
Commun. Comput. Phys.
doi: 10.4208/cicp.141009.091110s

Vol. 9, No. 5, pp. 1137-1151
May 2011

Prospective Merger Between Car-Parrinello and

Lattice Boltzmann Methods for Quantum

Many-Body Simulations

Sauro Succi1,2,∗ and Silvia Palpacelli3

1 Istituto Applicazioni Calcolo, CNR, via dei Taurini 19, 00185 Roma, Italy.
2 Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität
Freiburg Albertstraβe 19, D-79104 Freiburg i.Br., Germany.
3 Numidia s.r.l., via Berna 31, 00144 Roma, Italy.

Received 14 October 2009; Accepted (in revised version) 9 November 2010

Available online 14 January 2011

Abstract. Formal analogies between the Car-Parrinello (CP) ab-initio molecular dy-
namics for quantum many-body systems, and the Lattice Boltzmann (LB) method for
classical and quantum fluids, are pointed out. A theoretical scenario, whereby the
quantum LB would be coupled to the CP framework to speed-up many-body quan-
tum simulations, is also discussed, together with accompanying considerations on the
computational efficiency of the prospective CP-LB scheme.
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1 Introduction

Most successful methods in computational physics usually result from a clever resonance
between physical intuition and mathematical transparency. This is certainly the case
for the celebrated ab-initio molecular dynamics Car-Parrinello method (CPMD), which
combines a very elegant field-theoretically modified Lagrangian with the mathemati-
cal/computational principles of dynamical optimization [1]. The result is the ”magic”
capability of tailoring the dynamic optimization in such a way that the fictitious dynam-
ics of the electronic degrees of freedom leaves them on the desired Born-Oppenheimer
surface associated with the actual ionic position at the end of the optimization proce-
dure. This spawns a dramatic boost in the capabilities of computer simulation of molec-
ular system including the electronic degrees of freedom (ab initio), which has taken the
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solid state community by storm for the last 25 years. Although on a very different do-
main, fluid-dynamics, the lattice Boltzmann method also offers a remarkable example of
a powerful combination of physical intuition and mathematical transparency. The main
idea of LB is to formulate hydrodynamics in terms of minimal Boltzmann kinetic equa-
tion, in which the dynamics of the fictitious molecules (populations) consists of a simple
sequence of free-streaming and local relaxation on a regular lattice [2]. The main ad-
vantages over standard discretization of the partial differential equations of continuum
fluid mechanics (Navier-Stokes) are space-time locality, easy handling of highly irregular
boundaries, transparent inclusion of mesoscopic physics beyond the realm of continuum
hydrodynamics. Rather than boosting the CFD frontier by orders of magnitude, the LB
has greatly facilitated the simulation of an amazingly broad spectrum of fluid-related
problems, ranging from the numerical simulation of turbulent flows of industrial rele-
vance, all the way down to the multiscale translocation of biopolymers across biological
membranes [3], and lately extended also to quantum and relativistic fluids [4].

The goal of this paper is twofold. First, we wish to point out a few mathematical
analogies between CP and LB, which are well rooted into the physics of the problems
dealt with by the two methods. Second, we venture on a speculative ground, and envis-
age a way of putting the LB technique at work to speed-up CP calculations. Although
the viability of such speculative thoughts can only be judged by actual practice, we hope
that the present considerations may offer a useful guideline for future development of
combined CP-LB schemes.

2 Density functional theory for electronic structure simulation

The ab-initio calculation of the energy levels of molecules, including the self-consistent
electronic configuration, requires the solution of the N-body Schrödinger equation. Un-
fortunately, this equation is literally untractable using conventional grid-discretization
methods, the blocking hurdle being memory demand: encoding the N-body quantum
wavefunction on a spatial grid with L3 grid points, requires L3N variables. The result is
that even small molecules with, say N=10 atoms, on a mere L=10 grid points per linear
dimension, would entail a totally unfeasible (1030) number of variables. The infamous
curse of dimensionality.

