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Abstract. This paper presents an exponential compact higher order scheme for
Convection-Diffusion Equations (CDE) with variable and nonlinear convection coeffi-
cients. The scheme is O(h4) for one-dimensional problems and produces a tri-diagonal
system of equations which can be solved efficiently using Thomas algorithm. For two-
dimensional problems, the scheme produces an O(h4+k4) accuracy over a compact
nine point stencil which can be solved using any line iterative approach with alternate
direction implicit procedure. The convergence of the iterative procedure is guaranteed
as the coefficient matrix of the developed scheme satisfies the conditions required to
be positive. Wave number analysis has been carried out to establish that the scheme is
comparable in accuracy with spectral methods. The higher order accuracy and better
rate of convergence of the developed scheme have been demonstrated by solving nu-
merous model problems for one and two-dimensional CDE, where the solutions have
the sharp gradient at the solution boundary.
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1 Introduction

Convection-diffusion equation appears in the modelling of different fluid flow problems
like contaminant transport and heat/mass transport etc. The traditional Finite Difference
(FD) schemes such as central difference and upwind schemes on uniform grids have
certain drawbacks viz. stability and/or accuracy, especially for convection dominated
problems. Very large number of grid points are required to overcome such drawbacks
and to obtain any reliable solution. In the last few years, Higher Order Compact (HOC)
FD schemes have received great attention for solving CDE, which are computationally
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efficient. All most all HOC schemes are either polynomial [1, 6, 8, 12, 14] or exponential
type. For convection dominated problems polynomial schemes are less efficient due to
the failure of discrete maximum principle and/or upwind effect in the scheme.

The finite difference methods, whose coefficients involve exponential functions of
the coefficients of the corresponding differential operator and mesh width are known
as exponentially fitted FD schemes [11]. HOC exponential schemes are the higher or-
der compact exponentially fitted schemes. In the exponentially fitted FD schemes, the
exponential function helps in introducing an artificial diffusion that preserves the up-
wind effect. Its coefficient matrix is unconditionally diagonally dominant. Such schemes
are very suitable to solve the singularly perturbed convection-diffusion equations. Ex-
ponential FD schemes are first introduced by Allen and Southwell [2] to solve second
order partial differential equations governing the transport of vorticity. Later, modi-
fied and improved schemes along with some analysis on their applicability are proposed
in [4, 5, 10, 13, 15]. The more efficient as well as accurate scheme among the existing ex-
ponential HOC schemes is the SRECHOS [13]. So far SRECHOS has been developed for
convection-diffusion equations with constant convection coefficients. Since most of the
partial differential equations of practical importance have variable or nonlinear convec-
tion coefficients, therefore, the purpose of the present article is to develop and validate
SRECHOS like scheme to CDE with variable and nonlinear convection coefficients. The
development of the scheme is more or less in the lines of [15], however the final scheme
differs from [15] as the present scheme does not require second-order derivatives of the
source function in its implementation which will help in a substantial reduction in the
CPU times and a better accuracy in some cases.

If SRECHOS [13] is applied directly to the CDE with variable convection coefficients,
it will be of second order accurate. Using the method of modified equations, fourth order
accurate scheme for CDE has been proposed in Section 2. The iterative scheme for the
nonlinear CDE has been presented in Section 3. The positivity of the scheme, which is
crucial for the convergence of the iterative scheme in solving the nonlinear CDE, has been
shown in Section 4. The spectral analysis is also been presented in this section. Finally,
all the schemes are experimentally verified with the existing schemes in Section 5 for
variable, nonlinear and coupled nonlinear CDE.

2 Development of the scheme

Consider the two-dimensional nonlinear steady convection-diffusion equation

−auxx−buyy+c(x,y,u)ux +d(x,y,u)uy = f (x,y), (2.1)

on Ω⊂R
2, with boundary condition

u(x,y)= g(x,y), on ∂Ω, (2.2)

where a,b>0 are constant diffusion, c,d are convection coefficients and f , g are sufficiently
smooth functions with respect to x and y. If 0 < a,b < 1 are very small when compared
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with c and d, Eq. (2.1) is a convection dominated problem (i.e., singularly perturbed), and
the solution may have a sharp boundary layer towards the inflow or outflow boundaries.
Therefore the classical numerical methods may not be very accurate in resolving the high
gradient solutions in the boundary layer regions.

2.1 One-dimensional case

To develop a higher order exponential scheme, first consider the one-dimensional linear
equivalent of (2.1), given by

Lu≡−auxx+c(x)ux = f (x), x∈ I =(r0,r1), (2.3a)

u(r0)=Γ0, u(r1)=Γ1. (2.3b)

Divide the interval [r0,r1] into n equal sub-intervals with xi=r0+ih, h=xi+1−xi, ui=u(xi),
ci = c(xi), fi = f (xi) and i∈{0,1,2,··· ,n}.

The differential equation in (2.3), at any grid point xi is replaced with a difference
equation given by

−αD2
hui+cDhui = p1 fi−1+p2 fi+p3 fi+1+p4 fxi−1+p5 fx i+p6 fx i+1, (2.4)

where fx is the derivative of f with respect to x, Dhui = (ui+1−ui−1)/2h and D2
hui =

(ui+1−2ui+ui−1)/h2. Replacing f with (−auxx +cux) and making Eq. (2.4) exact for x,
x2, x3, x4, x5, x6 and e(cx/a), gives α= a, p1 =2/15, p2 =11/15, p3 =2/15, p4 =h/40, p5 =0
and p6 =−h/40, when c is assumed to be a constant zero and

α=
ch

2
coth

( ch

2a

)

