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Abstract. This paper presents a lumped particle model for simulating a large number
of particles. The lumped particle model is a flexible framework in modeling particle
flows, embodying fundamental features that are intrinsic in particle laden flow, in-
cluding advection, diffusion and dispersion. In this paper, the particles obey a simpli-
fied version of the Bassinet-Boussinesq-Oseen equation for a single spherical particle.
However, instead of tracking the individual dynamics of each particle, a weighted spa-
tial averaging procedure is used where the external forces are applied to a “lump” of
particles, from which an average position and velocity is derived. The temporal evo-
lution of the particles is computed by partitioning the lumped particle into smaller
entities, which are then transported throughout the physical domain. These smaller
entities recombine into new particle lumps at their target destinations. For particles
prone to the effects of Brownian motion or similar phenomena, a symmetric spread-
ing of the particles is included as well. Numerical experiments show that the lumped
particle model reproduces the effects of Brownian diffusion and uniform particle trans-
port by a fluid and gravity. The late time scale diffusive nature of particle motion is
also reproduced.

PACS: 47.55.Kf, 47.57.Gc
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1 Introduction

Consider sand and mud particles suspended in seawater, being moved around by the
fluid flow before they eventually settle on the sea floor. This process is at the heart of
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computational studies of how sedimentary rocks are formed by erosion and deposition.
In geoscience, such studies are referred to as depositional modeling [27]. When simu-
lating the flow of particle-laden fluids, many physical aspects must be considered; the
frequency of interparticle collisions, the ambient flow configuration including the degree
of turbulence, and gravitational effects, to name a few. The size of the suspended particles
is also an important factor, as particles of micrometers or less will have Brownian motion
as well. For instance, all of the above mentioned effects must be taken into account when
studying turbidity currents [41], which take the form of a highly turbulent sand-laden
subaquatic flow. Turbidity currents are often triggered by tsunamis, earthquakes, or un-
derwater avalanches, and contribute significantly to the transport of sediments into deep
marine areas [25].

The accurate simulation of particle transport and the correct modeling of turbulence
are two central aspects in understanding turbidity currents. This paper will focus on the
simulation of the particles in the flow.

Although there is great variation in the details, the simulation of particle flows can
roughly be categorized into two distinct approaches: discrete particle models and Eulerian
continuum models. In discrete particle models, the motion of either single particles or clus-
ters of particles are simulated individually by applying forces as prescribed by Newton’s
laws. The Eulerian models, however, treat the particles as a continuum where averaged
equations of motions are solved instead.

The most common of the discrete particle methods is the Lagrangian approach [23].
Here, each particle’s position and velocity are obtained by integrating an equation de-
scribing the particle’s motion, which is usually the Bassinet-Boussinesq-Oseen (BBO)
equation [36]. This equation is coupled with variants of the Navier-Stokes equation to
obtain a description of the particle flow [30]. Usually, this coupling is one-way, meaning
that the particles do not influence the ambient fluid. However, two-way couplings are of-
ten needed for dense particle flows, for which the particles’ effect on the fluid is modeled
by either including body force terms in the Navier-Stokes equations or adding a particle
density dependent fluid viscosity. The Lagrangian approach has also the advantage of
being applicable to problems covering a wide range of Reynolds numbers [24, 38]. More
details on Lagrangian models are available in [5] and the references therein.

For low Reynolds numbers, a widely used discrete particle method is the Stokesian
dynamics approach [28]. Here, the linearized hydrodynamic equations are solved for the
particles and the fluid [18], where both the rotational and translational aspects are stud-
ied. Forces and torques on the particles are obtained by integrating over the particles’
surface, the net effect of which is then applied to the surrounding fluid as well. Stokesian
dynamics have been very successful in reproducing observed results, such as Brown-
ian motion, in addition to correctly predicting values for drag coefficients However, this
method is computationally very expensive for dynamically evolving systems, since the
computational effort scales as the cube of the number of particles [19]. Currently, simu-
lations based on this method is limited to 100 or less. Stokesian dynamics is, however, a
useful tool to study basic particle physics at low Reynolds numbers.
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A similar approach to the Stokesian one is the use of the moving boundary approach
[18] for the lattice Boltzmann method for fluid flow [26]. Here, the fluid is considered as
consisting of fictive particles subject to consecutive propagation and collision processes
over a regular lattice. Macroscopic fluid quantities like velocity and density are computed
from statistical moments of the fictitious particles’ lattice variables that are obtained from
the lattice Boltzmann equation [39]. In the moving boundary approach, particles are usually
treated as a set of solid lattice points absent of the fictitious fluid particles. The fluid
interacts with the particles by simple collision rules that exchange momentum between
the fluid and the particles. Solid sites are filled with fluid as the particles are moved
through the domain. Simulating a fluid with a high Reynolds number is possible as well.
For instance, recent developments have shown that the lattice Boltzmann method can
simulate fluid flows for Reynolds numbers up to 20000 [4]. However, these simulations
has yet to be tested with suspended solid particles.

A certain class of discrete particle methods use computational entities to represent a
number of real particles. Notable examples include the smoothed dissipative particle dynam-
ics models [10, 14], stochastic rotational dynamics models [16], and the Lagrangian-Eulerian
methods [12]. A description of these methods goes well beyond the scope of this paper,
and more details concerning this class of methods can be found in [17]. Most of these
approaches stem from molecular dynamics [2], and share the inclusion of a stochastic
element in the modeling of the particle dynamics. Variants of these methods have been
applied to particle flows with low Reynolds numbers, and show good agreement with
experiments [22]. However, these approaches have yet to be applied to flows with high
Reynolds numbers. As is common with most discrete particle methods, the computa-
tional effort scales as the square of the particle number N. Although certain state-of-the-
art algorithms reduce this scaling to O(N logN) [17].

In many geological applications the number of particles is huge; of the order 108−
1012. Hence, tracking the movement of each particle is not feasible with currently avail-
able computing power, nor can one expect to see realistic simulations of millions of par-
ticles in the foreseeable future. However, in many instances it may be argued that large
amounts of particles can equally well be modeled as a continuum.

