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Abstract. This work proposes an extension to Boltzmann BGK equation for dense
gases. The present model has an H-theorem and it allows choice of the Prandtl number
as an independent parameter. I show that similar to Enskog equation this equation can
reproduce dynamics of dense gases.
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1 Introduction

An overwhelming majority of fluid flow problems of physical and engineering interest
cannot be solved using microscopic simulation methods, such as molecular dynamics,
due to the enormous number of degrees of freedom constituting the macroscopic sys-
tems. In such a scenario, mesoscale descriptions in terms of one particle distribution
function, such as Boltzmann equation, provide important tools for understanding trans-
port phenomena beyond phenomenological hydrodynamic descriptions of the Navier-
Stokes-Fourier equations. Indeed, the nonlinear Boltzmann kinetic equation can accu-
rately predict a wide range of physical properties and flow profiles for low density gases
even in states very far from equilibrium (see for example [1]).

However, technical difficulties encountered in solving (analytically or numerically)
the Boltzmann equation, a nonlinear integro-differential equation for the time dependent
distribution functions, limits its application in practice. During the last few decades, this
technical problem has been solved for the Boltzmann equation in two very important
regimes. First, for highly non-equilibrium situations associated with supersonic flows
(in general for high Mach number flows), direct simulation Monte Carlo method was ap-
plied with remarkable success (see for reviews [2]). Secondly, for very low Mach number
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flows lattice Boltzmann method is remarkably successful in both hydrodynamic regime
as well as transitional regime (see for example [3–5]). The lattice Boltzmann method relies
on an approximate form of Boltzmann collision term known as Bhatnagar-Gross-Krook
(BGK) collision approximation. The model Boltzmann equation with BGK collision term
retains almost all qualitative features (such as correct conservation laws, H-theorem) of
the Boltzmann equation [1]. Indeed, the BGK model can be classified as the first truly
successful phenomenological model at the level of one particle distribution. The math-
ematical simplicity of this model is often used to obtain exact and semi-exact analytical
solutions which can help one understand the hydrodynamics well beyond Navier-Stokes
equations [1, 5]. The strength and limitations of this model along with ways to make it
quantitatively accurate (without destroying the basic features such as H-theorem) is well
understood [1, 6, 7].

In order to describe the fluid transport in the dense regimes, Boltzmann equation was
extended by Enskog and further modified by van Beijeren and Ernst (known as the re-
vised Enskog theory (RET)) [8, 9]. Similar to Boltzmann’s model of dilute gas, particles
motion in these models is decomposed into two parts: propagation at constant veloc-
ity followed by collisions in which exchange of momentum between particles happens.
However, unlike Boltzmann model, collision are understood to be non-local events due
to the presence of finite size particles. This idea of non-local collisions due to finite size
of particles behind Enskog or RET extension of Boltzmann equation is borrowed from
Van-der Waals’ picture of excluded volume in dense gases. However, mainly due to the
non-local collisions, Enskog extension of Boltzmann model leads to even more intractable
form of nonlinear integro-differential equation. Thus, it is not surprising that it took al-
most fifty years to prove even the existence of H-theorem [10] and so far only modest
engineering and physical applications of dense fluid are modeled via Enskog equation.
The non-local nature of collision is difficult to handle both for Monte-Carlo method as
well as for kinetic modeling via simplified phenomenological theories of BGK type.

From the engineering perspective, a dense gas model, where non-ideality can be
added as extra terms over a rarefied gas model (either of Monte-Carlo type or BGK type
or of Fokker-Planck type), is an extremely desirable solution. In case of DSMC model
of Boltzmann equation, Alexander et al. proposed a simple modification of propagation
step which gave the correct equation of state but failed to reproduce the Enskog trans-
port coefficients [11]. An important progress for such modeling approaches was reported
in [12,13], where BGK like collision terms for Enskog equation were proposed. The main
idea behind these works was to compute the effect of Enskog collision term on momen-
tum and energy balance and explicitly add it in momentum and energy balance equation
as a correction to the BGK collision term. This approach gave correct viscosity coefficient
and equation of state, but neither H-theorem can be proven nor correct thermal conduc-
tivity can be derived for these type of models.

