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Abstract. In this paper, we model laser-gas interactions and propagation in some ex-
treme regimes. After a mathematical study of a micro-macro Maxwell-Schrödinger
model [1] for short, high-frequency and intense laser-gas interactions, we propose to
improve this model by adding a plasma equation in order to precisely take into ac-
count free electron effects. We examine if such a model can predict and explain com-
plex structures such as filaments, on a physical and numerical basis. In particular, we
present in this paper a first numerical observation of nonlinear focusing effects using
an ab-initio gas representation and linking our results with existing nonlinear models.
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1 Introduction

We have introduced previously a numerical micro-macro Maxwell-Schrödinger system
for the modeling of intense, ultrashort and high frequency laser pulses propagating in
dense gaseous media [1, 2]. Numerical simulations were presented in [3–5], where the
coupling of the macroscopic Maxwell equations with many Time Dependent Schrödinger
Equations (TDSEs), is introduced via the exact polarization, thus physically linking the
microscopic and macroscopic scales. This numerical model was the first one to our
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knowledge, that takes into account ionization (short enough pulses) and high order har-
monic generation [6, 7] at the molecular scale via many TDSEs. Usual nonlinear macro-
scopic models such as Nonlinear Schrödinger Equations (NLS) determine the medium
response using macroscopic perturbative expansions. Maxwell-Bloch’s equations go be-
yond the perturbative approach but are restricted to the case of resonantly coupled radi-
ation to a specific transition in the medium.

Consequently, Maxwell-Bloch’s equations a priori cannot describe various effects we
are interested in, such as multiphoton ionization, high order harmonic generation (up
to ionization) and then filamentation (that necessitates the inclusion of plasma of free
electron effect). The Maxwell-Bloch equations have been mathematically studied by Du-
mas [8] using some techniques initially introduced for ferromagnetic media [9]. We prove
in this paper the existence of weak solutions for the Maxwell-Schrödinger system in a
H+

2 -gas (extension to other gas is straightforward). In contrast to nonlinear Maxwell’s
equations (see Eqs. (27-29) in [10]) in our approach the nonlinearity appears via medium
polarization, which couples the Maxwell and Schrödinger equations which themselves
are linear.

The Maxwell equations we consider are linear with constant coefficient but with non-
linear source terms. TDSEs are studied using energy estimates, Grönwall’s inequality,
classical functional analysis inequalities (Cauchy-Schwarz, Hardy, etc.) and finally Leray-
Schauder’s fixed point theorem. Note that a fundamental lemma on TDSEs necessary for
the proof can be derived from [11]. We also prove that the regularity of the initial data
is conserved in time, which is also an important information from a numerical point of
view (choice of the numerical method in particular).

After proving the existence of solution, we focus on particular dynamic solutions ap-
pearing in nonlinear media called filaments. These are defined in [10] as dynamic struc-
tures with an intense core, that is able to propagate over extended distances much larger
than the typical diffraction length while keeping a narrow beam size without the help of
any guiding mechanism. An exhaustive phenomenological and physical description of
this phenomenon can be found in [10, 12].

In this paper, we wish to establish whether the phenomenon of filamentation is prop-
erly predicted by our Maxwell-Schrödinger model. Our mode includes ionization prop-
erly for very short pulses. In order to describe filamentation for longer laser pulses, com-
monly used in the experiments, we modify the Maxwell-Schrödinger equations [1] into a
so-called Wave-Schrödinger-Plasma (WASP) equations adding an evolution equation on
free electrons in order to take precisely plasma effect into account (and the current den-
sity in Maxwell’s equations). Some elements of proof that filament-like structures can
exist for the WASP model are then given. However a scale transform will be ultimately
necessary to link our model and results to experimental observations of filamentation
over long distances.

We also formally derive from the WASP model some classical nonlinear Schrödinger
(NLS) equations that have numerically generated filaments (see [12, 13] for instance).
Note that some theoretical arguments for proving the existence of filaments for NLS
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equations also exist in particular given in [14], however a general theory is still miss-
ing. We expect a better understanding of filamentation† using the Maxwell-Schrödinger
or the WASP equations. Indeed due to TDSEs, the model provides a very precise de-
scription of the nonlinear gas response. In this goal, some numerical simulations are
provided. In particular, we observe nonlinear focusing effects (key element in filamenta-
tion) on an electromagnetic wave (the laser) propagating in ab initio-described medium
(gas). Filament-like structures are also observed (due to a defocusing).