In the continuum approach, often known as Eulerian two-fluid or multiphase compu-
tational fluid dynamics (CFD), both the fluid and the particles are treated as interact-
ing continua [6]. Usually, the Newtonian equations for the particles undergo a volume-
averaging procedure that results in continuum equations [3]. A set of equations for mass
and momentum conservation for each phase are then obtained. The momentum con-
servation equations include a term that signifies the momentum transfer between the
phases, which is required to close the set of equations. These closure equations are often
complex, and necessitate amongst other things the correct specification of constitutive rela-
tions, like the solid phase stress. Constitutive relations for two-phase flows are in general
empirical and sometimes lack experimental validation for the conditions they are valid
under [40]. However, recent advances have applied concepts from kinetic theory [13]
to obtain the particle phase stress relations from net streaming and collisions of parti-
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cles [21]. In the derivations, the particle collisions are assumed to be binary and instan-
taneous, which may not be applicable for dense flows [42]. The kinetic theory approach
has as yet only been applied to gas-particle flows and show good qualitative results with
experiments [9]. For a detailed review of multiphase CFD, see [40].

Depending on the physical setting studied, the solid and fluid phase equations can
sometimes be simplified to variants of the advection-diffusion equation. This approx-
imation is often used in geological settings [15], and does in some cases simplify the
numerical schemes employed. Problems arise, however, in the correct estimation of
model parameters requiring a great deal of fine tuning to reproduce experimental ob-
servations [33]. The resolution of boundary conditions can also pose a problem in multi-
phase CFD. For instance, at a wall, the usual value for the fluid velocity would be zero.
This is generally not the case for particles. Various attempts have been proposed to rem-
edy this problem, see [5] for further discussion of boundary conditions.

As mentioned earlier, many physical effects must be included in the simulation of
turbidity currents. However, the continuum approaches have yet to capture all of the
physical properties that are characteristic of these systems [41]. One reason for this is
clearly the lack of good constitutive relations in the closure assumptions. Moreover, it is
clear that the particle nature of these flows are important for turbidity currents, but dis-
crete particle methods are still computationally expensive. Furthermore, it is also unclear
to what extent the various physical processes effect the evolution of the particles [20]. We
believe that numerical experiments are a way to explore these relations. Hence, to ad-
dress these problems, we propose a mesoscopic hybrid continuum-particle approach in
which we simulate particle transport by introducing a lumped particle model.

The lumped particle model described in this paper can be viewed as a flexible frame-
work in modeling transport of particles in fluid flow. Our goal is to define an efficient
and simple algorithm for the evolution of particles in space and time. In the proposed
model, we include the fundamental features that are intrinsic in particle flow: advection,
diffusion and dispersion of the particles. These serve to model Brownian motion and
other hydrodynamic forces. Additional physical effects can readily be included into the
modeling framework. However, in the lumped particle model, a certain number of par-
ticles are treated as a single entity. Instead of tracking the individual dynamics of each
particle, a weighted spatial averaging procedure is used. The external forces are applied
to the lump of particles, from which an average position and velocity is derived. Hence,
the particles are in a sense considered as a continuum, but where the particle nature
heavily influence the dynamics. As will be illuminated below, when computing the evo-
lution of the particles, the particle lumps are partitioned into smaller entities which are
then transported according to local physical effects. These smaller entities recombine into
new particle lumps at the target destinations. The lumped particle model introduced here
alleviates the need to track the evolution of each particle, while simultaneously keeping
the granular nature of the particles.
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2 Algorithmic overview

Imagine a set of identical, spherical particles suspended in a fluid. Each individual parti-
cle has a number of physical properties, such as its velocity and its position relative to a
given reference frame. Our aim is to calculate the evolution of these quantities over time
as external forces are applied. Interparticle collisions are not considered in this paper.
Such collisions become important only when the particle concentration in the fluid be-
comes high, usually 30% or higher. However, this value depends in general on the flow
configuration [37].

The particle lumping procedure is as follows: Consider a discretization of the spatial
area where both particles and fluid reside. In this paper, we will restrict our attention to
a two-dimensional regular lattice, but most of what is presented can also be used with
other grid types and in three dimensions. Hence, we partition the computational domain
into a regular lattice, with physical spacing parameters ∆x and ∆y. Time is discretized
into increments of ∆t. As shown in Fig. 1, the lattice defines a set of grid cells, each having
a center point xp. The distribution N(xp,t), and the velocity V(xp,t) are defined as the
number of particles inside the cell and the average velocity of these particles, respectively.
The proposed algorithm calculates how these variables change during a time increment
∆t.

Figure 1: The lumped representation of particles. Particles within a grid cell are treated as a single entity. Here,
V is the average velocity and ds is the offset from the particle centroid to the cell center.

The computation of the particle lump’s dynamical properties consists of three distinct
steps which replace the conventional full particle-tracking approach. The first step is a
dispersion step, where the particle lump is split into smaller parts, called quasi-particles.
Each of these quasi-particles have a dispersion velocity ci, which quantifies the direction of
the quasi-particle movement. It is in this step that the kinematics of these quasi-particles
is calculated. The second step is the recombination step, where quasi-particles are recom-
bined to form a new particle lump at the destination sites. The third step is a diffusion
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step, which enables the modeling of Brownian motion and similar phenomena. An short
account of these steps will be given below.

Dispersion step

In this step, we compute the force acting on the particle lump in each grid cell. Using
the average velocity as a basis, an acceleration is calculated numerically from Newton’s
second law applied to the particle lump. This acceleration is then applied to the quasi-
particles within a grid cell, thereby changing their dispersion velocities ci. As a result,
the quasi-particles are transported to their target cells, corresponding to traveling with
their respective velocities in the given time increment ∆t, see Fig. 2.

Figure 2: Dispersion of the particle lump. The particle lump is split up into smaller parts, known as quasi-
particles. These are transported according to the dispersion velocities, represented by the vectors c0, c1 and
c2.

However, the distance the quasi-particle travels does not usually correspond to an
integer multiple of one grid cell. Such a general displacement would lead to an error in
the computation of the particles’ position. As a means to track this error, an error correction
vector ds(xp) is introduced. This vector field quantifies the offset of the centroid of the
particle lump relative to xp, and can serve as a measure of positional error. Each quasi-
particle’s displacement is modified by the error correction, possibly choosing a different
grid cell to become the destination. Once the quasi-particles reach their destinations, new
error measures are calculated.