, (2.5a)

p1 =90β5−(12+90γ)β4 +(7.5+12γ)β3−(0.5+γ)β+
7

30
+0.375γ, (2.5b)

p2 =24β4+
8

15
−24β3γ+2βγ, (2.5c)

p3 =−90β5−(12−90γ)β4−(7.5−12γ)β3 +(0.5−γ)β+
7

30
−0.375γ, (2.5d)

p4 =h
[

30β5−6β4(1+5γ)+(3.5+6γ)β3−(0.5+γ)β2+
( 1

30
+

1

24
γ
)]

, (2.5e)

p5 =h
(

120β5−120β4γ+8β3+2β2γ− 1

3
γ
)

, (2.5f)

p6 =h
[

30β5+6β4(1−5γ)+(3.5−6γ)β3 +(0.5−γ)β2−
( 1

30
− 1

24
γ
)]

, (2.5g)

for any non-zero constant c, where β=a/ch and γ=α/ch. However, c being not a constant
makes the truncation error of the scheme (2.4), computed using Taylor series expansion,
as TE =−2K2cxiuxxi−{K1cxi+K2cxxi}ux i+O(h4), where K1 = h(p3−p1)+(p4+p5+p6)
and K2 =h2(p3+p1)/2+h(p6−p4). Expanding K1 and K2 once again using Taylor series
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expansion demonstrates that the scheme (2.4) is only of second order. Therefore, to incor-
porate the variable nature of c and also to improve the order of accuracy, the differential
equation (2.3) is rewritten as

−Auxx+Cux = f (x), (2.6)

where
A= a−2K2cx and C= c+{K1cx+K2cxx}, (2.7)

and then (2.6) is replaced with a difference equation

−ΛiD
2
hui+CiDhui = P1 fi−1+P2 fi+P3 fi+1+P4 fxi−1+P5 fxi+P6 fxi+1, (2.8)

where Λ and P1-P6 are some coefficients to be computed. Once again replacing f with
(−Auxx+Cux) and making Eq. (2.8) exact for x, x2, x3, x4, x5, x6 and eCix/Ai , gives Λi=Ai,
P1 =2/15, P2 =11/15, P3 =2/15, P4 = h/40, P5 =0 and P6 =−h/40, when Ci =0, and for
Ci 6=0,

Λi =
Cih

2
coth

( Cih

2Ai

)

, (2.9a)

P1 =90βi

5−(12+90γi)βi

4
+(7.5+12γi)βi

3−(0.5+γi)βi+
7

30
+0.375γi, (2.9b)

P2 =24βi

4
+

8

15
−24βi

3
γi+2βiγi, (2.9c)

P3 =−90βi

5−(12−90γi)βi

4−(7.5−12γi)βi

3
+(0.5−γi)βi+

7

30
−0.375γi, (2.9d)

P4 =h
[

30βi

5−6βi

4
(1+5γi)+(3.5+6γi)βi

3−(0.5+γi)βi

2
+

( 1

30
+

1

24
γi

)]

, (2.9e)

P5 =h
(

120βi

5−120βi

4
γi+8βi

3
+2βi

2
γi−

1

3
γi

)

, (2.9f)

P6 =h
[

30βi

5
+6βi

4
(1−5γi)+(3.5−6γi)βi

3
+(0.5−γi)βi

2−
( 1

30
− 1

24
γi

)]

, (2.9g)

where βi = Ai/Cih, γi =Λi/Cih and A and C are as defined in (2.7).
Scheme (2.8) produces a diagonally dominant tri-diagonal system of equations which

can be solved efficiently using Thomas algorithm. The difference scheme (2.8) has de-
rived from the modified equation (2.6) which may be a second order approximation to
(2.6) but it is fourth order approximation to (2.3). To understand this, expand the RHS of
(2.8) to obtain

fi+
[

h(P3−P1)+(P4+P5+P6)
]

( fx)i+
[h2

2
(P3+P1)+h(P6−P4)

]

( fxx)i+O(h4),

where the coefficients of ( fx)i and ( fxx)i are equal up to fourth order if parameters P1

to P6 replaced by p1 to p6. Therefore the LHS of (2.8) will cancel the remainder terms
obtained in (2.4), when c is variable type. Now the Taylor-series based truncation er-
ror analysis shows that (2.8) with (2.9) is a fourth order scheme for the CDE (2.3) with
variable convection coefficients.
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2.2 Two-dimensional case

Following the development of the scheme in one-dimensional case, when the convection
coefficients are constant, the two-dimensional equivalent of (2.4) is

−αhD2
hui,j−αkD2

k ui,j+cDhui,j+dDkui,j = F∗
i,j, (2.10)

where

F∗
i,j = p1 fi−1,j+p2 fi,j+p3 fi+1,j+p4 fx i−1,j+p5 fxi,j+p6 fxi+1,j

+q1 fi,j−1+q2 fi,j+q3 fi,j+1+q4 fyi,j−1
+q5 fyi,j

+q6 fyi,j+1
,

αh =

{

ch
2 coth( ch

2a ), c 6=0,

a, c=0,
αk =

{

dh
2 coth( dh

2b ), d 6=0,

b, d=0,
(2.11)

and the coefficients p1 to p6 are as given in (2.5). The coefficients q1 to q6 are equivalent
to p1 to p6 of (2.5) but h, β and γ have to be replaced with k, b/dk and αk/dk, respectively.
The truncation error of the scheme (2.10), computed using Taylor series expansion, is
given by

TE=(K1d+L1c)uxyi,j
+(L2c−K1b)uxyyi,j

+(K2d−L1a)uxxyi,j

+(−K2b−L2a)uxxyyi,j
+ fi,j+O(h4), (2.12)

where

K1 =h(p3−p1)+(p4+p5+p6), K2 =
h2

2
(p3+p1)+h(p6−p4), (2.13a)

L1 = k(q3−q1)+(q4+q5+q6), L2 =
k2

2
(q3+q1)+k(q6−q4). (2.13b)

Expanding the terms in (2.12) and (2.13) shows that the scheme (2.10) is of second order
accurate. To make it fourth order, Eq. (2.10) is rewritten as

