other grid nodes is unlikely. In a more realistic setting, the numerical do-
main of dependence would also include (in a P1 reconstruction) one node left and one
node right of the point xj±

√
2ν∆t. Therefore, a “hole” of width 2

√
2ν∆t could be filled

up in a number of steps

k=
2
√

2ν∆t

2∆x

so that keeping fixed the final time T, the condition T≥ k∆t (which would be necessary
to avoid such “holes” in the numerical domain of dependence) yields

∆t≤ T2/3∆x2/3

(2ν)1/3
. (5.2)

In practice, it would be reasonable to require the stronger condition

∆t≪ T2/3∆x2/3

(2ν)1/3
(5.3)

in order to obtain a more regular dependence. Although this condition has been obtained
for the Euler/P1 coupling, a similar analysis in other cases would coincide up to a con-
stant factor (with magnitude close to the unity) on the right-hand side. Neglecting such
constant, we obtain the condition

λ≡ ν1/3∆t

T2/3∆x2/3
≪1. (5.4)

In the first two plots of Fig. 2, λ≈ 0.17. In the other plots, discrete Green functions are
shown for different values of ∆t, and accordingly of λ. In the second row ∆t = 0.005
(200 time steps) and λ ≈ 0.085. In the third row ∆t = 0.00333 (300 time steps) and λ ≈
0.057 whereas in the last row ∆t = 0.0025 (400 time steps) and λ≈ 0.043. Left plots refer
to solutions computed with a P1 interpolation, right plots to solution computed with
cubic interpolation. It is apparent that the regularization of the numerical domain of
dependence is faster in the monotone case, and higher order interpolation may require
lower values of λ.
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Figure 2: Discrete Green functions for problem (5.1), ∆x=0.01, λ=0.17 (uppermost line) to λ=0.043 (lowermost
line), with P1 (left) and cubic (right) reconstruction.
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It is interesting to note that condition (5.4) is easier to satisfy with strongly advection-
dominated problems (ν small) or in the large-time simulation (T large). In the limit, this
condition is always satisfied when the stationary solution is computed (T =∞), as in [2].

The relationship ∆t=O(∆x2/3/ν1/3) allows to work at constant or slightly increasing
Courant numbers in refining the grid, this being a significant improvement over the usual
parabolic CFL condition ∆t=O(∆x2/ν) of explicit Eulerian schemes. Moreover, relating
the time step to the cubic root of ∆x2/ν, it also allows for a less critical choice of the time
step, for example in case of local refinements.

6 Numerical tests

This section gives some numerical example showing the behaviour of the scheme on test
cases in R1 and R2. Examples in R1 will present a detailed analysis of the convergence
history for various couplings of SDE scheme and reconstruction. In the R2 examples we
will focus instead on a degenerate equation, examining respectively the smooth and the
nonsmooth case.

6.1 Tests in R1

We start with a couple of simple one-dimensional test intended to illustrate and check
in greater detail the previous convergence results. Computations for both Examples 6.1
and 6.2 have been carried out for the Euler/P1, Heun/P2, Heun/P1and Heun/cubic
coupling on successive grids of 21, 51, 101, 201, 501 and 1001 nodes; errors are computed
in the discrete L1 norm due to the possibility of peaks or boundary layers in the solution.
For the first two choices, (4.13) results in choosing a constant Courant number along
the refinement. In the third case, consistency rate is maximized under an inverse CFL
condition, whereas in the fourth, (4.13) requires the Courant number to vanish along the
refinement.

We have set the viscosity to ν=10−n (for n=0,··· ,3), so that the tests range from being
diffusion-dominated to advection-dominated. In all cases, the relationship between ∆t
and ∆x has been chosen in order to have λ . 0.05 on the coarsest space-time grid. In
particular, refinements at constant Courant number have been implemented with the
conditions























∆t=∆x/5, if ν=1,

∆t=∆x/2, if ν=0.1,

∆t=∆x, if ν=0.01,

∆t=2∆x, if ν=0.001.

Refinements for the Heun/P1 scheme have been implemented with ∆t≈0.13·ν−1/3∆x2/3

and for the Heun/cubic scheme with ∆t≈0.13·ν−1/3∆x4/3.



464 R. Ferretti / Commun. Comput. Phys., 8 (2010), pp. 445-470

In order to obtain the convergence rate of the scheme, we use a reference solution
computed by the Heun/P2 scheme with 10001 nodes. Tables 3 and 4 show the conver-
gence rates computed between the extreme values of ∆x. Because of the various refine-
ment strategies, and in order to compare the efficiency of schemes, numbers in brackets
also report convergence rates with respect to the computational complexity, this being
measured as the number of points in the space-time grid.

Finally, Dirichlet boundary conditions have been treated following [8].
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Figure 3: Reference solutions for Example 6.1.

Example 6.1. We first consider the equation











vt =νvxx +vx,

v0(x)=

{

1−cos(2πx), if x≥0,

0, else,

posed in Ω=(−1,1), with boundary conditions v(−1,t)=v(1,t)=0. The approximations
are computed at T =1. In this equation, characteristics advect the initial condition to the
left at constant speed. In the inviscid case, the solution would remain of C1 with support
in (−1,1), but in fact diffusion may cause a small layer at the outflow boundary (that
is, at x =−1). Fig. 3 shows the reference numerical solutions, whereas Table 3 compares

Table 3: Overall convergence rates, Example 6.1.

scheme ν=1 ν=0.1 ν=0.01 ν=0.001

Euler/P1 1.02 (0.51) 1.15 (0.58) 0.53 (0.27) 0.49 (0.25)
Heun/P1 0.89 (0.53) 1.30 (0.78) 1.23 (0.74) 1.81 (1.09)
Heun/P2 1.73 (0.87) 2.06 (1.03) 2.31 (1.16) 2.45 (1.23)
Heun/cubic 2.34 (1.0) 2.33 (1.0) 2.33 (1.0) 2.11 (1.09)
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Figure 4: Convergence of Euler/P1 (upper left), Heun/P1 (upper right), Heun/P2 (lower left) schemes,
Heun/cubic (lower right), Example 6.1.

the schemes in terms of convergence rates. Lastly, Fig. 4 shows numerical errors versus
number of nodes with the reference slopes of a first- and a second-order convergence.