Recombination step

As shown in Fig. 3, the recombination step causes the creation of a new lumped particle
from the incoming quasi-particles. A new mean velocity V and error measure ds are
calculated as the averages of the respective velocities and error measures of the quasi-
particles. To compensate for the possibly varying velocities of the quasi-particles, a set of
dispersion velocities ci are found. These are derived from a momentum balance calculation,
where each direction is weighted according to its fraction of the total momentum within
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Figure 3: Quasi-particles recombine into a particle lump. Two quasi-particles with different velocities enter a
grid cell. Their respective velocities v1 and v2, and error measures ds1 and ds2 are averaged. This averaging
gives a velocity Vnew and error measure ds of the new particle lump.

Figure 4: The diffusion procedure. Particles in each cell are symmetrically redistributed, to reproduce diffusion
as described by the continuum advection-diffusion equation.

the grid cell. That is, in preparation for the next dispersion step, these weights determine
the number of particles each quasi-particle will consist of.

Diffusion step

The two preceding steps are sufficient to model non-Brownian motion of particles. To
be able to reproduce Brownian motion and similar phenomena, a diffusion phase is in-
cluded in our model. This step is very similar to the other two phases, but with some
modifications. Brownian motion in its simplest form, is characterized by the random
movement of microscopic particles suspended in a fluid, caused by elastic collisions with
fluid molecules. As the number of particles increases to infinity, Brownian movement can
be approximated to good accuracy by homogeneous diffusion in a continuum sense [8].
If Brownian motion is relevant for the case in question, a new dispersion and recombina-
tion step is added. Here, the particle lumps are partitioned into 9 quasi-particles for two
spatial dimensions, and 15 for three dimensions. And, as shown in Fig. 4, these quasi-
particles are given spherically symmetric dispersion directions, although other symme-
tries can be applied as well. Additionally, the dispersion weights are chosen from a prob-
ability distribution with a similar symmetry. Hence, the diffusion phase is just a symmet-
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ric redistribution of the particle lumps. It will be shown in Section 6 that our approach is
equivalent to the continuum advection-diffusion equation under certain circumstances.

3 The Bassinet-Boussinesq-Oseen equation for a single

spherical particle

We start by considering the individual particles that constitute the particle lump. These
are assumed to be small spherical particles suspended in a fluid. The Bassinet-Boussinesq-
Oseen (BBO) equation describes the temporal evolution of a spherical particle in an un-
steady flow [36], which is a form of Newton’s second law of motion. One version of this
equation is given by

mp
dvp

dt
=−

πµdpRep

8
CD

(
vp−u

)
+

(

1−
̺ f

̺p

)

mpg. (3.1)

By solving the above equation, the particle position x can be found by solving

dx

dt
=vp. (3.2)

In Eq. (3.1), vp and u are the particle and fluid velocities respectively, while dp is the
particle diameter, mp is the particle mass and g is the gravitational acceleration. Further-
more, ̺ f and ̺p are the fluid and particle densities respectively, and µ is the dynamic
fluid viscosity.

The left hand side of Eq. (3.1) is the well known particle acceleration term. Moreover,
the first term on the right hand side is the Stokes drag on the particle, which tends to
drive the particle velocity towards the fluid velocity. The second term represents the
combined effect of gravity and buoyancy. Observe that in this paper we have neglected
a few physical effects, like the virtual mass force [36] and rotational forces. Observe that
it is usual in the literature to reserve the tern BBO for when these terms are included. We
will, however, for simplicity use the term “BBO-like” in this paper. The omitted terms
can be important in some applications [35], but are not relevant for the particle sizes
considered in this paper.

The parameter CD is called the drag coefficient and Rep is the particle Reynolds number
defined as

Rep =
̺ f |vp−u|dp

µ
. (3.3)

For low particle Reynolds number, that is Rep < 1000, the Stokes drag can be approxi-
mated by

CD ≃
24

Rep
(1+0.15Re0.687

p ). (3.4)
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With this approximation, Eq. (3.1) can be written as

dvp

dt
=−

1

τp

(
vp−u

)
+

(

1−
̺ f

̺p

)

g. (3.5)

Here, we have defined

τp =
mp

3πdp µ

1

1+0.15Re0.687
p

,

where the particle relaxation time τp is a measure of the particle’s response to a changing
fluid velocity. We will assume that the particle Reynolds number is of the order ∼10−4,
which is valid for many applications. That is, we will only consider a constant particle
relaxation time

τp≃
mp

3πdp µ
. (3.6)

4 The dispersion step

Consider now a group of small spherical particles embedded in a fluid or gas, obeying
the BBO Eq. (3.5). These particles are assumed to have the same average size and shape.
Recall from Section 2 that N(xp,t) is the number of particles within a grid cell with center
point xp. Additionally, we defined V(xp,t) to be the average particle velocity of the parti-
cles in that grid cell. In dense flows, the presence of many particles will change the effec-
tive drag coefficient Cd for each particle [11]. Since we are in this paper only considering
dilute flows, we will assume that the BBO-equation remain unchanged when applied to
each particle in the particle lump. In principle, this means that the BBO-equation for the
lumped particle is

∑
k

dvp,k

dt
=−

1

τp
∑

k

(
vp,k−u

)
+k

(

1−
̺ f

̺p

)

g, (4.1)

where k is the number of particles in a given grid cell.
In this section, we will describe the method for transporting the particle lump. Recall

from Section 2 that the particle lump is divided into smaller entities, quasi-particles, with
a specific dispersion velocity, shown in Fig. 2. Exactly how the lump is partitioned into
quasi-particles will be detailed in Section 5. The BBO Eq. (4.1) is applied to each particle
the particle lump, and a new average acceleration is calculated. This acceleration is then
applied to the quasi-particles.

4.1 A numerical scheme for the BBO equation

The particle evolution is computed for a sequence of time steps with uniform spacing ∆t.
We will need to compute the acceleration for the particle lump, which we then can apply
to the quasi-particles. The computation requires a discrete solution of the BBO Eq. (3.5),



124 O. al-Khayat, A. M. Bruaset and H. P. Langtangen / Commun. Comput. Phys., 8 (2010), pp. 115-142

which is obtained by an explicit forward Euler method in time. Let tℓ = ℓ∆t with ℓ being
the time step index. A temporal discretization of Eq. (3.5) becomes

∆vℓ

∆t
=−

1

τp

(

Vℓ−1−uℓ−1
)

+

(

1−
̺ f

̺p

)

g, (4.2)

where ∆vℓ/∆t is the acceleration of each individual particle in the current grid cell.
Hence, we will apply this acceleration to the quasi-particles. The average velocity Vℓ−1

is used as the basis for the force calculation, modeling the overall drift of the particle
lump. Whereas the fluid velocity uℓ−1 is assumed to be known, either analytically or as
a numerical approximation generated by a separate solver for fluid flow.

