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Abstract. In this short note we present a derivation of the Spectral Difference Scheme
from a Discontinuous Galerkin (DG) discretization of a nonlinear conservation law.
This allows interpretation of the Spectral Difference Scheme as a particular discretiza-
tion under the quadrature-free nodal DG paradigm. Moreover, it enables identification
of the key differences between the Spectral Difference Scheme and standard nodal DG
schemes.
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1 Introduction

High-order numerical schemes that are based on locally discontinuous polynomial ap-
proximations on standard unstructured meshes are particularly attractive for nonlinear
convection-dominated problems in complex geometry. The Discontinuous Galerkin (DG)
method [1] is a well-known example. If accuracy requirements are moderate, however,
higher order schemes are advantageous only if a particular discretization method sup-
ports efficient implementation. Local numerical volume and surface integration required
by the DG approach can be considered a drawback in this regard. For nonlinear conser-
vation laws, where integration necessitates explicit evaluation of analytical and numer-
ical flux functions at quadrature points, numerical quadratures are quite irksome, since
a generic optimal node placement for a given accuracy is not known for general mesh
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elements, in particular simplex elements. One often uses integration rules based on (sin-
gular) tensor products, which oversample the solution in order to achieve the desired
order of accuracy [2].

In this context the Spectral Difference Scheme [3–5] has been proposed as a
collocation-based method, using local interpolation of the strong form of the equation,
with the aim to achieve superior efficiency by avoiding volume and surface quadratures
altogether, while maintaining conservation. The Spectral Difference approach extends
tensor-product-based collocation approaches that had previously been formulated for
quadrilateral meshes [6] to more general unstructured-grid elements.

Another approach is given by ”quadrature-free” DG schemes [7] that avoid numer-
ical integration by a suitable projection of the nonlinear analytical and numerical flux
functions in the interior and on the surface of mesh elements, respectively, onto finite-
dimensional spaces. As a consequence all integrations involve only analytically known
basis functions, which allows exact evaluation. This requires fewer degrees of freedom
compared to suboptimal numerical quadrature.

In this paper we demonstrate that in fact the Spectral Difference Scheme for non-
linear hyperbolic conservation laws and a particular nodal (quadrature-free) Discontin-
uous Galerkin scheme are equivalent to each other under certain well-defined condi-
tions. More specifically, the Spectral Difference Scheme is obtained from previously docu-
mented nodal DG schemes [8–10] by using the numerical flux function in the quadrature-
free discretization of the volume integrals, whereas in the traditional nodal DG approach
only analytical flux function evaluations are used for that purpose. Furthermore, the
Spectral Difference Scheme is identified as a particulary efficient scheme among the class
of quadrature-free DG schemes. It is hoped that establishing the variational formulation
of the Spectral Difference Scheme may be useful for further theoretical analysis, perhaps
allowing previously established results for nodal DG schemes to be re-used.

Unifying treatment for discretizations using locally discontinuous polynomial ap-
proximations has recently been advanced in a more general context by Wang et al. in their
formulation of lifting collocation penalty methods [11]. The quadrature-free paradigm
for DG methods used here may be the necessary ingredient of extending such a unifying
formulation in a clean way to nonlinear equations.

The paper is organized as follows: we briefly and rather informally recall the defi-
nition of the Spectral Difference Scheme in the classical derivation from the strong form
of the governing equations in Section 2. Subsequently we demonstrate in Section 3 the
essential steps for the derivation from the variational formulation for a nonlinear one-
dimensional conservation law. It remains to incorporate the more complicated metric
structure in the multi-dimensional case, which is considered in Section 4.