Example 6.2. We next consider the nonconstant coefficient equation
{

vt =νvxx +xvx +1,

v0(x)= x,

posed in Ω=(−1,1), with boundary conditions v(−1,t)=−1, v(1,t)=1. The approxima-
tions are computed at T=4. In this equation, characteristics point towards the origin, and

Table 4: Overall convergence rates, Example 6.2.

scheme ν=1 ν=0.1 ν=0.01 ν=0.001

Euler/P1 1.43 (0.72) 0.79 (0.4) 0.71 (0.36) 0.86 (0.43)
Heun/P1 0.41 (0.25) 1.4 (0.84) 0.98 (0.59) 0.92 (0.54)
Heun/P2 1.04 (0.52) 1.47 (0.74) 1.99 (1.0) 1.50 (0.75)
Heun/cubic 1.4 (0.6) 2.09 (0.9) 1.59 (0.68) 1.52 (0.65)
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Figure 5: Reference solutions for Example 6.2.
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Figure 6: Convergence of Euler/P1 (upper left), Heun/P1 (upper right), Heun/P2 (lower left) schemes,
Heun/cubic (lower right), Example 6.2.

in the inviscid case two singularities of ux are associated to the points ±e−t. The source
term tends to cause a sharp peak at the rightmost of these points. Again, Fig. 5 shows
the reference solutions, Table 4 a comparison of convergence rates and Fig. 6 numerical
errors versus number of nodes.
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Although the measured convergence rates may fluctuate around the predicted ones,
the advantage in using higher order schemes is apparent from the comparison with the
Euler/P1 scheme. This advantage is better seen in Example 6.1, which corresponds to a
smoother situation. Both examples confirm, however, that situation gets more complex
in the case of diffusion-dominated problems, in which it seems that performances of the
scheme may be increased either by monotonicity of the reconstruction (see Fig. 2) or by
very small Courant numbers like those used in the Heun/cubic refinement. We think
that a convincing analysis of the diffusion-dominated case would surely need further
investigations.

At the efficiency level, note that P2 reconstruction might be now and then preferred
to cubic because of the lesser number of time steps. However, as observed in Remark
4.4, the usual practice when very high-order space reconstructions are used is not to
optimize the consistency rate, but rather to use large, constant Courant numbers (this
reduces numerical dispersion while keeping computational complexity lower).

6.2 Tests in R2

We perform here two tests in two space dimensions. In both cases, we consider Eq. (1.1)
in R2 with constant advection speed and degenerate diffusion, in particular

A=





1
64

√
3

64√
3

64
3

64



, f ≡
(

−1
−3

)

, g≡0

posed in Ω = (−2,2)2, with biperiodic boundary conditions. The equation is slightly
advection-dominated, and diffusion is degenerate along a direction rotated by 30◦ with
respect to the grid geometry. In this test, diffusion and advection are not aligned one
another, and neither of the two is oriented along relevant directions of the space grid. The
approximate solutions are compared at T=4 (that is, at the time at which a rigid advection
with the same speed would bring back the solution to its original configuration).

Example 6.3. In the first example, we test the convergence of schemes on a smooth solu-
tion. The initial condition is

v0(x)=sin
(π

2
x1

)

sin
(π

2
x2

)

.

The exact solution can be computed by decoupling advection and diffusion, and at t=4
its expression (in single precision) is

v(x,4)=0.6184912·sin
(π

2
x1

)

sin
(π

2
x2

)

+0.3021893·cos
(π

2
x1

)

cos
(π

2
x2

)

.

Here, we have implemented a more conventional strategy of refinement, by working at
constant Courant number, with ∆t = 1.25·∆x (∆t = 0.1 on a 51×51 grid). The schemes
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Table 5: Errors and overall convergence rates, Example 6.3.

nodes Heun/P1 Heun/P2 Heun/cubic

26 1.056 2.182·10−2 1.059·10−2

51 0.529 6.836·10−3 1.419·10−3

101 0.27 1.437·10−3 1.86·10−4

rate 0.98 1.96 2.92

tested are obtained coupling the Heun scheme with P1, P2 and cubic reconstructions
(this would theoretically result in a first-order and two second-order schemes).

In this example, solution is smooth despite degeneracy of the operator, and numer-
ical schemes behave according to the theory (Heun/P1 and Heun/P2) or even better
(Heun/cubic). Errors and global convergence rates are reported in Table 5, whereas Fig. 7
shows initial condition and numerical solution at t=4.
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Figure 7: Initial condition (left) and Heun/cubic solution (right), Example 6.3.

Example 6.4. In this second example, the initial condition is the characteristic function
of a unit square, rotated by 30◦, so that the solution is diffused along one of the axes
of the square, whereas it remains discontinuous along the other. Fig. 8 shows the initial
condition (upper left) and the numerical solutions obtained by coupling the Heun scheme
with different space reconstructions, at T = 4, on a grid of 51×51 nodes, with ∆t = 0.1.
While the P1 scheme is clearly too viscous, cubic reconstruction (lower left) has a better
resolution of the discontinuity (within about 3-4 mesh sizes), although it also introduces
some over- and undershoot in the computation. Such oscillations are avoided by the
third-order ENO scheme (lower right) at the price of a higher complexity.
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