The displacement ∆xℓ of the quasi-particles will depend on the dispersion velocities.
Since the k′th quasi-particle attains the new velocity ck+∆vℓ, we can use the Trapezoidal
rule to integrate Eq. (3.2). This integration gives

∆xℓ
k =

∫ tl

tl−1
vpdt=

(

ck+
∆vℓ

2

)

∆t. (4.3)

Note that Eq. (3.1) can also be solved using an implicit scheme such as the Newmark
method. This is especially important when the particle relaxation time becomes small
compared to the fluid time scale.

4.2 The quasi-particle displacement algorithm

In order to update the position of the quasi-particles at each time step, we need a pro-
cedure to calculate both the new position in the grid and the error correction ds. Recall
that the error correction is designed to keep track of the average position of the lumped
particle within a grid cell. The calculation will be motivated by studying the movement
of one particle in one spatial dimension. In this case the error correction ds becomes a
scalar ds and reduces to the particles’ relative position to the grid cell center. Hence, the
algorithm can be viewed as a mapping from the particle position in space to the grid
position. Once the core algorithm is derived, generalization to higher dimensions will
be straightforward. The many-particle extension of the procedure will also be accounted
for.

Consider one particle at some position along the x-axis. To be able to measure the
position of this particle on the grid, a set of grid cells Ij equal in size ∆x is defined. The
particle position can be unambiguously quantified by the offset ds from the cell center
xj, as shown in Fig. 5. In general, the particle’s physical position will not coincide with a
grid center. Therefore, the offset ds can be viewed as a measure for the positional error,
induced by using xj as the particle’s grid position. Using this convention, our goal is to
find the particle’s new location at the next time step.

During the current time step, we assume that the particle will travel a distance s, a
value obtained from Eq. (4.3). This movement would correspond to a displacement of
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Figure 5: The displacement algorithm of a single particle.

s/∆x units on the grid. At first glance, one would then assume that the target grid cell Ik

at the next time step would be given by k= j+[s/∆x], where [·] denotes the closest integer
value. But this would be wrong because s/∆x is rarely an integer, and the particle’s initial
position is not exactly xj. Indeed, if this method is used at each time step, the inferred
error would grow in time. We therefore propose an error correction as a remedy for this
problem.

The basic idea of the error correction is to compensate for the error in both the dy-
namics and the position when moving the particle. That is, first we calculate the number
of units that the particle has traveled [s/∆x] . Then we calculate the dynamical error ds̃,
which is the error in the displacement if the particle would have been placed at the grid
cell center xj, Moreover, we adjust the particle grid cell Ik according to the errors in the
position and displacement. Finally, the new position offset ds+ for the next time step can
be estimated.

As shown in the middle box of Fig. 5, the difference between the particle displace-
ment and the number of grid cells transversed is given by ds̃x = s−[s/∆x]∆x. From this
value, we calculate the new target grid cell index k = j+[s/∆x]+[(ds+ds̃)/∆x], where
the dynamical and positional error has been included. Finally, to complete the procedure,
the new offset value ds+ is calculated by ds+ =ds+ds̃−[ds+ds̃/∆x]·∆x.



126 O. al-Khayat, A. M. Bruaset and H. P. Langtangen / Commun. Comput. Phys., 8 (2010), pp. 115-142

As mentioned earlier, the error correction is easily generalized to three dimensions.
Let Ij be the initial grid cell and Ik be the target grid cell, where k and j are grid cell index
vectors. If dsi and ki denotes the i’th component of ds and the grid cell index vector
respectively, then these three are updated at each time step by

ds̃i = si−

[
si

∆xi

]

∆xi , (4.4)

ki = ji+

[
si

∆xi

]

+

[
dsi+ds̃i

∆xi

]

, (4.5)

ds+
i =dsi+ds̃i−

[
dsi+ds̃i

∆xi

]

∆xi . (4.6)

Here, ds̃i is i’th component of the dynamical error, si is the displaced distance in the
i’th grid direction, and ∆xi is the grid coarseness in the i’th direction.

In the many-particle case, the interpretation of ds returns to the offset between the
grid cell center and the centroid position of the lumped particle. The update rule for the
position and the centroid ds will as in the single-particle case be Eqs. (4.4)-(4.6). But now,
it is applied on all the quasi-particles instead.

5 Recombination of quasi-particles

Like the particle lump is split as described in Section 4, quasi-particles recombine into a
new particle lump, as illustrated in Fig. 3. Hence, the velocity and position of the particle
lump will be averaged values based on the properties of the incoming quasi-particles.
Let us examine one grid cell where several quasi-particles have entered. The i’th quasi-
particle consists of Ni particles and has a velocity vi. There are many different ways of
calculating averages, but we will choose the average velocity to be the root mean square
(rms) of the quasi-particles’ velocities. Assuming that there are m quasi-particles entering
the grid cell, the magnitude of the average velocity for the next time step becomes

ṽ+ =

√

N1v2
1+N2v2

2+N3v2
3+···+Nmv2

m

∑Ni
. (5.1)

To find the direction, we first calculate the weighted average velocity vector

v̂=
N1v1+N2v2+N3v3+···+Nmvm

∑Ni
, (5.2)

which implies the new velocity

V= ṽ+ v̂

|v̂|
. (5.3)

This averaging approach has the distinct advantage of conserving the total kinetic energy
of the particles. That is, the kinetic energy of the lumped particle is the direct sum of the
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individual particles’ energy. As for many dense particle flows, dissipation effects can be
added to our model a posteriori.

The position of the lump is quantified by the offset from the grid cell center to the
centroid of the particle lump. The offset ds is calculated as the weighted average of the
incoming quasi-particles’ offsets

ds=
N1ds1+N2ds2+N3ds3+···+Nmdsm

∑Ni
, (5.4)

Recall that each dsi is calculated from Eqs. (4.4)-(4.6). Moreover, the number of particles
constituting the new lump is N(xp,t+∆t)=∑ Ni.