Fortunately, back in the early 60’s, Kohn and Hoenberg were able to show that the
molecular ground state is unambiguously fixed by the total electron density n(~r), i.e., a
single scalar field [5, 6]. This result paved way to effective one-body techniques for elec-
tronic structure calculations, i.e., the celebrated Kohn-Sham equations for the electronic
orbitals, ψk(~r),

HKS[n;RI ]ψk =Ekψk, (2.1)

where HKS[n;R] is the effective Kohn-Sham Hamiltonian, which depends on the total
electron density n(~r) = 2∑k |ψk|2(~r), as well as on the set of nuclear (ions) coordinates,
here denoted collectively by the symbol RI .
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Since nuclei are much heavier than electrons, their dynamics is typically described by
Newton classical equations of motion:

MI
~̈RI =−∂E[n;RI ]

∂~RI

, (2.2)

where E[n;RI ] is the ion-ion and ion-electron interaction energy, to be detailed shortly.
The computational scheme proceeds by advancing the nuclei according to the classical
equation of motion (2.2), and then, for each nuclear configuration ~RI(t), solve the non-
linear eigenvalue problem presented by the KS equations.

Although no longer intractable, this still is a very demanding computational task, and
consequently alternative solutions strategies are in constant demand.

A particularly attractive option is offered by dynamic minimization methods, whereby
the KS ground-state is attained as a fixed-point of a fictitious-time dynamics of the or-
bitals. The simplest such dynamics is given by the steepest-descent (SD) rule

∂tψk =− δE

δψ∗
k

= HKSψk. (2.3)

It is readily checked, that this is nothing but a one-body Schrödinger equation in imag-
inary time. That is, rather than solving a set of N simultaneous KS equations, one ad-
vances in (imaginary) time an initial set of wavefunction ψk(~r;t = 0), knowing that, as
time unfolds, under the effect of the KS Hamiltonian, all the components of the initial
wavefunctions orthogonal to the ground state will eventually annihilate out.

Dynamic techniques are computationally appealing because the system of equations
is advanced explicitly in time, with no need of solving simultaneous constraints, i.e., no
need of matrix solvers. These matrix-free methods are in principle much more efficient
than non-linear eigenvalue solvers, as long as a reasonably fast convergence can be se-
cured. To this purpose, many variants of the simple-minded, first-order SD dynamics
have been proposed in the literature, such as higher-order time procedures, Conjugate-
Gradient minimization and others.

The Car-Parrinello method stands out as a distinguished member of this class, with
a few specific connotations which set it apart for its elegance and physical poignance. In
the next section we shall brief revisit the main ideas behind this method.

3 The Car-Parrinello method

The distinguishing feature of the CP scheme is that the functional to be minimized in
order to attain the electronic ground state takes the form of an over-arching Lagrangian,
keeping both ionic and electronic degrees of freedom under the same umbrella.

The CP Lagrangian reads as follows [1]:

LCPMD =∑
I

MI

2
(~̇RI)

2−E[ψk,~RI]+2me ∑
k

|ψ̇k|2+2∑
kl

Λkl(ψkl−δkl),
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where I = 1,NI runs over the number of ions and k = 1,Norb over the number of occu-
pied orbitals. In the above, MI are the ionic masses, me the (fictitious) electronic ones,
ψkl≡

∫

ψ∗
k (~r)ψl(~r)d~r, and Λkl are Lagrangian parameters enforcing the orthogonality con-

straints. The functional E[ψk,~RI] describes the potential energy surface, defined by the
following expression:

E=
1

2 ∑
I>J

ZI ZJ

|~RI−~RJ|
+Exc[n]+

1

2

∫

d~rd~r′
n(~r)n(~r′)

|~r−~r′|

−∑
k

ψ∗
k (~r)∆ψk(~r)d~r+

∫

Vext(~r)n(~r)d~r, (3.1)

where ZI is the ionic charge, n(~r)=2∑k |ψk(~r)|2 is the total electron density, Vext(~r) is an
external potential and Exc is the exchange energy, typically a local functional of the form
Exs[n]= const·

∫

n1/3(~r)d~r.
The novelty of the over-arching CP Lagrangian is that electronic degrees of freedom

(electron orbitals) are treated as extended Newtonian variables. As a result, the mini-
mization dynamics takes the form of Euler-Lagrange equations for both the ionic coordi-
nates and the orbital wavefunctions, i.e.,

δLCP

δ~RI

− d

dt

δLCP

~̇RI

=0, and
δLCP

δψ∗
k

− d

dt

δLCP

ψ̇∗
k

=0,

where ψ̇k≡∂tψk.
In Newtonian form, these read as follows:

MI
~̈RI =−∂E[R,n]

∂~RI

,

meψ̈k =−1

2

δE[n,R]

δψ∗
k

+∑
l

Λklψl .