The goal of the present work is to fill this gap and construct a phenomenological
model of fluid transport at the meso-scale level. Similar to hydrodynamic description
given by Navier-Stokes equations, we demand that a good phenomenological theory at
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mesoscale should fulfil the following criteria:

• It must obey conservation laws and second law of thermodynamics (H-theorem).

• It must reproduce correct thermodynamic equation of state.

• It must reproduce correct constitutive relations along with Enskog transport coeffi-
cients in hydrodynamic regime.

The work is organized as follows: in Section 2, basic framework for the kinetic de-
scription is given. In Section 3, briefly I remind about conceptual problem associated
with the existing approaches. In Section 4, the present model will be outlined. In Section
5, the physical modification behind the current model will be presented. In Section 6,
conservation laws will be derived from the present description. In Section 7, I will show
that H-theorem exist for the present model. Finally, in Section 8, hydrodynamic limit for
the proposed kinetic equation will be derived.

2 Basic set-up for the kinetic equation

The basic starting point for such modeling is exact dynamics of one particle distribution
function f (defined as probability of finding a particle at location x with velocity v at time
t) as a function of phase variable z≡ (x,v), given by BBGKY hierarchy as

∂t f (z1,t)+∂α

[
f (z1,t

)
v1

]
=−Â1 f2(z1,z2,t), (2.1)

where f2 denotes the two particle distribution function and Â1 is an operator whose
exact form is not important for the present discussion (for details of this equation see for
example [14]) and ∂α≡∂/(∂xα). The hydrodynamic fields {ρ,j,T} are defined in terms of
one particle distribution function f as

∫

dv f
{

1,v,
v2

2

}

={ρ,j,E}, (2.2)

with energy of hard-sphere as

E=
j2

2ρ
+

ρDKB T

2m
, (2.3)

where D is the dimension and KB is Boltzmann constant. The velocity u is defined as u=
j/ρ. A closed form kinetic equation is obtained if we set Â1 f2 =J ( f ), where J , typically
collision integral, maps functions onto functions [14]. Thus for example, f2 = f2(z1,z2, f )
with explicit time dependence of f2 entirely contained in f was proposed by Bogoliubov
to derive the Boltzmann equation. The traditional mechanistic view-point starting from
BBGKY hierarchy is that non-ideality coming from the repulsive part of molecular forces
needs to be modeled via three-particle and other higher order collision and free-flight
of molecules remains unaffected by it. However, so far the only widely used model is
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mean-field approximation of Enskog, where all higher order effects are lumped in non-
local collisions. In the present work, I am advocating an alternate mean-field picture of
non-ideality in dense system. According to this picture, in the dense system, dominant
change is alteration of free flight of a hard sphere particle. Before formulating a BGK
type model for dense gases, I will review the problem associated with current modeling
approaches.

3 In-admissibility of force driven Boltzmann equation

A typical temptation which might arise in writing simplified kinetic theories is to think
of dense gas contribution as a self consistent force added on the Boltzmann equation
(or BGK equation). Here, I remind the reader that a Vlasov type force term of the form
can always be added to the Boltzmann kinetic equation. Thus, an engineering approach,
popularized by Lattice Boltzmann type modeling, is to tune such a force in such a way
that the correct hydrodynamics equation is obtained (see for example [4]).

It is obvious that such an approach is not going to be self-consistent [15]. Any at-
tempt to add dense gas contribution via Vlasov type force term is physically wrong as
the hard-core part of the interaction cannot be represented in the conservative force form.
This happens because dense gas contributions need to increase entropy production in the
system.

In the next section, I will formulate a thermodynamically correct extension of Boltz-
mann BGK equation.

4 Present model

The key new ingredient, I propose is that Â1 f2 will also modify the free propagation step
of the Boltzmann type equations. In particular, we propose to write generalized kinetic
equation for f (z,t) as

∂t f (z,t)+∂α

[
f (z,t)v̂

]
=J , (4.1)

where v̂ is some unknown propagation velocity. The physical picture behind such a
modification of free propagation can be understood using Bogoliubov hypothesis for the
equilibration of a non-equilibrium gas, which assumes separations of time scale by con-
sidering mean free time τ of a molecule to be much larger than mean time spent in the
interaction domain of the another molecule [14]. In dilute region, where reduced density
is small, he derived Boltzmann equation using this hypothesis. Now for hard-sphere in
dense region the dynamics in mean free time τ has to be more complex due to collec-
tive effects. In this time scale, for dense system we also need to consider the effect of
collective motion (hydrodynamics) on individual particles. Such corrections from local
collision can also be incorporated by analyzing the short time motion of tagged particle
due to entropic force generated by particle-particle correlations and hydrodynamics force
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generated by other particles. In other words, apart from usual hydrodynamic forces the
tagged particle might also experience effective forces, which have purely entropic origin.
Unlike ring kinetic theory approach, I am not trying to derive such an equation from the
first principle but am trying to model it based on physical intuitions and limiting behav-
iors of the system. First, we know the two limiting behavior of such a system in rarefied
and extremely dense regime quantified by compressibility factor χ defined as