5.1 Dispersion directions

To reach a complete model, we also need to address the effects due to the varying ve-
locities of the lumps’ quasi-particles. The use of dispersion velocities ci can be one way to
compensate for the lumped treatment of the particles. The basic idea is to assign certain
velocities along which new quasi-particles of the lump are transported. We will now de-
scribe a procedure for calculating the number of particles that will move in each different
direction. This approach serves to simulate the mixing of the particles in the fluid.

For simplicity, we continue the discussion in the context of two spatial dimensions.
The generalization of the procedure to three dimensions is straightforward. To quantify
the general spread of particle velocities within the grid cell, we define the standard de-
viation σ = (σx,σy) from the mean value v̂ = (v̂x,v̂y) as defined by Eq. (5.2). Recall that
vi =(vi

x,vi
y) is the velocity of the i’th quasi-particle. The standard deviation is then

σx =

√

N1(v̂x−v1
x)

2+N2(v̂x−v2
x)

2+N3(v̂x−v3
x)

2+···+Nm(v̂x−vm
x )2

∑Ni
, (5.5)

σy =

√

N1(v̂y−v1
y)

2+N2(v̂y−v2
y)

2+N3(v̂y−v3
y)

2+···+Nm(v̂y−vm
y )2

∑Ni
. (5.6)

We will restrict the number of dispersion velocities for the two-dimensional case to three,
even though higher numbers are possible. The three most natural choices of directions
are

c̃0 = v̂, (5.7)

c̃1 = v̂+σ, (5.8)

c̃2 = v̂−σ. (5.9)

To calculate how many particles that are dispersed in the respective directions, we use
a momentum balance approach in which the above vectors with large magnitudes are
weighted higher than the ones of smaller magnitude. The fractional number distribution qi
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quantifies the fraction of particles at each grid cell that are transported in direction ci. So,
qi is given by

qi =
c̃2

i

∑j c̃
2
j

. (5.10)

Furthermore, the magnitude of the dispersion directions must be adjusted to conserve
the total kinetic energy within the grid cell. This property is guaranteed by setting the
magnitude equal to the rms velocity V, which defines the dispersion vectors

c0 =v+ v̂

|v̂|
, (5.11)

c1 =v+ v̂+σ

|v̂+σ|
, (5.12)

c2 =v+ v̂−σ

|v̂−σ|
. (5.13)

Here, v+ is given by Eq. (5.1). In three spatial dimensions, two additional vectors are
needed,

c3 =v+ v̂+(σ×v̂)

|v̂+(σ×v̄)|
, (5.14)

c4 =v+ v̂−(σ×v̂)

|v̂−(σ×v̂)|
. (5.15)

Five dispersion velocities are the minimum set of vectors needed to simulate the disper-
sion of the particles in three dimensions.

6 Diffusion

In this section, we present a detailed account of the diffusion procedure. Diffusion is a
frequently occurring phenomenon in Nature, and is of great importance to particle-laden
fluid flow. Particle diffusion can have different physical causes, but can usually be cat-
egorized into two distinct classes. Brownian diffusion is characterized by elastic, random
collision of the particles with the water molecules. The other type of particle diffusion is
non-Brownian in nature and is often called hydrodynamic self-diffusion. This type of dif-
fusion embodies the long time scale effect of inter-particle collisions and transport [7].
The simplest way to model both these physical systems is to use the advection-diffusion
equation. Since advection and dispersion of particles are already dealt with in the previ-
ous sections of this paper, we will concentrate solely on diffusion in this section. In two
spatial dimensions, the diffusion equation is given by

∂ρ

∂t
= Dx

∂2ρ

∂x2
+Dy

∂2ρ

∂y2
. (6.1)
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Figure 6: Illustration of the diffusion procedure. Particles within a grid cell are dispersed to adjacent grid cells.

Here, ρ is the particle density, and Dx and Dy are referred to as diffusion constants.
The diffusion constants are principal in specifying the time and length scales of the

physical problem. For instance, in Brownian motion [8] one observes D∼0.1−0.8µm2/s.
However, in depositional modeling [32], these parameters are usually of the order ∼
104m2/year. We will focus on Brownian-like diffusion in this paper, even though the
methods developed here can be applied to other settings as well. Brownian-like motion
have traditionally been simulated with random walks [31], where each particle is dis-
placed to certain directions, depending on the outcome of a random toss. When the par-
ticle number becomes large, the sum of all these random walks are shown to reproduce
diffusion according to (6.1).

In our approach, particles are moved to specific grid cells according to a deterministic
spreading procedure. This strategy mimics the net effect of a large number of stochastic
collisions. Fig. 6 illustrates the basic concept. The particle lump within each grid cell
is split up into smaller quasi-particles which then are transported to neighboring cells.
Therefore, the diffusion velocity assigned to each quasi-particle will be a priori given,
and does not depend on the flow configuration. Let Cl be the diffusion velocities of
quasi-particle l. In two dimensions, the set of vectors that transport the quasi-particles to
neighboring grid cells are given by

Cl ={(0,0),(1,0),(0,1),(−1,0),

(0,−1),(1,1),(−1,1),(−1,−1),(1,−1)}, (6.2)

which is expressed in grid cell units. Note the inclusion of the null vector, which allows
a fraction of particles to remain stationary. Similar to what we did in Section 5.1, we us
a fractional number distribution Ql to quantify the fraction of particles at each grid cell
that are transported in direction Cl. Consequently the quasi-particle being advected with
diffusion velocity Cl will consist of Ql N(x,y) particles. Many different distributions are
possible for Ql, as long as ∑l Ql =1. The even distribution Ql =

1
9 is at first glance the most

natural choice. However, this choice gives rise to non-physical spatial grid polarization
of the particle distribution. This may be remedied slightly with higher resolutions, at the
expense of a larger computational cost. A better strategy would be to compensate for the
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fact that diagonally moving particles travel further than those moving parallel with the
grid lines. One distribution satisfying these criteria is

Ql =

{
4

9
,
1

9
,
1

9
,
1

9
,
1

9
,

1

36
,

1

36
,

1

36
,

1

36

}

. (6.3)

A distribution similar to Eq. (6.3) is commonly used in discrete fluid simulation to obtain
Galilean invariant models, as for instance in the Lattice Boltzmann method [39]. This
distribution is proven to practically eliminate grid polarization effects.