More explicitly,

meψ̈k =
{

− h̄2

2m
∆+Vext+VH +Vxc

}

ψk+Λk,

where

VH(~r)=
∫

n(~r′)

|~r−~r′|
d~r′

is the long-range Hartree potential and Λk =∑l Λkl.
The magic point is that the fictitious motion of the electronic degrees of freedom,

from say, t to t+∆t, lands them exactly on the Born-Oppenheimer surface associated
with the actual ionic position at time t+∆t. As a result, the CP dynamics is such that,
by the time the electrons are landed to their KS ground state, the nuclear ions have also
moved to their correct (i.e., consistent with the actual electronic configuration) positions!
This is why the CP method sticks out among all dynamic minimization techniques, as a
”unified” molecular dynamics, including electronic degrees of freedom.
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4 Lattice Boltzmann

Next we discuss the second method of the analogy, namely the lattice Boltzmann tech-
nique.

The lattice Boltzmann equation (LBE) is a minimal form of Boltzmann kinetic equa-
tion which is meant to simulate the dynamic behavior of fluid flows without directly
solving the equations of continuum fluid mechanics. Instead, macroscopic fluid dynam-
ics emerges from the underlying dynamics of a fictitious ensemble of particles, whose
motion and interactions are confined to a regular space-time lattice. The lattice Boltz-
mann equation reads as follows [2]:

fi(~r+~cidt,t+dt)= fi(~r;t)+Ωij dt
(

f
eq
j (~r;t)− f j(~r;t)

)

. (4.1)

In the above fi(~r;t) represents the probability of finding a particle at position~r and time t
with velocity~ci. Here, the subscript i labels a set of discrete speeds connecting the nodes
of a regular lattice. Repeated indices are summed upon. The right hand side of Eq. (4.1)
corresponds to an exact discrete-velocity representation of the Boltzmann streaming op-
erator ∂t f +~v ·∇ f , while the right-hand side stands for particle-collisions, represented
through a relaxation to a local equilibrium. Such relaxation is controlled by the scatter-
ing matrix Ωij, whose eigenvalues define the relaxation time-scale. The local equilibrium

f
eq
i is the lattice analogue of a local Maxwellian with density ρ = ∑i fi, and flow veloc-

ity ~u = ∑i fi~ci/ρ (see below). In practical applications, such matrix is often taken in its
simplest, diagonal form, resulting in the so called Lattice BGK (LBGK) scheme [7], after
the continuum mode Boltzmann equation introduced by Bhatnagar-Gross-Krook, back
in 1954 (see [8]). The discrete local equilibria are typically given by a second-order ex-
pansion in the Mach-number of a local Maxwellian,

f
eq
i (~v;t)=wiρ

(

1+
uacia

c2
s

+
uaubQiab

2c4
s

)

, (4.2)

where wi is a set of weights normalized to unity, and Qiab =ciacib−c2
s δab is the quadrupole

projector along the i-th direction, and c2
s = kT/m is the sound speed, defined as c2

s =

∑i wic
2
i /D, D being the number of spatial dimensions. In the above, subscripts denote

cartesian components, and repeated indices are summed upon. The reason for expanding
to second order in the flow field, more precisely in the local Mach-number Ma=u/cs, is
related to the lack of symmetry of a given lattice to ensure the isotropy of higher tensors
coupling to higher powers of the Mach-number. Fortunately, isotropy of fourth-order
tensors Tabcd=∑i ciacibciccid, is sufficient to recover the correct behavior of low-Mach, quasi
incompressible flows. More demanding applications, with major thermal/compressibility
effects, call for higher-order lattices. Once the discrete populations fi are known, the main
fluid quantities are obtained by simple (linear) summation upon the discrete speeds,
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namely

ρ(~r;t)=
b

∑
i=0

fi(~r;t), ρ(~r;t)~u(~r;t)=
b

∑
i=0

fi(~r;t)~ci, and ~~P(~r;t)=
b

∑
i=0

fi(~r;t)~ci~ci,

for the fluid density, current, and momentum flux tensor (particle mass made unit for
simplicity). It should be appreciated that, while ρ and ρ~u are conserved quantities, only
the trace of the momentum-flux tensor is conserved, which corresponds to the fluid ki-

netic energy (pressure). The non-diagonal components of ~~P are zero at equilibrium, and
represent the fluid shear

~~S=
1

2
(∇~u+~u∇).