2 The Spectral Difference Scheme

Consider the scalar hyperbolic conservation law
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∂u

∂t
+∇· f (u)=0, (2.1)

on some domain Ω⊂R
d, subject to suitable initial and boundary conditions, where f (u)=

( f (1)(u),··· , f (d)(u))T is a smooth nonlinear flux function. Consider a triangulation Th =
{Ti}, such that Ωh =

⋃
Ti. By default we consider simplex elements, while occasionally

pointing out obvious extensions to other element types. Assume that there exist for each
cell i a smooth invertible mapping Φi : ξ → x with Jacobian Ji = ∂x/∂ξ, such that each
element in the triangulation can be mapped to a reference domain T̂, and Φi(T̂) = Ti.
Traditionally the Spectral Difference Scheme has been derived from the strong form of
the governing equations via a projection of the form

JM

(∂u

∂t
+∇·

(
IN f (u)

))
=0, (2.2)

where JM and IN are nodal interpolation operators defined on the reference domain. The
number of degrees of freedom M and N depend on the local topology, and whether
multivariate or tensor-product-based interpolation is used. For simplices one may let
IN be given by multivariate interpolation using polynomials of degree m+1, while for
quadrilateral or hexahedral elements one may use tensor products of one-dimensional
interpolation. In any case, let N = Nm+1. Assuming straight sided elements, i.e., |Ji|=
const, the divergence is written in coordinates local to the reference domain

∇x · f =∇ξ · f̃ , (2.3)

where f̃ = J−1 f . Applying the divergence to the projection (IN f̃ ) leads to polynomials
of order m. Hence, choosing the interpolation JM, to be exact for such polynomials, i.e.,
M = Nm, the divergence is evaluated exactly at the corresponding nodes. This leads to
the scheme

dui,j

dt
+

Nm+1

∑
k=1

(∇ξ L̂k)
∣∣∣
ξ j

· f̃k =0, ∀Ti∈Th, j=1,··· ,Nm, (2.4)

where ui,j is the nodal value at ξ j, which belongs to the set of interpolation nodes of JM,

and L̂j(ξ) are the Lagrange fundamental polynomials corresponding to the interpolation
operator IN . Coupling between mesh elements is introduced by evaluating the flux func-
tion as

f̃k =

{
J−1 f (ui,k), ξ̂k ∈ T̂,

f̃ num, ξ̂k ∈∂T̂,
(2.5)

where ξ̂k belongs to the set of interpolation nodes corresponding to IN. The coefficients

f̃ num are chosen such that f num ·n=h, where n is the outward pointing normal on ∂T, and
h is a standard numerical flux function.

The scheme (2.4) with condition (2.5) is the Spectral Difference Scheme in semi-
discrete form, which may be treated with a suitable time integration scheme. To verify
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discrete conservation, enough nodes should be placed on the boundary of elements to
support exact numerical integration of the flux interpolation polynomials. Obviously,
this does not specify the node placement on the boundary uniquely. A few remarks are
in order.

Remark 2.1. The condition f num ·n = h does not uniquely define the local coefficient f̃k,
as only the normal flux is specified. The tangential component is also needed for the
scheme, but its definition is not crucial. For instance, the tangential component may be
averaged, or taken from one element only.

Remark 2.2. For points that are shared by more than one (d−1)-dimensional face, e.g.,
vertices in 2D, or edges and vertices in 3D, the condition f num ·n = h is not well-defined.
As an additional constraint one often requires that it be satisfied for all faces that share
the node. For simplices this never leads to an overspecified problem, since at most d faces
of dimension (d−1) meet anywhere on ∂T.

It will become apparent that these conditions are enough to allow one to establish
equivalency with a variational formulation.

3 Variational formulation of the Spectral Difference Scheme

in one dimension

Consider the scalar one-dimensional conservation law

∂u

∂t
+

∂ f (u)