We define N(x±∆x,y±∆y,t)≡ N±± and N(x,y,t)≡ N00. Furthermore, we set N(x±
∆x,y,t)=N±0 and N(x,y±∆x,t)=N0± . Moreover, let qij be a matrix representation of Ql.
For instance, q00 =4/9, q+0 =1/9 and q−− =1/36, and so forth. Using these definitions,
we can then express the diffusion procedure with

N(x,y,t+∆t)=∑
ij

qijNij. (6.4)

Velocity and error correction vectors in the target grid cells are updated in the same way
as described previously in Section 4. This also requires a recalculation of the dispersion
directions as described in Section 5.

We have presented the basic concept of a procedure that can model diffusion phenom-
ena within our lumped particle framework. In the appendix we show that this approach
is indeed equivalent to the diffusion equation. For the distribution given by Eq. (6.3), we
get

Dx =
1

6

∆x2

∆t
, Dy =

1

6

∆y2

∆t
. (6.5)

In three spatial dimensions, more velocities are required. Usually, a set of 19 sym-
metric velocities is sufficient to reproduce the three dimensional diffusion equation. The
diffusion procedure in three spatial dimensions is given by

N(x,y,z,t+∆t)=∑
ijk

qijkNijk , (6.6)

where qijk is a multi-dimensional representation of Ql and N±±±≡ N(x±∆x,y±∆y,z±
∆z,t), with similar definitions for N00±± and so forth.

7 Numerical experiments

In the preceding sections we have presented our lumped particle approach to the simula-
tion of particle flows. This paper is focused on the particle motion alone, and not does not
include the dynamics of the ambient fluid. Therefore, model verification through com-
parisons with experimental data is not possible. Such comparisons will be left to future
work where the two-way particle-fluid coupling will be studied in detail. Instead, we will
present selected numerical experiments that illustrate different aspects of the framework.
Whenever possible, the computational results are compared with analytic solutions.
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Figure 7: Illustration of the pure advection case. Particles are distributed evenly in a rectangular area. The
domain is filled with a fluid that exhibits a drag force on the particles.

7.1 Pure advection with constant fluid velocity

These series of tests are designed to validate the advection part of the lumped model. In
these cases, we use the physical domain [0.0,5.0]×[0.0,5.0], which is partitioned in 30×30
grid cells. The particles, of which there are 5828, are initially at rest and are distributed
evenly in a rectangular area as shown in Fig. 7. The fluid is set to have a constant velocity
u=(umax,0) and the gravitational acceleration g is set to 0. Moreover, the relaxation time
is set to τp =0.053 and the time length of the time steps is dt =0.005, with about 40 time
steps being simulated. All the particles will experience the same acceleration since the
drag force is the same in all grid cells. An analytical solution is available in this case,
given by

v(t)=umax

(

1−exp

[

−
t

τp

])

, (7.1)

where v(t) is the average speed of the particles.

Fig. 8 shows the calculated average velocity compared to the analytic solution. Even
with this relatively coarse grid and time stepping, we see that the simulated result is
close to the analytic solution. In addition, test cases including the effects of gravity show
similar results as described here, but with the limiting velocity becoming

v∞ =
(
umax,(1−̺ f /̺p)gτp

)
. (7.2)

Finally turning off both gravity and the fluid drag force, the particles evolve freely. By
construction, the kinetic energy of the particles are conserved throughout the computa-
tion. The late time scale behavior of the particles are studied in Section 7.3.
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Figure 8: Pure advection: The average velocity as a function of time. The analytic solution (7.1) is compared
with the calculated result from our model. The relative error is at most 0.05 and decreases steadily to 0.

7.2 Comparisons with the advection-diffusion equation

To validate the application of our model to diffusion, we will compare the computed
results to an exact solution of the advection-diffusion equation, which in two spatial di-
mensions is given by

∂ρ

∂t
+

∂(vxρ)

∂x
+

∂
(
vyρ

)

∂y
= Dx

∂2ρ

∂x2
+Dy

∂2ρ

∂y2
. (7.3)

Here, ρ is the particle density, v =
(
vx,vy

)
is the average velocity, and Dx and Dy are the

diffusion constants in the x- and y-directions, respectively. Consider M particles nor-
mally distributed in a rectangular domain. The continuum density distribution ρ(x,y) is
defined as the number of particles within the grid cell divided by the cell’s size.

With a gaussian initial condition on an infinite domain with 0 at infinity shown in
Fig. 9, the exact solution ρe is given by

ρe(x,y,t)=
M

2π

1
√

σ2
x +2Dxt

√

σ2
y +2Dyt

exp

[

−
(x− x̄)2

2σ2
x +4Dxt

−
(y− ȳ)2

2σ2
y +4Dyt

]

, (7.4)

where x̄ = x0−vx t and ȳ = y0−vy t , with (x0, y0) being the position of the maximum
value. Furthermore, σx and σy are the standard deviations of the initial gaussian in the
respective directions and should not be confused with the dispersion vectors in Section
5.1. In all of the following examples we have chosen M=9999880, which is a sufficiently
high particle number to ensure a smooth distribution. Recall from Section 6 that the
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Figure 9: Initial distribution of particles. This figure shows the density of particles within the domain at t=0.

diffusion coefficients are calculated to be

Dx =
1

6

∆x2

∆t
, (7.5)

Dy =
1

6

∆y2

∆t
. (7.6)

The density function N(x,y), which is the number of particles within each grid cell, is
set equal to the initial Gaussian distribution at t=0. This is accomplished by the calcula-
tion

N(x,y)=

[∫ x+∆x

x−∆x

∫ y+∆y

y−∆y
ρ(x,y)dxdy

]

, (7.7)

where [Y] is the closest integer to Y. To view the distribution more clearly, a slice along
the line y=30 has been extracted. Fig. 10 shows this slice, where both the exact solution
(7.4) and the simulated solution are displayed. Here, the dashed red line represents the
simulated result, and the solid green line indicates the exact solution. Note that small
roundoff errors are expected from the integer operator. This can be seen in Fig. 11, where
we have magnified the top part of the distribution. The discrepancy is small, and is only
relevant in the first time step. To quantify the error in the simulation in this case, the
relative L2 norm is used:

ǫ=

√

∑(ρc−ρe)
2

∑ρ2
e

, (7.8)

where the sum runs over all grid cells. Here, ρc is the simulated result.
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(a) Initial (b) Intermediate (c) Final state

Figure 10: Evolution of the particle distribution.