This paper is organized as follows. In Section 2, we present the Maxwell-Schrödinger
model and prove the existence and uniqueness of weak solutions. We improve this model
adding an equation for the modeling of plasma of free electron effects. In this section, we
also recall and formalize geometrically the notion of filamentation. Some elements of
proof that the wave-Schrödinger-plasma model can compute filament-like structures, are
given. To illustrate this result, we propose in Section 3, some numerical simulations with
the model defined in Section 2. Finally, we offer concluding remarks in Section 4.

2 Wave-Schrödinger-Plasma equations (WASP)

Before introducing the Wave-Schrödinger-Plasma (WASP) equations, we first present the
Maxwell-Schrödinger (MS) model initially introduced in [1, 2] and for which existence
and uniqueness of weak solutions is proven. The general motivation for developing
such models is the non-relevance of usual nonlinear models such as nonlinear wave or
Schrödinger equations for the studied regimes [15].

2.1 Maxwell-Schrödinger model and its analysis

2.1.1 Maxwell-Schrödinger model

Mathematically we consider the coupling of the 3d macroscopic Maxwell equations with
many Time Dependent Schrödinger Equations (TDSEs). We will work under the dipole
approximation, so that the electric field will be supposed to be constant at the molecule
scale. This is valid when the smallest internal wavelengths λmin of the electromagnetic
field are much larger than the molecule size ℓ, that is

ℓ= o(λmin).

For the Maxwell equations we will denote by Ω⊂R
3 the bounded space domain with a

smooth boundary Γ and r =(x,y,z)T the space variable in Ω. At the molecule scale, we
will denote by

(r′,R′)=(x′,y′,z′,R′)T ∈R
3×R+,

†This important phenomenon is source of many potential applications in nanotechnology, laser surgery, air
communications, quantum control, dynamical molecular imaging, etc.
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the space variable (for electrons and ions). The molecular density is supposed to be con-
stant in time and is given by N ∈C∞

0 (Ω). The equations we consider are the following if
the medium is supposed to be neutral,






∂tB(r,t)=−c∇×E(r,t),

∂tE(r,t)= c∇×B(r,t)−4π∂t P(r,t),

∇·B(r,t)=0,

∇·
(
E(r,t)+4πP(r,t)

)
=0,

(2.1)

with





P(r,t)=N (r)
m

∑
i=1

Pi(r,t)=N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

ψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dr′dR′,

i∂tψi(R′,r′,t)=−△r′

2
ψi(R′,r′,t)−△R′

mp
ψi(R′,r′,t)+θ(R′,r′)·Eri

ψi(R′,r′,t)

+
(
Vi(R′)+Vc(R′,r′)

)
ψi(R′,r′,t), ∀i∈{1,··· ,m}.

(2.2)

In (2.2), Vc denotes the Coulomb potential, Vi the nucleus potential and θ is a regular
vector function with compact support D1 equal to r′ on a compact set D2 ⊂D1. In the
case of a H+

2 -molecule gas, where the 3-body problem is transformed by symmetry into
a 2-body problems, the potentials write

Vc(R′,r′)=− 1
√

x′2+(y′−R′/2)2+z′2
− 1

√
x′2+(y′+R′/2)2+z′2

, (2.3a)

Vi(R′)=
1

R′. (2.3b)

Note also that, for other molecules the kinetic operators would also have to be modified.
For more complex N-particle molecules, the potential operator of the Schrödinger equa-
tion has to be nonlinearly approximated in including the particle interactions: Hartree-
Fock, Kohn-Sham, TDDFT models, etc. We finally impose Dirichlet’s boundary condi-
tions on Γ:

E(r,t)=B(r,t)=0, ∀t>0, ∀r∈Γ.

In (2.2), Ωi denotes the macroscopic spatial domain containing a molecule of reference of
wavefunction ψi, and Pi denotes the macroscopic polarization associated to this domain.
The space Ωi contains N (r)vol(Ωi) molecules represented by ψi. Naturally we have

m⋃

i=1

Ωi =Ω.

We now assume that the spatial support of ψi is included in a domain ωi⊂R
3×R+, that

is supposed to be sufficiently large, see Fig. 1. In the second part of this paper, we will
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Figure 1: Spatial domains.

allow free electrons to reach the boundary ωi and we will impose absorbing boundary
conditions on ∂ωi. We refer to [2] for a complete description of the geometry of this
model. Functions χΩi

are defined by χ⊗1Ωi
where χ∈C∞

0 (R
3) is a plateau function and

1Ωi
is the characteristic function of Ωi. Finally Eri

denotes the electric field (supposed
constant in space) in Ωi. In the following, we will denote

ψ̄=(ψ1,··· ,ψm)T.