Chapman-Enskog analysis of the LBE shows that in the limit of long-wavelengths,
low-frequency, the Eq. (4.1) reproduces exactly the Navier-Stokes equation for quasi-
incompressible flows, with an ideal equation of state P = ρc2

s , and a kinematic viscosity
ν = c2

s (τ−∆t/2), τ being the leading non-zero (inverse) eigenvalue of the matrix Ω and
kT/m = c2

s the fluid temperature. The conceptual and practical simplicity of this scheme
lie at the heart of the computational efficiency of the LBE, and form a solid basis for its
success as a Navier-Stokes simulator ”in kinetic disguise”. The main computational high-
lights of LB are now fully appreciated, namely: i) Non-locality (streaming) is linear and
non-linearity (collision) is local. This should be contrasted with Navier-Stokes equations,
in which the transport term u∇u is non-local and non-linear at a time. In particular,
this terms shows that the fluid momentum is transported along the material streamlines
d~r =~udt, defined by the fluid velocity itself. For complex flows, such streamlined can be-
come very ”wild” and demanding in terms of numerical stability; ii) Streaming is exact,
since it proceeds along constant streamlines d~ri=~cidt (light-cones); iii) Complex boundary
conditions are easily formulated in terms of elementary mechanical rules (bounce-back,
reflections) of interactions of the LB ’molecules’ with solid walls; iv) Fluid pressure and
the strain tensor are available locally, on-the-fly, as linear combinations of the equilibrium
and non-equilibrium components of the discrete distribution function, respectively. This
means that pressure can be obtained from the flow field configuration with no need of
solving a (usually very expensive) Poisson problem; v) Nearly ideal amenability to paral-
lel computing (low communication/computation ratio). These aspects configure LB as a
very special finite-difference scheme for hydrodynamics and lie at the heart of its impres-
sive growth as an alternative numerical technique for complex fluid dynamic problems.

5 CP-LB analogies

The CP and LB method do exhibit a few formal analogies, at both methodological and
conceptual levels. In the following, we shall briefly illustrate them.
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5.1 Acceleration by magnification of small parameters

Both CP and LB boost their computational efficiency through artificial magnification of a
smallness parameter controlling the size of the time step. For CP, this is the ratio of the
electronic to ionic mass, while for LB it is the Mach number, i.e., the ratio of the fluid to
sound speed velocity. As we shall see, both come to the same. The general principle is
quite familiar in computational physics: if the scope is to go from A at time tA to B at time
tB >tA, it is not necessary to follow the actual physical trajectory, but one is free to choose
the most convenient fictitious one sharing with the physical one just the extremals A and
B. This is generally achieved by boosting a suitable smallness parameter, associated with
the time-marching procedure.

In the CP method, ǫ = me/MI , is typically artificially boosted by several orders of
magnitude [9, 10], thereby permitting a corresponding increase of the electronic time-
step. This is fine, as long as the magnified time-step is still able to keep the electrons
sufficiently close to the adiabatic Born-Oppenheimer energy surface.

A similar applies to the Mach number Ma=U/cs in LB simulations. Low Mach num-
bers tax the LB timestep on account of the fact that the simulation span is inversely pro-
portional to the average fluid speed, T = L/U, L being the typical linear size of the sim-
ulation box and U a typical flow speed. Since LB is weakly compressible, it comes with
compressibility errors of the order Ma2. Slow flows, say in porous media, feature Mach
numbers well below 10−4, with correspondingly long simulation time, if sound motion is
to be explicitly tracked. However, since compressibility errors scale like Ma2, enhancing
the Mach number to, say, Ma = 0.1 would result in a thousand times shorter simulation
time, with a compressibility error of the order 0.01, which is often tolerable for practical
purposes.