Figure 11: Advection-Diffusion comparison: Initial distribution of particles. This figure shows a magnification
of the initial density of particles within the domain. The green curve is represents the exact solution, and the
red curve is calculated from our model.

Diffusion

We now set both the particle and fluid velocities to 0. To capture the effect of a decreasing
error as the computational grid is refined, three spatial resolutions have been used; ∆x=
∆y = 0.083, ∆x = ∆y = 0.062 and ∆x = ∆y = 0.05. These values obviously correspond to
increasing the number of grid points along each direction, where each grid consists of
61×61 , 81×81, and 101×101 grid points. To compensate for decreasing diffusion speed
with grid resolution, the time increments ∆t = 0.01, ∆t = 0.015, and ∆t = 0.02 has been
used for the respective grid.

Fig. 10 shows the temporal evolution of the distribution with ∆x = ∆y = 0.083. We
observe that the difference between the distributions is so small that the graphs seem to
coincide at each point. This can be seen more clearly by studying the L2 norm of the
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Figure 12: The relative error between the calculated distribution and the exact solution. Three spatial resolutions
have been used: ∆x = ∆y = 0.083 (blue curve), ∆x = ∆y = 0.062 (green curve), and ∆x = ∆y = 0.05 (the red
curve).

difference between the two distributions. Fig. 12 shows the relative L2 norm of the dif-
ference between the simulated and exact solutions for all three grid resolutions. Overall,
it is clear that the error is small and reduces as the grid resolution increases. Notice that
from t=0 to about t∼50−70, the error decreases from 0.5% to about 0.1%. This is due to
the roundoff errors from the integer operator being evened out. It is also apparent that
this error diminishes as resolution increases.

Advection-diffusion

Choosing a linear non-zero velocity for the fluid u = (u0,0), we initialize all the parti-
cles to this velocity. Hence, there is no acceleration of the particles. For simplicity, we
choose u0 =∆x/∆t to avoid grid resolution effects. Moreover, we use periodic boundary
conditions such that particles leaving the domain are inserted back at the opposite side
of the domain. Until these particles reach the backwards diffusing ones, no significant
differences from the pure diffusion case is observed.

In conclusion, we have shown that our model reproduces an advection-diffusion pro-
cess that is consistent with (6.1 ). However, one reason for concern is that there does seem
to be evidence for a long time divergent behavior. Indeed, in the blue curve of Fig. 12,
the small errors seem to accumulate and steadily increase. This is also present in the
green curve, although to a lesser degree. The error accumulation is not visible in the red
curve, implying that if this effect is there, it would only become significant at very late
times. For our applications, we do not see the error accumulation effect as a substantial
problem, since we are interested in physical effects that occur over relatively short time
spans.
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7.3 Long time scale behavior of freely moving particles

In this section we explore the behavior of a set a freely evolving particles in a fluid at
long time scales. Usually, the averaged dynamics of particles such as these approaches
a diffusion-like state with time [29]. Our aim is to show that the averaging procedure
of the lumped particle model recreates a diffusion-like behavior when the BBO-equation
has little effect on the particles’ movement. This situation typically occurs at late states of
the simulation when the particles attain a velocity equal to the fluid’s velocity.

We use the physical domain [0.0,7.0]×[0.0,7.0], which is partitioned in 351×351 grid
cells. This division corresponds to a grid spacing of ∆x = ∆y = 0.02. The drag force
and the gravitational acceleration are both set to zero. Moreover, the relaxation time is
τp =5.3, and the length of the time steps is chosen to be dt=0.5, with about 90 time steps
being simulated. The particles, of which there are 100000, are distributed evenly in the
rectangular area [1.5,2.5]×[1.5,2.0] within the domain. This is similar to what is shown
in Fig. 7 concerning the case in Section 7.1. But here, we are using a higher number of
particles, in addition to a higher grid resolution. Each particle is initialized with a velocity

vp =v0(cosη,sinη), (7.9)

where η is a uniformly distributed random variable in [−π/3,π/3] and v0 = 0.1. From
the particle velocities, the average velocity V and the dispersion directions are calculated
as described in Section 5. The particles are then evolved using our model, but omitting
the diffusion step described in Section 6.

To quantify the average displacement of the particles, we use the average distance
from the centroid (x0,y0) of the particles at t=0. The centroid is given by

x0 =
1

M ∑
i

xi, (7.10)

y0 =
1

M ∑
i

yi, (7.11)

where (xi,yi) is the position of particle i and M =100000 is the total number of particles.
We define the average displacements in the x- and y-direction by

< x>=
1

M ∑
i

(xi−x0), (7.12)

<y>=
1

M ∑
i

(yi−y0). (7.13)

Similarly, we define

< x2
>=

1

M ∑
i

(xi−x0)
2, (7.14)

<y2
>=

1

M ∑
i

(yi−y0)
2. (7.15)
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(a) Mean square displacement in the x-direction. (b) Mean square displacement in the y-direction.

Figure 13: The mean square displacement of freely evolving particles.

This enables us to calculate the mean square displacement <x2>−<x>2 and <y2 >−<

y>2 at each time step in the simulation.
The particle motion is diffusive if, as time passes, the average square displacement of

the particles depends linearly on time [1]. This means that

< x2
>−< x>

2 ∝ t, (7.16)

<y2
>−<y>

2 ∝ t. (7.17)

We compute the least square linear fit of the mean square displacements for t > 10 for
the x-direction, and t > 30 for the y-direction. The specific time values are chosen to be
the values for which a linear profile becomes visible, and are in general dependent on
the initial velocity distribution. The results from the calculations are plotted in Fig. 13(a)
and Fig. 13(b). In these figures, we can observe the linear behavior of the average square
displacement. To be able to quantify the degree of linearity of the data set, we calculate
the correlation coefficient [34] given by

rl =
∑k(tk− t̄)(xl,k− x̄l)

[∑k(tk− t̄)2∑k(xl,k− x̄l)2]1/2
, (7.18)

where {tk} is the time values and {xl,k} is the mean square displacement in direction
l. Moreover, t̄ and x̄l are the mean values of {tk} and {xl,k}, respectively. A value of
r = 1 implies a perfect linear relationship between the datasets. For the mean square
displacements, we obtain

rx =0.988 and ry =0.997. (7.19)