2.1.2 Existence and uniqueness of weak solutions for the Maxwell-Schrödinger

model

We are interested in this part in proving that the above model is well-posed. We denote
by (E0,B0,ψ̄0)T the initial data of the system, where ψ̄0 = (ψ0,1,··· ,ψ0,m)T. We will first
suppose that E0, B0 belong to

(
H1(Ω)

)3
and ψ̄0∈

(
H1(R

3×R+)∩H1(R
3×R+)

)m
,

with the following definition, see [11]:

H1(R
3×R+)=

{
u∈L2(R

3×R+), ‖u‖H+
1

=
∫

R3×R+

(
1+‖(R′,r′)T‖2

2

)
|u(R′,r′)|2dR′dr′<∞

}
.

In the following we will respectively denote by L2, H1, H+
1 , the sets L2(R

3×R+), H1(R
3×

R+), H1(R
3×R+). We now justify the introduction of such a model by proving its well-

posedness for a H+
2 gas. Note that for other gas which corresponds to change the po-

tentials (2.3), the analysis presented in the proof is a priori still valid, but may require
additional technical but secondary difficulties.
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Theorem 2.1. Suppose that

(E0,B0)∈
(

H1(Ω)
)3×(

H1(Ω)
)3

and ψ̄0∈
(

H1(Ω)∩H+
1

)m
,

with
ψ̄(R′=0,r′,t)=0∈R

m,

for all r′∈R3 and t∈R+ and N ∈C∞
0 (Ω). Then, there exists a time T >0, for which there exists

a unique

(E,B,ψ̄)∈
(

L∞
(
0,T;(H1(Ω))3

)×H1
(
0,T;(L2(Ω))3

))2
×L∞

(
0,T;(H1∩H+

1 )m
)

solution of (2.1), (2.2).

In order to show this results, let us prove some important intermediate results. Note
also that in the proof, in order to lighten the notations, we have set c = 1 and remove
the 4π appearing in (2.1). This change has of course, no consequence on the analysis of
existence of weak solutions.

Lemma 2.1. For all time T >0, we have
∥∥E(·,T)

∥∥2(
L2(Ω)

)3 +
∥∥B(·,T)

∥∥2(
L2(Ω)

)3

=
∥∥E0

∥∥2(
L2(Ω)

)3 +
∥∥B0

∥∥2(
L2(Ω)

)3−2
∫ T

0

∫

Ω
E(r,t)·∂tP(r,t)drdt, (2.4a)

and
∥∥∇·E(·,T)

∥∥2

L2(Ω)
+

∥∥∇·B(·,T)
∥∥2

L2(Ω)

=
∥∥∇·E0

∥∥2

L2(Ω)
+

∥∥∇·B0

∥∥2

L2(Ω)
−2

∫ T

0

∫

Ω
∇·E(r,t)∂t∇·P(r,t)drdt. (2.4b)

Proof. As usual, we take the scalar product of

∂tE(r,t)=∇×B(r,t)−∂tP(r,t), (2.5)

with E and we integrate over [0,T] in time and Ω in space, which gives

∫ T

0

∫

Ω
E(r,t)·∂tE(r,t)=

1

2

(∥∥E(·,T)
∥∥2(

L2(Ω)
)3−

∥∥E0

∥∥2(
L2(Ω)

)3

)
,

and using Dirichlet’s boundary conditions, we have
∫ T

0

∫

Ω
E(r,t)·∇×B(r,t)

=
∫ T

0

∫

Ω
B(r,t)·∇×E(r,t)=−

∫ T

0

∫

Ω
B(r,t)·∂tB(r,t)

=−1

2

(∥∥B(·,T)
∥∥2(

L2(Ω)
)3−

∥∥B0

∥∥2(
L2(Ω)

)3

)
.
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This allows to deduce (2.4a). The principle is identical for (2.4b) by taking ∇ of (2.5) and
integrating in space and time.

Lemma 2.2. Suppose given

E(r,·)∈L∞(0,T) and ∂tE(r,·)∈L1(0,T),

for r fixed in Ω. Imposing
ψi(R′=0,r′,t)=0,

for all r′∈R
3 and t∈R+, then, for all ψ0,i ∈H1∩H+

1 , there exists

ψi∈L∞(0,T;H1∩H+
1 )

solution of the last equation of (2.2), and there exists a positive constant CT such that

∥∥ψi

∥∥
L∞(0,T;H1∩H+

1 )
6CT

∥∥ψ0,i

∥∥
H1∩H+

1
.

Proof. Note that the proof of this lemma follows closely the proof of Theorem 5 from [11].
In the following, we will denote by E the laser operator, and for fixed r, E(r,t) is denoted
by E(t):

E : (R′,r′,t) 7→E(R′,r′,t)= θ(R′,r′)·E(t).