∂x
=0, (3.1)

where f (u) is a smooth nonlinear flux function. For the following analysis boundary
conditions are immaterial, so we assume either periodic boundary conditions or a pure
initial-value problem, with respectively suitable initial conditions. Consider a partition
of the real line into subintervals Ii=(xi−1/2,xi+1/2) with midpoints xi=(xi+1/2+xi−1/2)/2
and volumes ∆xi=xi+1/2−xi−1/2. Without loss of generality we may assume constant cell
volumes. Consider the finite-dimensional space Vm

h of bounded functions v for which
v|Ii

∈ Pm(Ii), where Pm is the space of polynomials of maximum degree m. The DG
discretization of the variational formulation is to find uh ∈Vm

h , such that for each cell i,

∫

Ii

(uh)tφdx−
∫

Ii

f (uh)φ′dx+hi+ 1
2
φ|x

i+ 1
2

−hi− 1
2
φ|x

i− 1
2

=0, ∀φ∈Pm(Ii), (3.2)

where hi+1/2 is a numerical flux function consistent with f(u) at xi+1/2, which one usually
chooses in the class of Lipschitz-continuous monotone flux functions [1] for easy incor-
poration of standard TVD stability theory [12].

It is convenient to formulate a Discontinuous Galerkin discretization of (3.1) in local
coordinates, defined by a linear map Φ : I = (−1,1) → Ii with Φ(ξ) = xi+ξ∆x/2. Let
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Sm = {ξk ; k = 0,··· ,m} be any nodal set allowing unique Lagrangian interpolation on I .
The corresponding fundamental polynomials lk(ξ), k = 0,··· ,m satisfying lk(ξ j) = δkj for
all ξ j ∈ Sm form a basis for Pm. Define a projection onto this space using polynomial
interpolation

uh|Ii
:=

m

∑
k=0

ui,klk(ξ), (3.3)

where ui,k=u(Φi(ξk)). (Henceforth we often omit the cell index i whenever reference to a
particular cell is clear.) The Discontinuous Galerkin Scheme (3.2) may be written for each
cell

∆x

2

m

∑
k=0

u̇k

∫ 1

−1
ljlkdξ−

∫ 1

−1
f (uh)l′jdξ+hi+ 1

2
lj(1)−hi− 1

2
lj(−1)=0, j=0,··· ,m. (3.4)

Consider the quadrature-free DG method, as introduced by Atkins and Shu [7], which
has the defining characteristic that the nonlinear flux f (uh) is projected onto a finite-
dimensional space using polynomials of degree m+1. Here we use an alternate nodal set
Qm+1 ={ξk; k=0,··· ,m+1} with corresponding fundamental polynomials l̂k. We impose
the additional restriction that the end points |ξ|= 1 be included in the set, and we may
suppose that we have ξ0 =−1, and ξm+1 = 1. An approximation for the flux function is
thus written

fh|Ii
:=

m+1

∑
k=0

fi,k l̂k(ξ), (3.5)

where the crucial step is to choose the degrees of freedom fk such that the numerical flux
function is incorporated into the interpolation:

fk =





hi− 1
2
, k=0,

f (uh(ξk)), 0< k<m+1,

hi+ 1
2
, k=m+1.

(3.6)

Substituting (3.5) into Eq. (3.4), and integrating by parts, leads to

∆x

2

m

∑
k=0

u̇k

∫ 1

−1
ljlkdξ+

m+1

∑
k=0

fk

∫ 1

−1
lj l̂

′
kdξ =0, j=0,··· ,m. (3.7)

Note that the boundary terms vanish. Define a local solution vector for the degrees of
freedom in each cell by ui =(ui,0,··· ,ui,m)T, and likewise a vector fi =( fi,0,··· , fi,m+1)

T for
the flux coefficients (3.6). The scheme becomes

Mu̇i+S fi =0, ∀i, (3.8)
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where entries of the matrices M and S are defined

mjk =
∫ 1

−1
lkljdx, j,k=0,··· ,m, (3.9a)

sjk =
2

∆x

∫ 1

−1
l̂′kljdx, j=0,··· ,m, k=0,··· ,m+1. (3.9b)

Note that M is symmetric positive definite [13], and thus has an inverse, which may be
used to define D := M−1S. The entries of D are given by dij =(2/∆x) l̂′j |ξi