This leads us to conclude that our model correctly predicts the diffusive nature of the
particles’ motion at late times.
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8 Conclusion

In this paper we have described a novel lumped particle framework for modeling trans-
port of a large number of particles suspended in a fluid. Our model considers a group
of particles within a certain volume as a single entity. The overall distribution of the
lumped particle is updated by using the Bassinet-Boussinesq-Oseen equation combined
with a method for particle dispersion. A diffusion phase can be included as well if Brow-
nian movement is relevant. We have showed that our model includes properties inherent
in both continuum and discrete approaches, and that we correctly reproduce advection
and diffusion phenomena. Furthermore, the averaging procedure of the model is shown
to reproduce long time scale behavior of simple flows of particles. The assumptions we
currently have made is that the particles are all of the same size and that the effects of
interparticle collisions are negligible. Furthermore, only the drag force and gravitational
effects are included in the Bassinet-Boussinesq-Oseen equation.
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Appendix: Derivation of the continuum limit of the diffusion

procedure

In this appendix, we will show that the discrete diffusion model proposed in this paper
reproduces a standard continuum-based diffusion equation is reproduced. Throughout
this derivation, we will assume that the average velocity V and the error correction ds

are zero. Additionally, the particle density function N(x,y,t) is assumed to be twice dif-
ferentiable. This condition is usually satisfied when there are a few thousand particles in
each grid cell.

In Section 6, we explained that the diffusion procedure could be expressed as

N(x,y,t+∆t)=∑
ij

qijNij, (A.1)

where we defined N(x±∆x,y±∆y,t)≡ N±± and N(x,y,t)≡ N00 . Moreover, qij is a ma-
trix representation of Ql. In this derivation, we require that the velocities in Ql is axis-
symmetric, such that diagonally moving particles have the same distribution, and the
horizontal and vertical moving particles as well. That is, Q1 = ···=Q4≡qa and Q5 = ···=
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Q8≡qd. Examining the right hand side of Eq. (A.1), we see that

∑
ij

qijNij =q00N00+ ∑
ij 6=0,0

qijNij

=q00N00+qa(N+0+N0++N0−+N−0)
︸ ︷︷ ︸

I

+qd(N+++N−++N+−+N−+)
︸ ︷︷ ︸

II

. (A.2)

The terms labeled ’I’ represent particles entering the grid cell from vertical and horizon-
tal directions, while the terms labeled ’II’ are the diagonal contributions. We will now
expand these terms as Taylor series’. For convenience, we write ∂/∂t=∂t , ∂/∂x=∂x and
∂/∂y= ∂y, with double derivatives taking on the form ∂2/∂x2 = ∂xx and so on. Consider
first the terms N+0, N0+, N0− and N−0. A second order expansion of these quantities
leads to

N+0 = N00+∂xN00 ∆x+
1

2
∂xxN00 ∆x2+O

(
∆x3

)
,

N0+ = N00+∂yN00 ∆y+
1

2
∂yyN00 ∆y2+O

(
∆y3

)
,

N0− = N00−∂yN00 ∆y+
1

2
∂yyN00 ∆y2+O

(
∆y3

)
,

N−0 = N00−∂xN00 ∆x+
1

2
∂xxN00 ∆x2+O

(
∆x3

)
.

(A.3)

Adding these together gives the terms labeled ’I’

4N00+∂yyN00 ∆y2+∂xxN00 ∆x2+O
(
∆x3,∆y3

)
. (A.4)

Expanding the diagonal terms (’II’) we get

N++≃N00+∂x N00 ∆x+∂yN00 ∆y

+
1

2

(
∂xxN00 ∆x2+2∂xyN00 ∆x∆y+∂yy N00 ∆y2

)
,

N−+≃N00−∂x N00 ∆x+∂yN00 ∆y

+
1

2

(
∂xxN00 ∆x2−2∂xyN00 ∆x∆y+∂yy N00 ∆y2

)
,

N+−≃N00+∂x N00 ∆x−∂yN00 ∆y

+
1

2

(
∂xxN00 ∆x2−2∂xyN00 ∆x∆y+∂yy N00 ∆y2

)
,

N−−≃N00−∂x N00 ∆x−∂yN00 ∆y

+
1

2

(
∂xxN00 ∆x2+2∂xyN00 ∆x∆y+∂yy N00 ∆y2

)
,

(A.5)
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where all terms of the order O(∆xm,∆yn) with m+n > 2 have been omitted. Adding all
these terms together, we see that the diagonal terms becomes

4N00+2∂yyN00 ∆y2+2∂xx N00 ∆x2+O(∆xm,∆yn). (A.6)

Inserting the expressions (A.4) and (A.6) into Eq. (A.2), we obtain

∑
ij

qijNij =q00N00+qa

(
4N00+∂yyN00 ∆y2+∂xxN00 ∆x2

)

+qd

(
4N00+2∂yyN00 ∆y2+2∂xxN00 ∆x2

)
+O(∆xm,∆yn)

=N00+(qa+2qd)∂xxN00 ∆x2+(qa+2qd)∂yyN00 ∆y2+O(∆xm,∆yn). (A.7)

where we have used that q00+4qa+4qd =1 and m+n>2. The left hand side of (A.1) can
similarly be expanded in the variable t

N(x,y,t+∆t)= N00 +∆t∂t N00+O
(
∆t2

)
. (A.8)

Finally, the combination of (A.7) and (A.8) with Eq. (A.1) finally leads to

N00+∆t∂t N00 = N00+(qa+2qd)∂xxN00 ∆x2+(qa+2qd)∂yyN00 ∆y2

⇓

∂tN00 =
(qa+2qd)∆x2

∆t
∂xxN00+

(qa+2qd)∆y2

∆t
∂yyN00. (A.9)

We can then define

Dx =(qa+2qd)
∆x2

∆t
, Dy =(qa+2qd)

∆y2

∆t
, (A.10)

which finally gives

∂tN(x,y,t)= Dx∂xx N(x,y,t)+Dy∂yyN(x,y,t). (A.11)

This argument shows that the proposed diffusion procedure is a consistent approxima-
tion in that more accurate results are obtained as ∆x, ∆y and ∆t tends to 0. Note that q00

has only indirect effect on the value of the diffusion constants. For the distribution given
by Eq. (6.3), we obtain

Dx =
1

6

∆x2

∆t
, Dy =

1

6

∆y2

∆t
. (A.12)
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