(

−αhDh
2−αkDk

2+cDh+dDk+EDhDk+GDk
2Dh+HDh

2Dk+KDh
2Dk

2
)

uij = Fij, (2.14)

where αh and αk are same as in (2.11), p1 to p6 and q1 to q6 are exactly as in (2.10) and

E=K1d+L1c, G=−K1b+L2c, H =K2d−L1a, K =−K2b−L2a, (2.15a)

Fi,j = p1 fi−1,j+p2 fi,j+p3 fi+1,j+p4 fx i−1,j+p5 fxi,j+p6 fxi+1,j

+q1 fi,j−1+q2 fi,j+q3 fi,j+1+q4 fyi,j−1
+q5 fyi,j

+q6 fyi,j+1
− fi,j. (2.15b)

To incorporate the variable nature of the convection coefficients c and d, the coefficients
αh, αk, p1 to p6 and q1 to q6 in (2.14) are modified by replacing c, d, β, γ with cij, dij, βij and
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γij, respectively, and the modified values have been used in (2.13)-(2.15). The truncation
error of the scheme (2.14), with variable convection coefficient is given by

TE=(K1cx+K2cxx+L1cy+L2cyy)ux+(K1dx +K2dxx+L1dy+L2dyy)uy

+2K2cxuxx+2L2dyuyy+(2K2dx +2L2cy)uxy+O(h4). (2.16)

Since K1, K2, L1 and L2 are of second order, therefore, the scheme (2.14) is again only
second order accurate. To make it O(h4+k4), the differential equation is further written
as

−Auxx−Buyy+Cux+Duy = Fp, (2.17)

where

A= a−2K2cx, B=b−2L2dy, (2.18a)

C= c+K1cx+K2cxx+L1cy+L2cyy, D=d+K1dx +K2dxx+L1dy+L2dyy, (2.18b)

Fp = f −2(K2dx +L2cy)uxy. (2.18c)

Now applying the finite difference scheme (2.14) to the modified differential equation
(2.17) gives

(

−ΛhDh
2−ΛkDk

2+CDh+DDk+EDhDk+GDk
2Dh+HDh

2Dk+KDh
2Dk

2
)

uij=Fi,j, (2.19)

where

Λh =

{ Cijh

2 coth(
Cijh

2Aij
), Cij 6=0,

Aij, Cij =0,
Λk =

{ Dijk

2 coth(
Dijk

2Bij
), Dij 6=0,

Bij, Dij =0,
(2.20)

and

E =K1Dij+L1Cij+2(K2dxij+L2cyij
), G=−K1Bij+L2Cij, (2.21a)

H=K2Dij−L1 Aij, K=−K2Bij−L2 Aij, (2.21b)

Fi,j = P1 fi−1,j+P2 fi,j+P3 fi+1,j+P4 fx i−1,j+P5 fxi,j+P6 fx i+1,j

+Q1 fi,j−1+Q2 fi,j+Q3 fi,j+1+Q4 fyi,j−1
+Q5 fyi,j

+Q6 fyi,j+1
− fi,j, (2.21c)

and K1,K2,L1 and L2 are defined as

K1 =h(P3−P1)+(P4+P5+P6), K2 =
h2

2
(P3+P1)+h(P6−P4), (2.22a)

L1 = k(Q3−Q1)+(Q4+Q5+Q6), L2 =
k2

2
(Q3+Q1)+k(Q6−Q4), (2.22b)

with

P1 =90βij
5−(12+90γij)βij

4+(7.5+12γij)βij
3−(0.5+γij)βij+

7

30
+0.375γij, (2.23a)
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P2 =24βij
4+

8

15
−24βij

3γij+2βijγij, (2.23b)

P3 =−90βij
5−(12−90γij)βij

4−(7.5−12γij)βij
3+(0.5−γij)βij+

7

30
−0.375γij, (2.23c)

P4 =h
[

30βij
5−6βij

4(1+5γij)+(3.5+6γij)βij
3−(0.5+γij)βij

2+
( 1

30
+

1

24
γij

)]

, (2.23d)

P5 =h
(

120βij
5−120βij

4γij+8βij
3+2βij

2γij−
1

3
γij

)

, (2.23e)

P6 =h
[

30βij
5+6βij

4(1−5γij)+(3.5−6γij)βij
3+(0.5−γij)βij

2−
( 1

30
− 1

24
γij

)]

, (2.23f)

where βij = Aij/Cijk and γij = Λh/Cijk, similarly Q1 and Q2 are obtained by replacing
βij = Bij/Dijk and γij = Λk/Dijk in P1 to P6. Finally, the Taylor series based truncation

error analysis shows that the scheme (2.19) is O(h4+k4). Scheme (2.19) with (2.20), (2.21)
and (2.22) is solved using SLOR over a nine point stencil. The tri-diagonal system in
SLOR is solved using Thomas algorithm.

3 Nonlinear models

If c and d are also functions of the unknown u, the coefficients in (2.19) contains u and its
partial derivatives, therefore, an iterative procedure is required to compute the solution.
In the present model, an initial approximation which satisfies the boundary conditions is
assumed for the unknown and (2.19) is solved using SLOR procedure until convergence.
The first and second partial derivatives of the convection coefficients required in the al-
gorithm are computed at the beginning of the every iteration using the following fourth
order Padé scheme [3, 9]

f ′i−1+4 f ′i + f ′i+1 =
3

h
( fi+1− fi−1), (3.1a)

f ′′i−1+10 f ′′i + f ′′i+1 =
12

h2
( fi+1− fi−1), (3.1b)

for i=2,··· ,N−1, with third order boundary closures

f ′1+2 f ′2 =
1

2h
(−5 f1+4 f2+ f3), (3.2a)

f ′N−1+2 f ′N =− 1

2h
(−5 fN−2+4 fN−1+ fN), (3.2b)

f ′′1 +11 f ′′2 =
1

h2
(13 f1−27 f2+15 f3), (3.2c)

f ′′N−1+11 f ′′N =
1

h2
(13 fN−2−27 fN−1+15 fN), (3.2d)

where f is either c or d and the prime is the partial derivative with respect to x or y. The
final algorithm for the nonlinear model is as follows.
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Algorithm 3.1: Algorithm for the nonlinear model

Step 1: Initialize u.