Therefore, by boosting the fluid velocity U and/or reducing the sound speed cs, the
time-step can be significantly increased, without compromising the physical observables
of interest.

The CP-LB analogy can be made even sharper, by observing that the fictitious elec-
tronic mass me in the CP equations has the dimension of mass per length square, so that
one can define an electronic sound speed as h̄/

√
mme. This formally shows that raising

me is equivalent to lowering the sound speed, precisely like in LB.

5.2 Space and time on the same footing

A second, perhaps more profound analogy, between CP and LB, is the fact of replacing
an unbalanced space-time formalism with a balanced one. For CP, this means moving
from the standard Schrödinger like Kohn-Shan formalism (first order in time, second in
space) to the Klein-Gordon context, which is second order in both space and time. As
shown in the previous section, the fictitious electron mass in front of the second order
time derivative defines a fictitious electronic sound speed which is made much smaller
than the physical one, so as to allow correspondingly larger time-steps.
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Aside from this acceleration trick, however, the point of the second-order formalism
is to allow the introduction of a formally unified Lagrangian collecting both ionic and
electronic degrees of freedom.

The LB works on a fairly similar philosophy. Indeed, it replaces the hydrodynamic
Navier-Stokes equations (first order in time, second in space) with the hyperbolic Boltz-
mann kinetic equation, first order in both space-time. Here the move is not fictitious,
in that kinetic theory is a physical uplift of hydrodynamics from configuration space to
phase-space.

For the LB case, such balanced first-order dynamics brings about a number of sig-
nificant advantages, primarily the fact that the time-step scales linearly with the mesh-
spacing, rather than quadratically as in ordinary explicit grid-methods, thereby avoiding
the time-step ”collapse” as the grid spatially refined.

For the CP case, besides the conceptual advantage of casting the minimization prob-
lem in terms of a physical Lagrangian, it is observed that the second-order dynamics
in time allows the CP scheme to converge to the ground state from ”both sides”, i.e., via
damped oscillations rather than one-sided monotonic damping. Some authors argue that
is beneficial to the numerical stability of the CP scheme, although the argument appears
to be still open to debate.

6 Quantum lattice Boltzmann

The LB-CP analogies discussed so far highlight some cute commonalities between two
successful methods, each however on its own separate domain. Hence, they do not bear
directly upon a possible merge upon the two techniques.

An interesting question arises as to whether LB techniques/ideas could be embedded
within the CP framework, so as to speed-up quantum many body calculations. To this
end, a quantum version of LB is clearly a pre-requisite. The good news is that such
quantum LB schemes are indeed available in the current literature [11–14], so that the
task appears technically feasible, at least in principle.

The quantum LB (QLB) starts from the Dirac equation in Maiorana form [15]:

∂tΨi+Aa
ij∂aΨj =ΩijΨj, (6.1)

where Ψi,i=1,4 is the complex Dirac 4-spinor, Aa, a=x,y,z are the Dirac-Maiorana advec-
tion matrices, and Ω is the mass/collision matrix. Note the Maiorana form of the Dirac
equation is chosen, for in this case all matrices are real, thereby stressing the analogy
to a classical Boltzmann equation. The detailed form of these matrices is given in [15].
Here, we only remark that the major departure from a classical Boltzmann equation is
that only one of the three advection matrices can be diagonal at a time, with eigenvalues
(1,1,−1,−1), corresponding to classical motion of two walkers, moving along opposite
directions, say ±z, if the matrix Az is chosen to be diagonal. This is because Dirac spinors
mix in spinor space as they propagate, so they cannot be treated as classical movers in
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more than one spatial dimension. The starting point of the QLB is to identify the spino-
rial index with a discrete speed, and treat the Dirac equation just as an ordinary discrete
Boltzmann equation for a complex distribution function Ψi. In one-dimension, the game
is easy: the diagonal streaming operator can be advanced exactly in time along the light-
cone, dz =∓cdt, and the r.h.s. can be treated as an ordinary collision operator. Crank-
Nicholson time-marching delivers the following compact QLB [13, 14]:

Ψi(z,t+dt)=TijΨj(z−cjdt,t), (6.2)

where cj =∓1, and the transfer matrix is T11 = T22 = cosθ, and T12 =−T21 = sinθ, where
cosθ =(1−m2/4)/(1+m2/4), m≡ωcdt, ωc being the Compton frequency. Note that the
matrix T is unitary for any size of the timestep dt. By denoting with u and d the bispinors
propagating upwards and downwards respectively in d=1, it is readily checked that the
Dirac equation reduces to a relativistic Klein-Gordon equation

∂ttψ−c2∂xxψ=−ω2
c ψ,

where ψ =u,d. The non-relativistic Schrödinger dynamics is shown to descend from the

relativistic one upon adiabatic enslaving of the fast mode, Φ− = eimc2t(u−id)/
√

2, to the

slow one, Φ+ = e−imc2t(u+id)/
√

2. Under the adiabatic condition |∂tΦ
−|<2ωc|Φ−|, the

QLB naturally reduces to the non-relativistic Schrödinger dynamics.
The extension to particles of charge q, interacting with a vector potential A(z), is

easily accommodated by noting that the well-know correspondence rule p→ p+iqA, just
translates into charge dependent mass term (here q is the electronic charge).

For the simple case of a static potential V(z):

T11 =T22 =
1−M2/4

1+M2/4−ig
,

T12 =−T21 =
m

1+M2/4−ig
,

where g=qV(z)/mc2 is the coupling strength, and M2≡m2−g2.

6.1 Ground-state calculations

The real-time QLB formalism is readily turned to imaginary-time for ground state cal-
culations. Essentially, the usual Wick rotation from real to imaginary time, t → it, is
equivalent to an analogue mass/frequency rotation, ωc → iωc, in real time. Since the
QLB formalism deals with complex variables anyway, one can seamlessly Wick-rotate
the mass/frequency while leaving time real. As a result, periodic oscillations are turned
into decaying exponentials, so that excited states are projected out in the course of the
evolution, leaving the ground state as a time-asymptotic wavefunction. Ground state
calculations using QLB have been demonstrated in [16].
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6.2 Multi-dimensional QLB

Multidimensional extensions of QLB to d>1 are non-trivial.
The QLB strategy to cope with dimensionality issues consists of diagonalizing Az,

Ay, Ax one at a time and advance the spinors along z,y,x respectively through an oper-
ator splitting at each step. This way, the 3d problem is advanced as a sequence of three
one-dimensional ones, each of which keeps the spin aligned with the velocity vector.
Formally, the 3d QLB propagator reads as

Txyz =(R−1
x PxRx)(R−1

y PyRy)Pz,

where Ry and Rx are rotation matrices which the spin aligned with the axis y and x,
during the propagation along y and x, respectively. In the above, Pa=exp[(Da+Ωa)dt/3]
is the propagator along direction a = x,y,z. Note that at each step, the streaming matrix
Aa takes a diagonal form Da with eigenvalues ±1 along direction ±xa. Very recently, the
scheme has been shown to produce second-order accurate results also for the relativistic
Dirac wave equation [17].

In two dimensions, the procedure is found to provide satisfactory results [16, 18].
In three dimensions, significant isotropy errors were reported [16], which have been

fixed only very recently. In a forthcoming publication [19], a detailed analysis of the
isotropy of the three-dimensional model is presented and the scheme shown to recover
isotropy within a discretization error which is found to scale linearly with the mesh res-
olution.

Here we only show preliminary results for a very simple test case, demonstrating the
recovery of isotropy: a Gaussian wave packet, which is let free to expand following the
Schrödinger equation (i.e., no external potential is applied). In this case, the analytical
solution of the Schrödinger equation is well known, and in particular, the mean spread
evolves according to the following equation along each axis direction:

∆a(t)=

√

∆2
0+

h̄2t2

4m2∆2
0

, a= x,y,z, (6.3)

where ∆0 is the initial spreading of the wave packet.
As an example of a recent 3d application of QLB in real-time (stand-alone, no coupling

to CP), in Fig. 1 we show the measured spreads for a free particle with m = 0.35 and
∆0 = 14. The simulation is performed in a cube with side length 100, using 1003 nodal
points. From Fig. 1, a good agreement between the three spreads is observed and also
with the Schrödinger solution of Eq. (6.3).