In a first time we regularize the potentials, defining with ε a positive constant

Vε
c (R′,r′)=− 1

√
ε2+x′2+(y′−R′/2)2+z′2

− 1
√

ε2+x′2+(y′+R′/2)2+z′2
,

Vε
i (R′)=

1√
ε2+R′2.

We have
|Vε

c |6 |Vc|, |Vε
i |6 |Vi| and ∂tV

ε
c =∂tV

ε
i =0.

Then

i∂tψ
ε(R′,r′,t)=

[
− 1

2
△r′−

1

mp
△R′ +Vε

c (R′,r′)+Vε
i (R′)+θ(R′,r′)·E(t)

]
ψε(R′,r′,t). (2.6)

As remarked in [11], there exists a unique ψε ∈C0
(
0,T;H1∩H+

1

)
solution of (2.6), as Vε

c ,

Vε
i , θ·E belong to L∞

(
0,T;C2

0(R
3×R+)

)
. We now search for an estimate in H+

1 of ψε. First,

we recall that a norm on H1∩H+
1 is (for instance)

∥∥ψε(t)
∥∥2

H1∩H+
1
=

∫

R3×R+

(
|∇r′ψ

ε|2+|∇R′ψε|2+
(
1+‖(R′,r′)‖2

2

)
|ψε|2

)
.
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Then there exists a constant Mp >0 (=1 for instance as mp >1), such that

∫

R3×R+

( |∇r′ψ
ε|2

2
+
|∇R′ψε|2

mp
+

(
1+‖(R′,r′)‖2

2

)
|ψε|2

)
6 Mp

∥∥ψε(t)
∥∥

H1∩H+
1

. (2.7)

The main difficulty consists of finding a positive constant C such that

∥∥ψε(t)
∥∥2

H1∩H+
1
6C

∥∥ψ0

∥∥2

H1∩H+
1

. (2.8)

Supposing (2.8) is true, using a compactness argument, there exists a sequence εn such
that

ψεn ⇀
∗
n→∞ ψ, in L∞

(
0,T;H1∩H+

1

)
.

We finally get

∥∥ψ(t)
∥∥2

H1∩H+
1
6C

∥∥ψ0

∥∥2

H1∩H+
1

.

This would prove the existence of a solution in the distributional sense for Eq. (2.1).
In order to obtain estimate (2.8), it is first necessary to have an estimate of

d

dt

∫

R3×R+

((
1+

∥∥(R′,r′)
∥∥2

2

)|ψε|2
)

and
d

dt

∫

R3×R+

( |∇r′ψ
ε|2

2
+
|∇R′ψε|2

mp

)
.

With this aim and as proposed in [11], we multiply the TDSE by
(
1+‖(R′,r′)‖2

2

)
ψε∗ , we

integrate on R
3×R+ using that ψ̄(R′=0,r′,t)=0, and we finally take the imaginary part

d

dt

∫

R3×R+

(
1+

∥∥(R′,r′)
∥∥2

2

)
|ψε|2

=Im
∫

R3×R+

[
∇r′

(∥∥(R′,r′)
∥∥2

2
ψε∗

)
· ∇r′ψ

ε

2
+∇R′

(∥∥(R′,r′)
∥∥2

2
ψε∗

)
· ∇R′ψε

mp

]
.

We easily obtain by differentiation and Cauchy-Schwarz inequality that

d

dt

∫

R3×R+

(
1+‖(R′,r′)‖2

2

)|ψε|2 6
1

2

∫

R3×R+

(∥∥(R′,r′)
∥∥2

2
ψε∗+

|∇r′ψ
ε|2

2
+
|∇R′ψε|2

mp

)
.

The same manner we multiply by ∂tψ
ε∗ we take the real part and we integrate over R

3×
R+. That is

0=
∫

R3×R+

Re
(
− ∂tψ

ε∗△r′ψ
ε

2
− ∂tψ

ε∗△R′ψε

mp
+Vε

c ψε∂tψ
ε∗ +Vε

i ψε∂tψ
ε∗ +Eψε∂tψ

ε∗
)

. (2.9)
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Then

d

2dt

∫

R3×R+

( |∇r′ψ
ε|2

2
+
|∇R′ψε|2

mp

)

=− 1

2

∫

R3×R+

(
Vε

c +Vε
i +E

)
∂t|ψε∗ |2

=− d

2dt

∫

R3×R+

(
Vε

c +Vε
i +E)|ψε∗ |2+

1

2

∫

R3×R+

∂tE|ψε|2.

Trivially there exists a constant C2

∫

R3×R+

∂tE|ψε|2 6C2‖∂tE‖L∞(R3×R+)‖ψε‖2
H1∩H+

1
.