Step 2: Compute cx, cy, cxx, cyy, dx, dy, dxx and dyy using (3.1) and (3.2).

Step 3: Compute αh, αk, p1 to p6 and q1 to q6.

Step 4: Compute K1, K2, L1 and L2 using (2.13).

Step 5: Compute E, G, H and K using (2.15).

Step 6: Compute A, B, C and D using (2.18).

Step 7: Compute Λh, Λk, P1 to P6 and Q1 to Q6.

Step 8: Compute K1, K2, L1 and L2 using (2.22).

Step 9: Compute E , G and H and K using (2.21).

Step 10: Solve the difference system (2.19) using SLOR.

Step 11: Update the solution u.

Step 12: Repeat Steps 2 to 10 until convergence.

The convergence of the above iterative procedure and the spectral resolution of the
developed scheme will be discussed in the next section.

4 Mathematical analysis

4.1 Convergence of the iterative procedure

The fourth order compact exponential scheme (2.8) can be rewritten as

Ci

2h

[

−
(

coth
( Cih

2Ai

)

+1
)

ui−1+2coth
( Cih

2Ai

)

ui−
(

coth
( Cih

2Ai

)

−1
)

ui+1

]

= Fi,

where

Fi = P1 fi−1+P2 fi+P3 fi+1+P4 fx i+P5 fxi+P6 fxi+1.

Since |coth(Cih/2Ai)| ≥ 1, the off diagonal elements of coefficient matrix A = (aij) are
of same sign and diagonal elements are of opposite sign. Further, matrix A has all real
entries and is irreducible diagonally dominant. Therefore A is an M-matrix (A−1 exists
with A−1

>0), which guarantees the convergence of the iterative process.

4.2 Wave number analysis

Scheme (2.8) is a fourth order exponential HOC scheme to the differential equation (2.3)
in which the coefficients are functions of A and C. For the sake of simplicity the wave
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number analysis has been carried on an equivalent scheme given by

−(αi−2K2cx)D2
hui+(ci+k1cx+k2cxx)Dhui

=p1 fi−1+p2 fi+p3 fi+1+p4 fx i−1+p5 fxi+p6 fx i+1, (4.1)

where the coefficients p1 to p6 are same as in (2.5) and β=a/cih and γ=α/cih. Expanding
the RHS and LHS of (2.8) and (4.1) one can see that both schemes are equal up to fourth
order. Therefore, with respect to accuracy and the discrete source term both difference
schemes are equivalent. However, in the computations (2.8) has to be used because it
guarantees the M-matrix.

To verify the wave resolution of any numerical scheme, the characteristic graphs of
the difference equation and the differential equation are compared for various Peclet
numbers defined by p = ch/a. Due to the variable nature of the convection coefficients,
the value of the Peclet number can vary from point to point and hence analysis is based
on the maximum cell Peclet number defined by pe=c∗h/a, where c∗=supx∈[r0,r1]

{|C(x)|}.

The characteristic of the differential equation is obtained by substituting eIkx at u which
gives

λ=
φ2

pe
+ Iφ, (4.2)

where φ=kh, k is the wave number, I=
√
−1. Similarly, the characteristic of the developed

difference scheme (2.8) is obtained by substituting eIikh at ui. Now the characteristic for
Eq. (4.1)

λ∗=
γk”+ Ik′+(−2κ2k”+ Iκ1k′)µ1+ Iκ2k′µ2

z2+iz1
, (4.3)

where

k′=sinφ, k”=2−2cosφ, γ=
1

2

(

coth
pe

2

)

, µ1 =
hcx

a
, µ2 =

h2cxx

a
,

κ2 =
1

2
(ν3+ν1)+(ν6−ν4), κ1 =(ν3−ν1)+(ν4+ν5+ν6),

z1 =
[

(ν3−ν1)sinφ+φ(ν5+(ν6+ν4)cosφ)
]

,

z2 =
[

ν2+(ν3+ν1)cosφ−φ(ν6−ν4)sinφ
]

,

ν1 =
1

p5
e

[

90−(12+90γ)pe+(7.5+12γ)p2
e−(0.5+γ)p4

e +
( 7

30
+0.375γ

)

p5
e

]

,

ν2 =
1

p4
e

( 8

15
p4

e +2γp3
e−24p2

e +24γ
)

,

ν3 =
1

p5
e

[

−90−(12−90γ)pe−(7.5−12γ)p2
e +(0.5−γ)p4

e +
( 7

30
−0.375γ

)

p5
e

]

,

ν4 =
1

p5
e

[

30−6(1+5γ)pe+(3.5+6γ)pe
2−(0.5+γ)pe

3+
( 1

30
+5γ

)

pe
5

]

,

ν5 =
1

p5
e

(

120−120γpe+8Pe2+2γpe
3−γp5

e

)

,
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ν6 =
1

p5
e

[

30+6(1−5γ)pe+(3.5−6γ)pe
2+(0.5−γ)pe

3−
( 1

30
−5γ

)

pe
5

]

.