χ=
p

ρRT
−1≡ 1

ρR

(

snid−ρ
∂snid

∂ρ

)

, (4.2)

where the excess entropy snid(ρ) and pressure p(ρ,T) as a function of density ρ and tem-
perature T is known from equilibrium statistical mechanics (for example Van-der-Waals
or Carnhann-Starling approximation). In a rarefied system (χ→0), present model should
recover Boltzmann description of free propagation step (v̂=v), while for extremely dense
system (χ→∞), all hard-spheres should pack together and move with the collective ve-
locity of the system, which means v̂=v=u.

In the present work, I ask the question what is the most general form of the propaga-
tion velocity v̂ (which can be a function of the moments of f ) in the kinetic equation (4.1).
In order to do so, the propagation velocity is written as a formal Hermite expansion in
terms of dimensionless peculiar velocity ξα =(vα−uα)/

√
2RT as

v̂=v+
∞

∑
n=0

a(n)H(n)(ξξξ). (4.3)

Furthermore, we need to recognize that the condition of having correct continuity equa-
tion (obtained by integrating Eq. (4.1) over v) itself severely restricts the choice of v̂. For
example, a(0) =0 and a(n) =0 for all n >2. For n =2 only the trace part survives and the
most general form of v̂, consistent with the conservation laws, is

v̂α−vα =χ(vα−uα)
︸ ︷︷ ︸

A

+(vβ−uβ)
P

(I)
αβ

ρRT
︸ ︷︷ ︸

B

+u
(I)
α

(

ξ2− D

2

)

︸ ︷︷ ︸

C

, (4.4)

where precise form of second order tensor P
(I)
αβ and fictitious velocity u

(I)
α need to be de-

termined with the requirements of correct H-Theorem.
In subsequent section, I will show that these conditions are fulfilled if

u
(I)
α =−λ(q)τT∂α logT, P

(I)
αβ =−k1 τΛαβ−k2 τ∂γuγδαβ, (4.5)

where k1, k2 and λ(q) are positive definite scalars related to transport coefficients of the
fluid and the traceless part of the strain tensor is

Λαβ =
(

∂β uα+∂α uβ−
2

D
∂γuγδαβ

)

. (4.6)
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Here, it needs to be noted that the physical picture behind the present model envisions

that both P
(I)
αβ and u

(I)
α are corrections of the order of mean free time τ. We can relate these

new transport coefficients with that of real fluid by performing the Chapman-Enskog
expansion. The kinetic equation Eq. (4.1) along with expression of v̂ given by Eq. (4.4)
and Eq. (4.5), are the main result of this work.

5 Physical motivation

Before analyzing the model further, let us try to understand the physical meaning of
Eq. (4.4). The physical picture behind first term on the right hand side of Eq. (4.4) (un-
derlined term A) can be understood in the framework of social force model created by
Helbing and Molnár in the context of traffic dynamics [16]. The goal of this term is to
keep tagged particle separated from other particles, and such crossing of particles can be
avoided (only in an average sense) by introducing a force which tries to remove them
from dense regions. What we want is that at the time τ after any collision, the probability
of having a particle in denser region is smaller. A system mimicking such a motion is the
trajectory of an individual moving on a street trying to avoid being very close to crowded
region after time t. Suppose he is moving very fast in a region of high density, then he
can avoid being in the region of high density at the end of time t by moving even more
faster. In other words, he experiences a social force which accelerates him in the region of
high density if he is moving too fast. In the opposite limit, where the individual is mov-
ing too slow compared to the crowd in dense regions. He can avoid being in the region
of high density at the end of time t, if he gets decelerated in the regions of high density.
For hard-spheres such an effect can be modeled by underlined term A in Eq. (4.4). The
third term C is a hydrodynamic effect and can be understood as microscopic analog of
thermophoretic forces [17]. The difference from macroscopic expression is that in stead
of transport coefficient a direct dependence on heat velocity appears. This may be due to
the fact that the current description (Eq. (4.4)) is for short-time motion, whereas transport
coefficients appear only in long time limit. Similarly, the term B in Eq. (4.4) is a hydro-
dynamic force which reflects the tendency to resist locally generated flow field (shear
stresses and compression).