We then obtain the following estimate:

d

dt

∫

R3×R+

( |∇r′ψ
ε|2

2
+
|∇R′ψε|2

mp

)

6
d

dt

[∫

R3×R+

((
Vε

c +Vε
i +E

)
|ψε|2

)]
+C2

∥∥∂tE
∥∥

L∞(R3×R+)

∥∥ψε
∥∥2

H1∩H+
1

. (2.10)

Next, setting

Eε
mp

(t)=
∫

R3×R+

( |∇r′ψ
ε|2

2
+
|∇R′ψε|2

mp
+

(
1+‖(R′,r′)‖2

2

)
|ψε|2

)
,

and because of (2.9) and (2.10), there exists a positive constant C3 such that

d

dt
Eε

mp
(t)6

d

dt

∫

R3×R+

((
Vε

c +Vε
i +E

)
|ψε∗ |2

)
+C3

[
1+|∂tE‖L∞(R3×R+)

]
Eε

mp
(t).

By integration, we have

Eε
mp

(t)6

∫

R3×R+

(
Vε

c +Vε
i +E(t)

)
|ψε(t)|2−

∫

R3×R+

(
Vε

c +Vε
i +E(0)

)
|ψε(0)|2

+C3

∫ t

0

[
1+‖∂tE‖L∞(R3×R+)

]
Eε

mp
(s)ds+Eε

mp
(0).

As by definition of Vε
i , Vε

c and Vi, Vc

∫

R3×R+

(
Vε

c +Vε
i

)
|ψε(t)|2 6

∫

R3×R+

(
|Vc|+|Vi|

)
|ψε(t)|2

6

(∫

R3×R+

(
|Vc|+|Vi|

)2|ψε(t)|2
) 1

2
(∫

R3×R+

|ψε(t)|2
) 1

2
.
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By definition of Vi and Vc and by applying Hardy’s inequality, there exists two positive
constants C̃4, C4 such that (using the definition of Vi and Vc)

∫

R3×R+

|ψε(t)|2
(
|Vc|+|Vi|

)2
62

∫

R3×R+

|ψε(t)|2(V2
c +V2

i )

6C̃4

∫

R3×R+

|∇r′ψ
ε|2+|∇R′ψε|2

6C4‖∇R′ ,r′ψ
ε‖2

L2(R3×R+).

So that, by the classical equality ‖ψ0‖2
L2 =‖ψε‖2

L2 , we have

∫

R3×R+

|ψε|2(Vε
c +Vε

i )2 6
C4

2

∥∥∇R′,r′ψ
ε
∥∥2

L2(R3×R+)
+

C4

2
‖ψ0‖2

L2(R3×R+). (2.11)

Now as E∈L∞(0,T) and θ∈C2
0(R

3×R+),
∫

R3×R+

|ψε|2E(t)6‖E‖L∞(0,T;R3×R+)‖ψε(t)‖2
H1 , (2.12)

and because of (2.7)

Eε
mp

(0)6 Mp‖ψ0‖2
H1∩H+

1
, (2.13)

and by definition of Vc and Vi, there exists a positive constant C5 such that
∫

R3×R+

(
Vε

c +Vε
i +E(0)

)
|ψ0|2 6C5‖ψ0‖2

H1∩H+
1

. (2.14)

So that (2.11), (2.12) and (2.13) lead to the existence of 2 positive constants C6, C7 such
that

∥∥ψε(t)
∥∥2

H1∩H+
1
6C6‖ψ0‖2

H1∩H+
1
+C7

∫ t

0

(
1+‖∂tE‖L∞(0,T;R3×R+)

)∥∥ψε(s)
∥∥2

H1∩H+
1

ds. (2.15)

We apply Grönwall’s inequality that leads to the existence of a positive constant CI such
that

∥∥ψε(t)
∥∥2

H1∩H+
1
6CI exp

[∫ t

0

(
1+‖∂tE‖L∞(0,T;R3×R+)

)
ds

]
‖ψ0‖2

H1∩H+
1

. (2.16)

Now as ∂tE(r,·)∈L1(0,T), there exists a constant C such that (2.8) occurs.

Lemma 2.3. Suppose given

E(r,·)∈L∞(0,T) and ∂tE(r,·)∈L1(0,T),

for r fixed in Ω. Then, there exists CT such that for all ψ̄0 ∈
(

H1∩H+
1

)m
, there exists a solution

ψ̄∈L∞
(
0,T;(H1∩H+

1 )m
)

and
∥∥ψ̄

∥∥
L∞

(
0,T;(H1∩H+

1 )m
)6CT

∥∥ψ̄0

∥∥
(H1∩H+

1 )m .
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Proof. The previous lemma is valid for all i = 1,··· ,m and by definition ψ̄ is equal to
(ψ1,··· ,ψm)T.