Similarly the characteristic of the existing scheme [15] given by

λ [15] =
γk”+ Ik′+(−2ψ2k”+ Iψ1k′)µ1+ Iψ2k′µ2

iψ1k′+(1−ψ2k”)
, (4.4)

where ψ1 =(1−peγ)/pe and ψ2 =(1−peγ)/pe
2+1/6, and

λ [10] =
γk”+ Ik′+(−k”/6+ Ik′ pe/12)µ1+ Ik′µ2/12

i(η3−η1)sinφ+η2+(η1+η3)cosφ
, (4.5)

where η1 = 1/6+(1−peγ)(2−pe)/2p2
e , η2 = 2/3+2(1−peγ)/p2

e , and η3 = 1/6+
(1−peγ)(2+pe)/2p2

e , and k′, k”, γ, pe, µ1 and µ2 are same as in (4.3). Its clear from (4.3)
that if the parameters µ1 and µ2 are zero, then the characteristics are the same as the con-
stant coefficients case as given in [13]. For non-zero case they can be made |µ1|= |µ2|≤ r,
by fixing the step length

h≤min

{

r

|| cxx
c ||∞

,

√

r

|| cxx
c ||∞

}

.

Fixing r = 0.01 the real and imaginary parts of characteristics of different schemes are
plotted for various Peclet numbers in Figs. 1 and 2, respectively. In these comparisons
the characteristics given in (4.3), (4.4) and (4.5) are plotted against the characteristic (4.2)
obtained form the differential operator. In all the comparisons, the developed scheme
agrees with the (4.2) much better than any of the existing exponential schemes for both
real and imaginary parts of the characteristic for both Pe=2 and 10. The characteristic of
(4.5) appears to be better than (4.4) due to its overshoot nature, however quantitatively
they are same. The comparisons can be made quantitative in the following way.

4.2.1 Resolving efficiency

The resolving efficiency [7] of any numerical scheme, defined by φmax/π, is a number
between 0 and 1, where φmax, independent of the grid size, is the maximum value of
φ for which |λ f d−λexact| is less than a tolerance δ. Resolving efficiencies are computed
for various schemes with δ = 0.01 and |µ1|= |µ2|= 0.01 and presented in Table 1. The
comparisons made in this table quantify the superiority of the developed scheme over

Table 1: Resolving efficiency of the real and imaginary parts of λ.

Pe for Im(λ) Pe for Re(λ)
Scheme 0.1 2.0 10.0 100.0 0.1 2.0 10.0 100.0
Present 0.59 0.57 0.53 0.50 0.41 0.59 0.71 0.67
Ref. [15] 0.32 0.35 0.34 0.28 0.27 0.30 0.24 0.22
Ref. [10] 0.30 0.31 0.44 0.04 0.25 0.30 0.23 0.15
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Figure 1: Real characteristic for Pe=2,10.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

θ

Im
(λ

)

Exact

Ref. [8]

Ref. [9]

Present

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

θ

Im
(λ

)
Exact

Ref. [8]

Ref. [9]

Present

Figure 2: Imaginary characteristic for Pe=2,10.

some of the existing exponential schemes. Though order of all these schemes is same
(fourth order), the better resolution of the developed scheme can help in generating more
accurate solutions.

5 Numerical validation

The developed scheme has been validated for variable and nonlinear CDE separately. In
both the cases, the error norms and rates of convergence have been compared with the
existing results. For all the chosen problems, the diffusion parameter has been taken as
1.0, 0.1 and 0.01. The grid sizes have been varied as 41, 81, 161, 321 and 641 for all the
one-dimensional CDE and 11×11, 21×21, 41×41, 81×81 and 101×101 for all the two-
dimensional problems. To demonstrate the observations made in the wave number anal-



908 Y. V. S. S. Sanyasiraju and N. Mishra / Commun. Comput. Phys., 9 (2011), pp. 897-916

ysis, the comparisons are also made with respect to Peclet number. In every case, the
error norms based on infinity norm have been computed to highlight the maximum er-
ror which is in-general expected in the boundary layer regions. The rate of convergence
is computed using

rate=
log

(

Eh

Eh/2

)

log(2)
, (5.1)

where Eh and Eh/2 are the error norms with the grid sizes h and h/2, respectively.

5.1 Variable convection problems

In this case the convection coefficients are functions of x and y, however, they are as-
sumed to be known. Three model problems, two for one-dimensional and one problem
for two-dimension, have been chosen with variable convection coefficients to validate the
developed scheme. The chosen problems have a sharp boundary layer with respect to the
diffusion coefficient. In all the one-dimensional problems, the resulting tri-diagonal sys-
tem of equations is solved using Thomas algorithm. SLOR based iterative schemes has
been used in the two-dimensional problems.

Example 5.1.

−ǫuxx+(2−x)ux+u= f (x), 0<ǫ≤1, 0< x<1,

with the exact solution
u(x)=sin2(πx)+xe

x−1
ǫ .

Example 5.2.

−ǫuxx+
( x+2

x+1

)

ux = f (x), 0<ǫ≤1, 0< x<1,

with the exact solution

u(x)=
(x+1)1+ 1

ǫ −1

21+ 1
ǫ −1

.

Due to the high gradients of the solution in the boundary layer region, computing
the solution accurately is very challenging for any numerical scheme. Error norms based
on infinity norm indicates the robustness of the numerical schemes, therefore, the error
norms and rates of convergence have been presented in Table 2 for Example 5.1. For all
the three chosen ǫ=0.01,0.1,1, the grid density has been varied from a course 21 to a very
fine 321 and in every case an improved accuracy and fourth order rate has been demon-
strated. Its clear from these comparisons that the present scheme consistently generated
fourth order rate and higher order of accuracy. The comparisons for Example 5.2, given
in Table 3, are made with respect to Peclet number to demonstrate the observations made
in the wave number analysis. This Peclet number based comparisons show that the de-
veloped solutions are better by an order over the existing schemes at high Peclet number
like 10 and becomes better by three orders when the Peclet number is reduced to one.
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Table 2: Comparison of the error and convergence rate for Example 5.1.