6 Conservation law

It is easy to check that the present formulation gives correct conservation laws for dense
gas. Before, showing that, let us recall that the kinetic part of the stress tensor and heat
flux are conveniently defined in terms of second and third order traceless Hermite tensor

H(3)
α (ξξξ)= ξα

(

ξ2− D+2

2

)

, H(2)
αβ (ξξξ)=

(

ξβξα−
1

D
ξ2δαβ

)

. (6.1)
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In terms of these tensors kinetic part of the stress tensor σ
(K)
αβ and the heat flux q

(K)
α are

σ
(K)
αβ =2RT

∫

dv fH(2)
αβ , q

(K)
α =(2RT)

3
2

∫

dv
f

2
H(3)

α . (6.2)

By taking moments of the kinetic equation Eq. (4.1), we have time evolution equation for
the locally conserved fields as

∂t ρ+∂α jα =0, (6.3a)

∂t jγ+∂α

[
ρuα uγ+pδαγ+σαγ

]
=0, (6.3b)

∂t E+∂α

[
(E+p)uα+σαγuγ+qα

]
=0, (6.3c)

where

σαγ =(1+χ)σ
(K)
αγ +P

(I)
αγ +P

(I)
αβ

σ
(K)
βγ

ρRT
+u

(I)
α

(q
(K)
γ

RT

)

, (6.4a)

qα =

{

(1+χ)δαβ+
P

(I)
αβ

ρRT

}

q
(K)
β +eu

(I)
α +qI I

α , (6.4b)

qI I
α = RTu

(I)
α

∫

dv f
[

ξ2
(

ξ2− D+2

2

)]

. (6.4c)

We can show that the stress tensor and heat flux has same expression as RET if k1, k2 and
λ(q) are chosen properly. As for example, in case of BGK collision model, it will be shown
later that

k1 =
η

τ
−(1+χ)p, (6.5)

where η is the shear viscosity and τ is the relaxation time. Similarly for the BGK model
k2 in terms of the bulk viscosity ηb is given as

k1 =
ηb

τ
. (6.6)

Before deriving the transport coefficient, in the next section, we shall prove the H-theorem
for the present model.

7 H-theorem

Résibois [10] showed that in order to prove H-theorem for the Enskog equation, it is
important to decompose the H-function for the dense gas into a kinetic part (same as
Boltzmann’s H-function)

Hid(x,t)=
∫

dv f (x,v,t)
[

log f (x,v,t)−1
]

(7.1)



S. Ansumali / Commun. Comput. Phys., 9 (2011), pp. 1106-1116 1113

and a correlation part which depends on the one particle distribution function only via
density of the fluid. The correlation part is essentially equilibrium excess entropy of the
dense gas. This idea was explored further by Grmela et al. in [18], where it was shown
that with this choice of H-function the Enskog equation is consistent with traditional
non-equilibrium thermodynamics.

Thus, in order to show the existence of H-theorem for the present model, I define the
H-function for dense system as

H(x,t)= Hid− snid(ρ(x,t))

R
. (7.2)

By noting that non-ideal part of entropy is a function of density only, using continuity
equation, we obtain

∂t

( snid

R

)

+
d
(
snid/R

)

dρ
∂α jα =0. (7.3)

In order to write the evolution equation for the kinetic part of the H function, I multiply
Eq. (4.1) with log f and integrate over v, which gives

∂tH
id+∂α

∫

dv
[

f log f v̂α

]
−

∫

dvv̂α f ∂α log f =
∫

J log f dv. (7.4)

Furthermore, using Eq. (4.4), we have:

∫

dvv̂α ∂α f =
∫

dvvα ∂α f −∂α

( snid

R
uα

)

+
d
(
snid/R

)

dρ
∂α jα

−
( P

(I)
αβ

RT

)

∂αuβ−u
(I)
α

∫

dv
(

ξ2− D

2

)