, which is easily

verified by direct calculation (cf. [13]):

m

∑
k=0

mjkdkn =
2

∆x

∫ 1

−1
lj

m

∑
k=0

lk l̂′n|ξk
dξ =

2

∆x

∫ 1

−1
lj l̂

′
ndξ = sjn , (3.10)

where the second equality holds because l̂′j is by definition a polynomial of degree m, and

is hence interpolated exactly on the set Sm. The matrix D is a standard differentiation
matrix, and Eq. (3.8) can be written in terms of the degrees of freedom as

u̇i,j+
m+1

∑
k=0

l′k |ξ j
f̃i,k =0, ∀i, j=0,··· ,m, (3.11)

where f̃ =(Φ′)−1 f = 2/(∆x) f , and the flux coefficients fk are evaluated as in (3.6). This
by definition is the 1D Spectral Difference Scheme.

4 The variational formulation of the Spectral Difference

Scheme: the multidimensional case

Consider the scalar hyperbolic conservation law (2.1) on a triangulated domain Ωh, with
each mesh element mapped to a reference domain, as discussed in Section 2. We restrict
ourselves to straight-sided simplex elements. Consider the finite-dimensional space

Vm
h =

{
v∈L2(Ωh) : v|Ti

◦Φi ∈Pm(T̂)
}

,

where
Pm(T̂)=span

{
ξα : ξ∈ T̂, αi≥0, |α|≤m

}
,

and α∈N
d is a multiindex. The dimension of the space Pm is given by

N
(d)
m =

Πd
k=1(m+k)

d!
. (4.1)

In the following we often suppress the superscript d. As a particular basis for Pm(T̂)
consider the fundamental polynomials Lj of multivariate Lagrangian interpolation, cor-
responding to a nodal set Sm ={ξ j, j=1,··· ,Nm}, i.e.,

uh|Ti
:=

Nm

∑
j=1

ui,jLj(ξ), (4.2)
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where uj = u(Φ(ξ j)). Since Φ′ =: Ji = const for straight sided elements, this leads to the
DG discretization

Nm

∑
j=1

u̇j

∫

T̂
LjLkdξ−

∫

T̂
∇ξ Lk · f̃ (uh)dξ+

∫

∂T̂
h̃Lkds=0, k=1,··· ,Nm, (4.3)

where the cell index i has been omitted.
In the multidimensional case the quadrature-free DG approximation necessitates a

projection of both the flux function and the numerical flux onto a finite-dimensional space
using polynomials of maximum total degree m+1. Here we use multivariate interpola-
tion on a nodal set Qm+1 = {ξ j , j = 1,··· ,Nm+1} with L̂j the corresponding fundamental
polynomials. This leads to

f̃h|Ti
:=

Nm+1

∑
j=1

f̃ j L̂j(ξ), (4.4)

where the f̃ j = J−1( f
(1)
j ,··· , f

(d)
j )T are vector-valued coefficients to be determined shortly.

Substituting this into Eq. (4.3) and integrating by parts leads to

Nm

∑
j=1

u̇j

∫

T̂
LjLkdξ+

Nm+1

∑
j=1

f̃ j ·
∫

T̂
Lk∇

ξ L̂jdξ+
∫

∂T̂
(h̃− f̃h ·n

ξ)L̂kds=0. (4.5)

It remains to produce a projection of the numerical flux h̃ onto a finite-dimensional space.
We make the assumption that the nodal set Qm+1 supports interpolation of order m+1
not only in the interior of an element, but that additionally on each face, the restriction of
the nodal set allows interpolation of the same order. Formally stated we say

Assumption 4.1. Let ζ be a parametrization of a (d−1)-dimensional face e ∈ ∂T̂, The
restriction of the d-dimensional nodal set Qm+1 to the face e supports a unique (d−1)-
dimensional interpolation of order m+1 with corresponding Lagrangian fundamental

polynomials lk(ζ). We assume that a subset of exactly N
(d−1)
m+1 points is located on each

e∈∂T̂.