Present Ref. [15] Ref. [10]
ǫ No. nodes Max Error Rate Max Error Rate Max Error Rate

21 6.74807(-07) − 2.76500(-05) − 4.27913(-05) −
41 3.86295(-08) 3.9678 1.73075(-06) 3.9978 2.68254(-06) 3.9956

1.0 81 2.35823(-09) 4.0085 1.08066(-07) 4.0014 1.67581(-07) 4.0007
161 1.46525(-10) 4.0339 6.75245(-09) 4.0004 1.04726(-08) 4.0002
321 9.36477(-12) 4.1267 4.22002(-10) 4.0001 6.54553(-10) 4.0000
21 1.50062(-05) − 5.27315(-05) − 7.94336(-05) −
41 9.19222(-07) 4.0290 3.36368(-06) 3.9706 5.13242(-06) 3.9520

0.1 81 5.73204(-08) 4.0033 2.11295(-07) 3.9927 3.2351(-07) 3.9878
161 3.58201(-09) 4.0002 1.32255(-08) 3.9979 2.02676(-08) 3.9966
321 2.23837(-10) 4.0002 8.26910(-10) 3.9994 1.26732(-09) 3.9993
21 4.19183(-03) − 1.32144(-03) − 9.65440(-03) −
41 6.47709(-04) 2.6942 3.17139(-04) 2.0589 1.15974(-03) 3.0574

0.01 81 5.44838(-05) 3.5714 1.74053(-05) 4.1875 9.48679(-05) 3.6117
161 3.13560(-06) 4.1190 1.12582(-06) 3.9505 6.43208(-06) 3.8826
321 1.97880(-07) 3.9860 6.92626(-08) 4.0228 4.10723(-07) 3.9690

Table 3: Comparison of the error norm for Example 5.2.

Present Ref. [15] Ref. [10]

Pe 1
h

1
ǫ Max Error Max Error Max Error

10 5 1.52470(-05) 3.08950(-05) 4.87470(-05)
1 40 20 2.23288(-06) 2.39153(-05) 3.50760(-05)

100 50 8.15199(-07) 2.19682(-05) 3.26601(-05)
1000 500 6.93955(-08) 2.08919(-05) 3.13925(-05)
10 25 4.59570(-04) 9.61674(-03) 1.55513(-02)

5 40 100 1.28263(-05) 8.90269(-03) 1.44025(-02)
100 250 6.91681(-05) 8.76492(-03) 1.41957(-02)
10 40 4.32314(-04) 2.91651(-02) 5.42063(-02)

8 40 160 1.15165(-03) 2.80492(-02) 5.17008(-02)
100 400 1.28921(-03) 2.78254(-02) 5.12329(-02)
10 50 2.91566(-03) 4.15582(-02) 8.76718(-02)

10 40 200 3.72308(-03) 4.05919(-02) 8.45360(-02)
100 500 3.87916(-03) 4.03921(-02) 8.39433(-02)

Example 5.3. Consider the following two-dimensional CDE in the domain Ω = [0,1]×
[0,1]:

−ǫuxx−ǫuyy+xux = f (x,y),

with the exact solution

u(x,y)=
(1−y)y−2xǫ

e
x
ǫ

.
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Table 4: Comparison of the error and convergence rate for Example 5.3.

Present Ref. [15] Ref. [10]
ǫ No. nodes Max Error Rate Max Error Rate Max Error Rate

11×11 1.66566(-04) − 2.51255(-04) − 8.74422(-04) −
0.1 21×21 1.12219(-05) 3.8917 1.63431(-05) 3.9424 5.57114(-05) 3.9723

41×41 7.14868(-07) 3.9725 1.02962(-06) 3.9885 3.49417(-06) 3.9950
81×81 4.50340(-08) 3.9886 6.45400(-08) 3.9958 2.18707(-07) 3.9979
11×11 2.21998(-04) − 5.85841(-03) − 1.24713(-02) −

0.05 21×21 5.35730(-05) 2.0510 4.37602(-04) 3.7428 8.55985(-04) 3.8649
41×41 4.11448(-06) 3.7027 2.84571(-05) 3.9428 5.45281(-05) 3.9725
81×81 2.68957(-07) 3.9353 1.79634(-06) 3.9857 3.42438(-06) 3.9931
11×11 2.36814(-00) − 2.23448(-01) − 1.92745(-00) −

0.01 21×21 1.41743(-01) 4.0624 1.14270(-01) 0.9675 3.17309(-01) 2.6027
41×41 3.81177(-03) 5.2167 1.76305(-02) 2.6963 3.17442(-02) 3.3213
81×81 5.70041(-05) 6.0633 1.44833(-03) 3.6056 2.31373(-03) 3.7782

Example 5.3, has been solved using the two-dimensional model of the scheme and
the results are presented in Table 4. These comparisons show that the present scheme
out performs the existing schemes and even produces a sixth order rate in some cases
(say at ǫ=0.01 with 81×81 nodes for Example 5.3 in the Table 4). It can also be observed
that the rate of convergence for [15] goes below four at ǫ = 0.01. Further, the accuracy
of the present scheme improved by an order over [10] and also [15] when grid densities
are increased to 81×81. One interesting observation of the developed scheme, may be
due to its better spectral resolution, is its better accuracy over the existing schemes at
small diffusion parameters, wherein, in-general numerical schemes are known to be less
accurate due to the existence of sharp boundary layers. To highlight the performance
of the developed scheme, the analytical and obtained numerical solutions of the present
scheme and [15] for Example 5.3 are compared in Fig. 3. In this figure the solutions
obtained at y=0.125 and y=0.5 with diffusion parameter ǫ =0.01 and grid density N =
81×81 are compared with the analytical solution in the boundary layer region that is
in the window 0 ≤ x ≤ 0.2. The comparison shows that the solutions obtained using
the present scheme and [15] are both very accurate even in the boundary layer region.
However, to establish the better performance of the developed scheme over [15], the
absolute errors at y=0.125, y=0.25 and y=0.5 with diffusion parameter ǫ=0.01 for the
same problem are compared in Fig. 4. Its clear from this comparison that the solution
obtained using the present is at least an order better over the corresponding solution
obtained using [15] at all the three constant y locations.