We then refined the lattice by using 2003 and 3003 nodal points and in Fig. 2, we show
the evolution of the mean difference between spreads normalized dividing by the ana-
lytical value given in Eq. (6.3) for the three lattices. As one can see, the mean difference
tends to decrease under grid refinement.

The oscillations in the initial transient are attributed to non-adiabatic effects, holding
memory of the initial condition. It is also observed that the deviation of the QLB result
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Figure 1: Dispersion of a wave packet with initial spread ∆0 =14, mass m=0.35 and no potential. Computed
spreads ∆x, ∆y and ∆z versus the Schrödinger solution of Eq. (6.3) are shown. The grid size is 1003 nodal
points.
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Figure 2: Evolution of the average of |∆x−∆y|, |∆x−∆z| and |∆y−∆z| (in lattice units), for a wave packet
with initial spread ∆0 =14, mass m=0.35 and no potential. The average values are normalized dividing by the
analytical value of the spread, as given by Eq. (6.3). Results are computed for three lattices of sizes 1003, 2003

and 3003 discretizing a cube with side length 100.

from the analytical solution, amounts to a few percent after a few hundred time-steps.
As recently shown by Dellar and coworkers, [20], such deviations are due to the fact that,
also in the long-term, the QLB results stay closer to the solution of the Dirac equation
than to the Schrödinger dynamics. This might be a problem for the prospective CP-
LB coupling, which requires adiabaticity of the electrons around the Born-Oppenheimer
energy surface.

On the other hand, one should bear in mind that the CP-LB merge would concern
mainly ground-state calculations, hence operate with the imaginary-time version of QLB,
in which case non-adiabatic effects are set to damp out as imaginary-time unfolds. Ex-
amples of (fourth-digit) accurate ground-state QLB calculations of the two-dimensional
Gross-Pitaevskii equation can be found in [21].
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However, only actual practice can tell whether non-adiabaticity errors can be kept to
sufficiently small for the accuracy required in quantum-many ground-state simulations.

7 Coupling QLB to CP

Having discussed the QLB scheme in dimension d = 1,2,3, we next move on to investi-
gate whether QLB could be used in the context of quantum many body problems, and
particularly in connection with the CP method.

Since Density Functional Theory casts the quantum N-body problems in terms of N
effective one-body problems, i.e., the Kohn-Sham equations, it is clear that the most direct
use of QLB in this framework would be to serve as a fast KS solver.

To the purpose of realizing a first-order steepest-descent strategy, the QLB can be used
in its non-relativistic vests.

Since the CP approach replaces the Schrödinger-form of the KS with a Klein-Gordon-
like formulation (second order in space and time), the coupling to CP seems best suited to
the non-adiabatic, relativistic form of QLB. In the following, we discuss the prospective
changes/extensions which are required to fulfill the task, at least in principle.

7.1 Non-linear coupling via the electron density

The QLB scheme involves a spinor ψjk for each electron orbital k, all orbitals being cou-
pled through the overall density n(~r). Leaving aside for the moment the Hartree inter-
actions, the corresponding non-linearities are local, hence similar to the one presented
by the Gross-Pitaevskii equation, which has been solved before by QLB techniques [16].
Hence, in principle, this does not seem to pose any new difficulty.

In practice, one would advance all orbitals in parallel, synchronize and collect the
global density n(~r) and compute all relevant density-dependent interactions for the next
step.

7.2 Long-range interactions

Long-range Coulombic interactions, as represented by the Hartree term in the KS Hamil-
tonian, are known to be computationally demanding, and especially challenging for par-
allel implementations since they carry an all-to-all coupling. This problem is generally
handled by casting these interactions in the form a Poisson equation for the Hartree po-
tential, i.e.,

∆VH(~r)=n(~r). (7.1)

To preserve the explicit (matrix-free) nature of both LB and CP, such Poisson problem can
be solved through some form of fictitious time-marching iterative procedure.
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7.3 Orthogonality constraints

The next feature are the orthogonality constraints. Given that the Lagrangian parame-
ters Λkl need to be computed on the fly, once available, they enter the QLB equation in a
very simple form, i.e., a linear term, simply adding to the collision matrix Ωij,klψj,l. Of
course, the whole machinery to keep the orbitals orthogonal throughout, which involves
substantial matrix algebra, would stay untouched. In this respect, QLB, as-is, would not
bring any specific advantage to the current CP technology, which is unfortunate because
orthogonalization is the major computational bottleneck of the CP procedure.