Lemma 2.4. For all T >0 and ψ̄∈(
L∞

(
0,T;(H1∩H+

1 )
)
,

P∈L∞
(
0,T;(C∞

0 )3
)
.

Proof. As χΩi
, N belong to C∞

0 (Ω) and ψi∈L∞(0,T;H1∩H+
1 ), for all i=1,··· ,m, we deduce

that

t 7→
∫

R3×R+

ψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dR′dr′∈L∞(0,T).

In particular for all i = 1,··· ,m, as ψi belongs to H+
1 the integral is defined. Finally, by

definition of

P=
m

∑
i=1

Pi =
m

∑
i=1

N (r)χΩi
(r)

∫

R3×R+

ψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dr′dR′,

we deduce the lemma.

Actually, we have more

Lemma 2.5. For r fixed in Ω and T >0,

∂tP(r,·)∈L∞(0,T) and ∂t

(
∇·P(r,·)

)
∈L∞(0,T).

Proof. First

∂tP(r,t)=N (r)
m

∑
i=1

∂tPi(r,t),

that is

∂tP(r,t)=N (r)
m

∑
i=1

∂tPi(r,t)

=N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

∂tψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dr′dR′

+N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

ψi(R′,r′,t)r′∂tψ
∗
i (R′,r′,t)dr′dR′.

As ψi ∈ L∞
(
0,T;H1∩H+

1

)
, then (using integration by parts) ∂tPi ∈ L∞(0,T) for all i in

{1,··· ,m} and ∂tP∈L∞(0,T). Now as ∇·P(·,t)∈C∞
0 (Ω) at t fixed, we also have that ∂t

(∇·
P(r′,·))∈L∞(0,T).
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Lemma 2.6. There exists a constant C>0 such that for all time T >0,

sup
06t6T

∥∥E(t)
∥∥2(

H1(Ω)
)3 + sup

06t6T

∥∥B(t)
∥∥2(

H1(Ω)
)3 6C. (2.17)

Proof. From Lemma 2.1, we have that for all t∈ [0,T],

∥∥E(·,T)
∥∥2(

L2(Ω)
)3 +

∥∥B(·,T)
∥∥2(

L2(Ω)
)3

6
∥∥E0(·)

∥∥2(
L2(Ω)

)3 +
∥∥B0(·)

∥∥2(
L2(Ω)

)3 +2
∫ T

0

∫

Ω
|E(r,t)·∂tP(r,t)|drdt

6
∥∥E0(·)

∥∥2(
L2(Ω)

)3 +
∥∥B0(·)

∥∥2(
L2(Ω)

)3 +2
∫ T

0

∫

Ω
|E(r,t)|2drdt+

∫ T

0

∫

Ω
|∂tP(r,t)|2drdt,

and

∥∥∇·E(·,T)
∥∥2

L2(Ω)
+

∥∥∇·B(·,T)
∥∥2

L2(Ω)

6
∥∥∇·E0

∥∥2

L2(Ω)
+

∥∥∇·B0

∥∥2

L2(Ω)
+2

∫ T

0

∫

Ω
|E(r,t)·∂t∇·P(r,t)|drdt

6
∥∥∇·E0

∥∥2

L2(Ω)
+

∥∥∇·B0

∥∥2

L2(Ω)
+

∫ T

0

∫

Ω
|E(r,t)|2drdt+

∫ T

0

∫

Ω
|∂t∇·P(r,t)|2drdt.

In the previous equations, ‖·‖ denote the L2-norm in R
3. Using now that

P∈L∞
(
0,T;C∞

0 (Ω)3
)
,

we deduce (2.17) using Grönwall’s lemma.

Proof of Theorem 2.1 So far, we have proven that for all T >0, there exists a constant C
such that

∥∥E
∥∥2

L∞
(

0,T;(H1(Ω))3
)
∩H1

(
0,T;(L2(Ω))3

)+
∥∥B

∥∥2

L∞
(

0,T;(H1(Ω))3
)
∩H1

(
0,T;(L2(Ω))3

)

+
∥∥ψ̄

∥∥
L∞

(
0,T;(H1∩H+

1 )m
)6C.

The boundness of the last term in the above inequality is a consequence of Lemma 2.2.
Now as

L∞
(
0,T;(H1(Ω))3

)×L∞
(
0,T;(H1∩H+

1 )m
)

is compactly embedded in

L2
(
Ω×(0,T]

)
×

(
L2(R

3×R+)
)m

by Leray-Schauder’s fixed point theorem we deduce the existence of a solution for (2.1).
The approach is the same as described in [16], we do not detail it. It is based on the
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introduction of a continuous mapping easily derived from (2.1), and that depends on a
parameter λ∈ [0,1] and that admits a fixed point in

L2
(
Ω×(0,T]

)
×

(
L2(R

3×R+)
)m

as verifying Leray-Schauder’s theorem assumptions.