5.2 Nonlinear convection problems

In this case the convection coefficients are functions of x, y and also the unknown u and
its partial derivatives. Once again one-dimensional and two-dimensional example prob-
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lems have been solved iteratively, and the results have been compared. As already been
mentioned, the required partial derivatives of the convection coefficients are computed
numerically using fourth-order Padé schemes (3.1) and (3.2) for every iteration.

Example 5.4.

−ǫuxx+uux = f (x), 0<ǫ≤1, 0< x<1,

with the exact solution
u(x)= log

(

1+x/ǫ
)

+cos(πx).

Example 5.5.

−ǫuxx+uux = f (x), 0<ǫ≤1, 0< x<1,

with the exact solution
u(x)= e−x+e(x−1)(1+ǫ)/ǫ.

Examples 5.4 and 5.5 have sharp boundary layers. The error norms and rates of con-
vergence for these test problems have been presented in Tables 5 and 6, respectively.
Once again a consistent fourth order rate of convergence is realized even for small diffu-
sion parameter and the additionally added iterative procedure did not affect either the
order of accuracy or the rate of convergence.

Example 5.6. Consider the nonlinear CDE

−ǫuxx−ǫuyy+uuy = f (x,y), for (x,y)∈Ω=[0,1]×[0,1],

with the exact solution
u(x,y)= ey−x+2−

1
ǫ (1+x)1+ 1

ǫ .

Example 5.7. Consider the nonlinear CDE

−ǫuxx−ǫuyy+uux = f (x,y), for (x,y)∈Ω=[0,1]×[0,1],

with the exact solution
u(x,y)= log

(

1+x/ǫ
)

+ey.
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Table 5: Comparison of the error and convergence rate for Example 5.4.

Present Ref. [15] Ref. [10]
ǫ No. nodes Max Error Rate Max Error Rate Max Error Rate

41 1.27619(-05) − 7.38332(-05) − 9.77570(-05) −
81 8.42617(-07) 3.9208 4.96057(-06) 3.8957 6.36558(-06) 3.9408

0.1 161 5.33543(-08) 3.9812 3.15913(-07) 3.9729 4.02179(-07) 3.9844
321 3.43849(-09) 3.9558 1.98192(-08) 3.9946 2.52051(-08) 3.9961
641 2.08565(-10) 4.0432 1.22690(-09) 4.0138 1.57642(-09) 3.9990
41 8.48229(-05) − 6.72396(-04) − 1.17888(-03) −
81 6.20280(-06) 3.7735 5.31901(-05) 3.6601 8.34374(-05) 3.8206

0.05 161 4.24499(-07) 3.8691 3.57722(-06) 3.8942 5.40717(-06) 3.9477
321 2.70746(-08) 3.9707 2.27919(-07) 3.9722 3.41167(-07) 3.9863
641 1.49606(-09) 4.1777 1.43526(-08) 3.9891 2.13742(-08) 3.9965
41 2.47369(-02) − 3.55143(-02) − 1.62986(-01) −
81 2.04255(-03) 3.5982 9.05132(-03) 1.9722 2.46946(-02) 2.7225

0.01 161 1.83259(-04) 3.4784 1.32309(-04) 2.7742 2.47913(-03) 3.3163
321 1.38247(-05) 3.7286 1.16707(-05) 3.5029 1.86219(-04) 3.7348
641 9.76648(-07) 3.8233 8.22033(-07) 3.8276 1.23596(-05) 3.9133

Table 6: Comparison of the error and convergence rate for Example 5.5.

Present Ref. [15] Ref. [10]
ǫ No. nodes Max Error Rate Max Error Rate Max Error Rate

41 2.75431(-06) − 5.53907(-06) − 7.16300(-06) −
81 1.83801(-07) 3.9055 3.42264(-07) 4.0165 4.73373(-07) 3.9195

0.1 161 1.16412(-08) 3.9808 2.15164(-08) 3.9916 2.98327(-08) 3.9880
321 8.36666(-10) 3.9737 1.45497(-09) 3.8864 1.87223(-09) 3.9941
641 4.54854(-11) 4.2012 2.02681(-10) 2.8437 1.17124(-10) 3.9986
41 2.50371(-05) − 8.94949(-05) − 1.01332(-04) −
81 1.73472(-06) 3.8513 5.00705(-06) 4.1598 7.13386(-06) 3.8283

0.05 161 1.16043(-07) 3.9020 3.10486(-07) 4.0114 4.62292(-07) 3.9478
321 7.02111(-09) 4.0468 1.95295(-08) 3.9908 2.92675(-08) 3.9814
641 3.48593(-10) 4.3321 1.32661(-09) 3.8798 1.83245(-09) 3.9975
41 7.75110(-02) − 2.96140(-02) − 9.19937(-03) −
81 2.80512(-03) 4.7883 3.90138(-03) 2.9242 5.66382(-04) 4.0217

0.01 161 8.72474(-05) 5.0068 2.17516(-04) 4.1648 2.17276(-04) 1.3822
321 4.43131(-06) 4.2299 1.12092(-05) 4.2784 1.63308(-05) 3.7339
641 2.25883(-07) 4.2941 7.00104(-07) 4.0010 1.10912(-06) 3.8801

For Examples 5.6 and 5.7, the rate of convergence is given in Figs. 5(a) and 5(b), re-
spectively. In these figures, power law graphs y = cxd have been drawn for the mean
error y computed over different grid densities x. The negative sign of d in this figure
represent the decrease of mean error with the increase of grid density and the magnitude
of d represents the rate of convergence. The value of d close to five in the present case
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Figure 5: Accuracy and rate of convergence for (a) Example 5.6, (b) Example 5.7.
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Figure 6: Comparison of the CPU times for (a) Example 5.6, (b) Example 5.7.