Interpolation nodes that satisfy Assumption 4.1 are actually quite common, including
popular choices with low Lebesgue constants, such as Hesthaven’s electrostatics nodes,
and Fekete points [9, 14–18]. Identify the subset

{
ξ j(k), k=1,··· ,N

(d−1)
m+1

}
⊂Qm+1

located on face e∈ ∂T̂. The uniqueness of Lagrangian interpolation (cf. [8]) ensures that
for the interpolation of some function g

N
(d)
m+1

∑
j=1

g(ξ j)L̂j(ξe)=
N

(d−1)
m+1

∑
k=1

g(ξ j(k))lk(ζ), (4.6)
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where ξ j ∈Qm+1, and ξe is the restriction of the d-dimensional coordinate ξ on the face e.

A consequence of this fact is that if f̃ ·nξ = h̃ at the interpolation nodes ξ j(k), the surface
integral in (4.5) identically vanishes. Note that since for any scalar function φ, and vector-
valued function v the identity

∫

∂T̂
φ(ξ)ṽ ·nξdsξ =

∫

∂T
φ(x(ξ))v·nds (4.7)

holds, this is equivalent with requiring f ·n = h in untransformed space. This is actually
accomplished if the degrees of freedom in (4.4) are chosen as in Eq. (2.5) in Section 2 for
the Spectral Difference Scheme. With this modification in the DG scheme, the surface
integral in Eq. (4.5) vanishes.

Define a local vector ui =(ui,1,··· ,ui,Nm
)T, and similarly for the flux coefficients f̃ (l) =

( f̃
(l)
1 ,··· , f̃

(l)
Nm+1

)T for l =1,··· ,d. Upon defining the matrices M with

mij =
∫

LiLjdξ,

and S(l) with

s
(l)
ij =

∫
Li

∂L̂j

∂ξ(l)
dξ,

the scheme may be written

Mu̇i+
d

∑
l=1

S(l) f̃ (l) =0, i=1,··· ,Nelem, (4.8)

where Nelem is the number of mesh elements.
As in the one-dimensional case, there holds M−1S(l) = D(l), where the entries of

D(l)are given by

d
(l)
ij =

∂L̂j

∂ξ(l)

∣∣∣
ξi

,

which can be verified by noting that L̂j(ξ) is a polynomial of degree m+1, and hence

(MD(l))ij =
Nm

∑
k=1

∫

T̂
LiLk

∂L̂j

∂ξ(l)

∣∣∣
ξk

dξ =
∫

T̂
Li

∂L̂j

∂ξ(l)
dξ = s

(l)
ij . (4.9)

Using this identity the scheme can be written in terms of the local degrees of freedom,
i.e.,

dui,j

dt
+

Nm+1

∑
k=1

(∇ξ L̂k)
∣∣∣
ξ j

· f̃k =0, i=1,··· ,Nelem, j=1,··· ,Nm. (4.10)

This recovers the Spectral Difference Scheme (2.4). Compared with the standard Spectral
Difference Scheme, as outlined in Section 2, there is an additional constraint regarding the
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placement of nodes on the boundary of elements (cf. Assumption 4.1). The derivation
from the strong form of the equations does not include this constraint, and may thus
be viewed as more general. The present derivation identifies a subset of the Spectral
Difference Scheme that is equivalent to a nodal DG scheme, and perhaps also amenable
to techniques for analysis established for the variational formulation.

5 Conclusions

We may identify three ingredients that allow the derivation of the Spectral Difference
Scheme in from a variational DG formulation:

1. A nodal (Lagrange) basis.

2. The quadrature-free paradigm.

3. Use of the numerical flux in the quadrature-free discretization of the volume inte-
gral.

It is worth pointing out that the first two ingredients define standard nodal DG
schemes [8–10] as a subset of the general variational DG formulation. The third require-
ment, i.e., the use of the numerical flux in the interpolation of the nonlinear flux function,
leads to elimination of the surface integral, and hence completes the transition to a Spec-
tral Difference Scheme. Collocating only the analytical flux function at all nodes retains
the surface integral, which may be multiplied with a penalty term, simplifying stability
analysis [8,9]. A more thorough investigation into the similarities and differences of these
approaches should prove interesting. This is left for future publication.
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