Uniqueness is proven by a classical process via Grönwall’s inequality. Let us set(
E1,B1,ψ̄1

)T
and

(
E2,B2,ψ̄2

)T
two solutions of the Cauchy problem (2.1), and

(
E,B,ψ̄

)T
:=

(
E2−E1,B2−B1,ψ̄2−ψ̄1

)T

with obviously

(
E(·,0),B(·,0),ψ̄(·,0)

)T
=(0,0,0),

P :=P2−P1, with P(·,0)=0.

We also denote by

φ̄=(φ1,··· ,φm)T :=(ψ2,1−ψ1,1,··· ,ψ2,m−ψ1,m)T

with then φ̄(·,0)=0. We naturally have

P(r,t)=N (r)
m

∑
i=1

Pi(r,t)

=N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

r′
(|ψi,2(R′,r′,t)|2−|ψi,1(R′,r′,t)|2)dr′dR′.

Again from

E(r,t)·∂tE(r,t)=E(r,t)·∇×B(r,t)−E(r,t)·∂t P(r,t),

we deduce that because ∂tP∈L∞
(
0,T;(C∞

0 (Ω))3
)
, there exists C>0 such that

d

dt

∫

Ω

∥∥E(r,t)
∥∥(

L2(Ω)
)3 dr+

d

dt

∫

Ω

∥∥B(r,t)
∥∥(

L2(Ω)
)3 6C

∫

Ω

∥∥E(r,t)
∥∥2(

L2(Ω)
)3 dr,

and as for all i=1,··· ,m,

i∂tφi(R′,r′,t)=−△r′

2
φi(R′,r′,t)−△R′

mp
φi(R′,r′,t)+θ(R′,r′)·Eri

φi(R′,r′,t)

+
(

Vi(R′)+Vc(R′,r′)
)

φi(R′,r′,t),
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then

i
d

dt

∫

R3×R+

|φi(R′,r′,t)|2dR′dr′

=−
∫

R3×R+

φ∗
i △r′φi(R′,r′,t)dR′dr′−2

∫

R3×R+

φ∗
i

△R′

mp
φi(R′,r′,t)dR′dr′

+2
∫

R3×R+

Vi(R′)|φi(R′,r′,t)|2dR′dr′+2
∫

R3×R+

Vc(R′,r′)|φi(R′,r′,t)|2dR′dr′

+2
∫

R3×R+

θ(R′,r′)·Eri
(t)|φi(R′,r′,t)|2dR′dr′.

By taking the imaginary part and integrating by parts, there exists a positive constant C
such that

d

dt

∫

R3×R+

|φi(R′,r′,t)|2dR′dr′6C
∫

R3×R+

|φi(R′,r′,t)|2‖∇R′,r′φi(R′,r′,t)‖dR′dr′ .

Now as
φi∈L∞

(
0,T;H1∩H+

1

)
(then ∇φi ∈L∞

(
0,T;(L2)m

)
,

we deduce that by Cauchy-Schwarz, there exists C>0 such that

d

dt
‖φi(t)‖2

L2(R3×R+) 6C‖φi(t)‖2
H1(R3×R+),

that leads to the existence of C>0 such that

d

dt

∥∥φ̄(t)
∥∥2(

L2(R3×R+)
)m 6C

∥∥φ̄(t)
∥∥2(

H1(R3×R+)
)m .

Using the same principle used in the proof Lemma 2.2 (see (2.15)), we can even prove
that

d

dt

∥∥φ̄(t)
∥∥2(

H1(R3×R+)
)m 6C

∥∥φ̄(t)
∥∥2(

H1(R3×R+)
)m .

In conclusion, there exists C>0 such that

d

dt

∥∥φ̄(t)
∥∥2(

H1∩H1
+

)m +
d

dt

∫

Ω

∥∥E(r,t)
∥∥2

dr+
∥∥B(r,t)

∥∥2
dr

6C
(∫

Ω
‖E‖2+‖B‖2dr+

∥∥φ̄(t)
∥∥2(

H1∩H1
+

)m

)
.

We conclude by Grönwall using the fact that

(
E(·,0),B(·,0),φ̄(·,0)

)
=(0,0,0).