7.4 Coupling to nuclear motion

Finally, coupling to the nuclear motion can be handled again at the level of the collision
matrix, which picks up a dependence on the actual ionic positions ~RI(t). Here, the proce-
dure could borrow much from existing multiscale version of LB, coupling classical fluids
to (charged) colloidal particles [22, 23]. The long-range ion-ion interactions could again
be solved via a particle-mesh Poisson solver for the nuclear motion.

Summarizing, none of the specific quantum interactions appearing in the Kohn-Sham
Hamiltonian/Car-Parrinello Lagrangian, seems to raise a no-go to the prospective use
of QLB as a quantum many-body accelerator. Conceptually, all steps above seem to be
compatible with the QLB structure, as we know it, once the effective potential V is made a
suitable function(al) of the electron density n(~r) and nuclear coordinates ~RI(t). However,
new ideas are required in order to speed-up the orbital orthogonalization procedure.

8 Computational considerations

Having shown that the merger between CP and LB appears to be viable, at least in prin-
ciple, the next question is: what advantages can we draw from it? More precisely, what
LB assets for classical fluids would eventually carry on to the quantum CP context?

Earlier versions of CP were based on plane-wave expansions of the electron orbitals,
i.e., the well-known spectral method, the technique of choice for calculations in peri-
odic domains. LB simulations of homogeneous turbulence have shown comparable accu-
racy and efficiency as spectral methods (the golden standard for periodic homogeneous
computations), with recent results advocating substantial advantages upon using higher-
order discrete velocity stencils [24]. The major advantage of LB versus spectral methods
is twofold: first, LB is by no means restricted to periodic geometries; second, LB lends
itself to highly efficient parallel implementations, both in simple [25] and quite complex
geometries [26].

Modern CP simulations make use of localized basis functions for the electron orbitals,
designed in such a way as to cluster the numerical grid around the nuclear positions,
where the electron orbitals tend to localize. This calls for non-uniform, and possibly
adaptive, real-space techniques. LB versions with non-uniform, or even adaptive grid
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refinement, are available in the LB literature [27]. Inevitably, these advanced LB versions
are significantly more complex and computationally-demanding than the standard carte-
sian LB formulation.

Another consideration regards the time-stepping procedure.

In the LB formalism, diffusion (kinetic energy in the CP framework) emerges from
adiabatic relaxation of the fast modes to the slow ones, with no need of second order
spatial derivatives. This means that the time-step scales only linearly with the mesh size,
at variance with most explicit grid methods, in which the time-steps scales quadratically
with the grid-size, thus rapidly leading to unacceptably small times-steps as the grid
is refined. Exactly the same mechanism applies to QLB, in which the non-relativistic
Schrödinger equation emerges from adiabatic enslaving (in imaginary time) of the fast
mode Φ− to the slow one, Φ+. Based on the above, it is plausible to expect that the
main benefits of LB philosophy for classical fluids, i.e., very large lattices, each lattice
site requiring a lean amount of computation and very little communication, might prove
beneficial to the CP context as well.

Summarizing, we believe that the main potential advantages of the prospective CP-
LB merger are as follows: parallel efficiency, eventually in combination with non-trivial
geometries, and large time-steps, as long as non-adiabaticity errors can be kept under
control.

9 Conclusions

Summarizing, we have discussed some analogies between the Car-Parrinello ab-initio
molecular dynamics for quantum molecules, and the Lattice Boltzmann method for clas-
sical and quantum fluids. While the analogies with the classical LB remain at a somewhat
formal level, quantum LB techniques might bear some concrete value for quantum many-
body simulations based on density functional theory. To this regard, a theoretical scenario
has been envisaged, whereby QLB could be coupled together with CP for realistic quan-
tum many-body simulations. A few considerations on the computational efficiency of
the prospective CP-LB scheme have also been presented. Whether the theoretical sce-
nario portrayed in this paper will ever turn into a practical new-entry in the family of
computational methods for quantum many-body systems, only future (simulations) can
tell.
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