again conforms the robustness of the developed scheme.
It is observed in these numerical experiments that the iterative procedure for the non-

linear model of the developed scheme requires under relaxation for large grid densities
and particularly for high diffusion parameters. For small diffusion parameters, the iter-
ative procedure converged in less than a second even over a 101×101 grid. To demon-
strate the computational time requirement of the scheme, the CPU times computed on a
HP DL 140 server have been compared in the Figs. 6(a) and 6(b) for different grid densi-
ties for Examples 5.6 and 5.7. In these graphs, the x-coordinate, say 21, must be read as
a 21×21 grid. It is also clear from the power law graph that for large diffusion parame-
ter say at ǫ = 1, the increase in the computational time is four times with the increase in
the grid density, however at low diffusion parameter its only quadratic increment. For
a quantitative comparison, the CPU times required by the developed scheme and [15]
are compared in Table 7 for Examples 5.6 and 5.7. In these comparisons, the CPU time
requirements of the problems with the diffusion parameter ǫ = 1,0.1,0.01 and the grid
densities N=21,41,61,81,and101 are included. It is once again very clear from these com-
parisons that the developed scheme requires a much smaller computational times, for all
the chosen cases, over [15].
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Table 7: Comparison of CPU time for the 2D non-linear problems.

Example 5.6 Example 5.7
Present Ref. [15] Present Ref. [15]

# Nodes / ǫ 1.0 0.1 0.01 1.0 0.1 0.01 1.0 0.1 0.01 0.1 0.1 0.01
21×21 0.28 0.04 0.04 0.4 0.38 0.05 1.42 0.04 0.4 0.09
41×41 4.61 0.58 0.05 6.23 6.26 0.48 6.33 0.64 0.09 6.1 1.48 0.17
61×61 22.76 3.00 0.16 30.16 29.99 2.50 24.23 3.58 0.18 30.3 8.59 0.48
81×81 73.73 9.13 0.45 93.96 94.43 8.33 76.52 11.4 0.64 157.21 26.92 1.16

101×101 174.23 21.18 0.88 219.77 224.77 20.29 191.38 24.64 0.90 376.45 51.91 2.02

Table 8: Comparison of mean error, convergence rate and CPU times for Example 5.7 with ǫ = 0.01 when
the partial derivatives of the convection coefficients are approximated using Central Difference (CD) and Padé
scheme.

CD Padé
No. nodes Mean Error Rate CPU Mean Error Rate CPU

41×41 3.14(-03) − 0.08 2.76(-04) − 0.09
81×81 5.80(-04) 2.43 0.52 5.53(-06) 5.64 0.64

161×161 9.13(-05) 2.68 6.37 3.34(-07) 4.05 8.40

Since coefficients of the partial derivatives of convection coefficients in (2.18) and
(2.21) are second order accurate, therefore, it is sufficient to use second order approxi-
mations to discretize the partial derivatives of the convection coefficients. However such
an approximation has produced third order rate as shown in Table 8 for Example 5.7 with
ǫ=0.01. By replacing these second order approximations with fourth order Padé as given
in (3.1) and (3.2), the order has been improved to more than four with a 20 percent in-
crease of CPU time. Therefore, for all the non-linear problems, the Padé scheme has been
used to compute the partial derivatives of the convection coefficients.

Example 5.8 (Nonlinear Coupled Example).

−uxx−uyy+uux+vuy = f (x,y),

−vxx−vyy+uvx+vvy = g(x,y), 0< x,y<1,

with exact solution:

u(x,y)= ex +log(1+y), and v(x,y)= ey +log(1+x).

Finally, Algorithm 3.1 developed for the nonlinear model has been applied simultane-
ously for the coupled equations of (5.8) and the iterative procedure is stopped when the
absolute maximum of difference between two consecutive iterative values of u and v are
less than 10−12. The obtained solution is compared with the exact solution and the maxi-
mum error norms have been presented in the Table 9. A fifth order rate of the scheme con-
firms the robustness of the scheme in solving the coupled nonlinear equations. The CPU
time comparison of the present and [15] shows that once again the developed scheme
requires less computational time than the existing schemes.



Y. V. S. S. Sanyasiraju and N. Mishra / Commun. Comput. Phys., 9 (2011), pp. 897-916 915

Table 9: Comparison of mean error, convergence rate and CPU times for Example 5.8.

Present Ref. [15]
No. Nodes Mean Error Rate CPU time Mean Error Rate CPU time

11×11 8.04747(-08) − 0.1 5.87657(-08) − 0.15
21×21 2.76758(-09) 4.86 1.69 2.04103(-09) 4.85 2.37
41×41 8.92111(-11) 4.96 24.54 6.71108(-11) 4.93 34.76
81×81 2.13528(-12) 5.38 349.42 2.14944(-12) 4.96 482.07

6 Conclusions

An exponential compact higher order scheme has been developed to solve stationary
nonlinear convection-diffusion type differential equations. The scheme is O(h4) for one-
dimensional and O(h4+k4) for two-dimensional problems. The properties of the devel-
oped scheme like accuracy, non-oscillatory behavior and convergence have been tested
by solving one and two-dimensional test problems for both variable and nonlinear con-
vection coefficients. These numerical tests demonstrated that the developed scheme has
produced fourth order rate and higher order accuracy for both one and two dimensional
nonlinear convection-diffusion problems. The spectral analysis carried out on the nonlin-
ear scheme confirms its closeness with SRECHOS of constant convection coefficients [13]
demonstrating the robustness of the developed scheme. The CPU time comparisons
prove the superiority of the developed scheme over the existing schemes of its class.
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[16] D. You, A high-order Padé ADI method for unsteady convection-diffusion equations, J.
Comput. Phys., 214(1) (2006), 1–11.