∂α f . (7.5)

Finally, by subtracting Eq. (7.3) from Eq. (7.4) and simplifying resulting expression using
Eq. (7.5), we have evolution equation for the total H function as

∂tH+∂α JH
α =

∫

J log f dv+
D

2
ρu

(I)
α ∂α logT+

( P
(I)
αβ

RT

)

∂αuβ, (7.6)

with the flux of H-function (analog of entropy flux) is

JH
α =−

( snid

R
uα

)

+
∫

dv
[

f (log f −1)v̂α

]
. (7.7)

It is interesting to see here that similar to H-function the flux of it also has a contribution
totally dependent on macroscopic variable ρ and j. For H-theorem to be valid, we need
to show that entropy production is positive, which means right hand side of Eq. (7.6)
must be negative. For Boltzmann collision term or BGK collision term, the first term on
the right term is negative. However, this is possible for the last two terms if Eq. (4.5) is
valid. Thus, we have proved the H-theorem. Here, it is interesting to note that the as
compared to Boltzmann kinetic theory, the new ingredient required to prove H-theorem
is just the same as that used in linear irreversible thermodynamics (see for a modern
perspective [19]).
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8 Hydrodynamics

The goal of any kinetic theory is not complete without understanding the properties of
the underlying fluid. In this section, I would like to show that the present kinetic theory
results in correct hydrodynamics. The first step in C-E expansion is to write

∂ f

∂t
+∂α(v̂α f )=

1

Kn
L f , (8.1)

where L is the linearized collision integral. We expand the distribution function in power
of smallness parameter

f = f 0+Kn f (1)+··· , (8.2)

with condition:
∫

dv f





1
v

v2



=
∫

dv f 0





1
v

v2



=





ρ
u

ρu2+ρDRT



, (8.3)

and for any i>0,
∫

dv f (i)





1
v
v2



=





0
0
0



. (8.4)

Similarly the time derivative acting on any variable φ is expanded as

∂t φ=∂
(0)
t φ+Kn∂

(1)
t φ+··· . (8.5)

The solvability condition is

∫

dv





1
v

v2




[
∂
(0)
t f (0)+∂α(v̂α f (0))

]
=





0
0
0



, (8.6)

which using Eq. (6.3a) can be written as

∂
(0)
t ρ=−∂α jα, (8.7a)

∂
(0)
t uα =−uβ∂βuα−

1

ρ
∂α p, (8.7b)

∂
(0)
t T =−uα∂αT− 2p

ρRD
∂αuα. (8.7c)

At this stage, we need to provide the exact form of collision operators. Although not
restrictive to BGK-model, for further analysis I chose to work with BGK collision model,
which allows us to write the next approximation for f as

f (1) =−τ(1+χ)

Kn
f eq

(

2H(2)
αβ ∂αuβ+

√
2RTH(3)

α ∂α logT
)

, (8.8)
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so, up to first order in Knudsen number:

σαβ =−η
(

∂β uα+∂α uβ−
2

D
∂γuγδαβ

)

−k2τ∂γuγδαβ, (8.9a)

qα =−τ
{ D

2
ρTλ(q)+p(1+χ)Cp

}

∂αT, (8.9b)

where shear viscosity
η =(k1+(1+χ)p)τ, (8.10)

and, Prandtl number is

Pr=
k1+(1+χ)p

(D/2Cp)ρTλ(q)+p(1+χ)
. (8.11)

This means in present model, we are allowed to set shear and bulk viscosity and Prandtl
number independent of each other. So unlike Dufty et al. [12], in the present model we are
allowed to set heat conductivity and viscosity coefficients independently. It is interesting
to note here that the present model provide a natural generalization to the BGK model in
the case of dilute gas too.

To conclude, in the present manuscript, I have presented an alternate mean-field
model of hydrodynamics at the mesoscale level. It can be safely claimed that this model is
first complete phenomenological model consistent with non-equilibrium thermodynam-
ics for describing hard-sphere hydrodynamics at the mesoscale level.

Finally, In the manuscript, for moderately dense gases, it was shown that correct hy-
drodynamic limit (as predicted by Enskog description) is obtained for near equilibrium
situations. However, it needs to be reminded that similar to any BGK type model, what
would happen far away from equilibrium is not obvious. In those cases, a detailed case
by case study is needed.
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