The proof is then completed. �
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2.2 Laser-gas interaction modeling including plasma of free electrons: the
WASP model

In the following two systems of unit will be used: the International System (s.i.) and
the Gaussian Centimeter-Gram Second (c.g.s.) system with Atomic Units (a.u.). The rea-
son is that macroscopic nonlinear Schrödinger or wave models are usually written in s.i.,
when in the laser-molecule framework, the usual system is c.g.s. with a.u. We will then
work in the s.i. system for the classical nonlinear and Schrödinger models introduced
in this paper, and in c.g.s. for the Maxwell-Schrödinger model that couples macroscopic
wave/Maxwell’s equations with quantum laser-molecule TDSEs. In each situation, we
will clearly identify which system is used in order to avoid any confusion.

2.2.1 Wave-Schrödinger-Plasma equations

Let us now recall that the wave equation for an electric field propagating in a nonho-
mogeneous medium has the following form (details can be found in the following very
complete paper [10]) in s.i.:

−c2∇(∇·E)−∂2
tt

∫ t

−∞
n2(r,t−t′)E(r,t′)dt′+c2△E= c2µ0(∂2

ttPnl +∂tJ), (2.18)

where n2 is the linear index of refraction (vacuum and bound electrons), Pnl is the nonlin-
ear polarization associated to bound electrons, J is the plasma current density associated
to free electrons. Using the perturbation theory (see for instance [17]), the term n2 is
usually modeled by 1+ε0χ(1) and Pnl is modeled by

ε0

∫
χ(3)(t−t′)|E|2E(t′)dt′,

where the linear and cubic susceptibility tensors χ(1) and χ(3) are in a first approxima-
tion often supposed to be constant (in space and time which simplify the expression and
computation of Pnl). Coefficients ε0 and µ0 are respectively the vacuum permittivity and
permeability. In that case, vibrations and rotations are neglected (Raman effect), see [18].
∂tJ is modeled by −e2ρE/me, where e is the electron charge, me its mass and ρ the electron
density (see again [10]). So that (2.18) can be rewritten as:

∂2
ttE−c2△E+c2∇(∇·E)=−c2µ0∂2

ttPE,

where

PE = ε0χ(1)E+ε0χ(3)|E|2E+ρE.

That is the modeling for propagation in a nonlinear medium consists of introducing some
real tensors (environmental parameter tensors) (α̃i)i, such that

∂2
ttE−c2△E+c2∇(∇·E)=∂2

ttP̃E, (2.19)
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where

P̃E = α̃1E+ α̃2ρE+ α̃3|E|2E. (2.20)

Usual models do not go further third order nonlinearities due to: difficulty for modeling
high nonlinear coefficients (medium and time dependent), for proving mathematical and
physical properties, and for finding accurate and stable numerical approximations for
systems with high order nonlinearities, etc. Third order models allow for instance to
reproduce the Kerr effect (self-focusing, cubic term). Much more elaborated models can
also be found in [10, 12].

Let us now define the Wave-Schrödinger-Plasma equations (WASP) derived from
(2.1) and (2.2) in c.g.s. as

∂2
ttE−c2△E+c2∇(∇·E)=−4π

(
∂2

ttPE+∂tJ
)
, (2.21)

where PE is computed as in (2.1), (2.2) and with the same geometrical domains. We
assume here that a plasma can be created by free electrons. As is well known the current
created by free electrons at the quantum scale is given by

∫

ωi

ψ∗∇ψ−ψ∇ψ∗.

In other words, plasma effects (due to ionization) are included in the model as long as free
electrons are not absorbed on (∂ωi)i (see Section 2). At the macroscopic scale, the current
density and following the above strategy, is given by

−eN (r′)1Ωi
(r′)

∫

ωi

ψ∗i∇ψ.

In the following, we impose absorbing boundary conditions on ∂ωi for all i∈{1,··· ,m}
supposing that the support of ψi can reach ∂ωi (very intense electric fields, long, or even
intense but low frequency pulses). That is, for ε small enough, we define a regular de-
creasing function fε, from 1 for (R′,r′) such that

d
(
(R′,r′),∂ωi

)
= ε,

to 0 for all (R′,r′)∈∂ωi. We multiply ψi by fε for all (R′,r′) such that

d
(
(R′,r′),ωi

)
6 ε.

Such a function can easily be constructed, see [3]. Because of absorbing boundary condi-
tions ‖ψi(t)‖L2(ωi)

is no more constant in time, see Fig. 2.
We model the evolution of free electrons by the following equation:

∂tρ(r,t)+∇·
(

ρvE

)
(r,t)=−N (r)

m

∑
i=1

χωi
(r)∂t‖ψi(t)‖L2(ωi)

. (2.22)
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δω δω

Absorbed wavefunction

ω
i ii

Non absorbed wavefunction

Figure 2: Free electron absorption for domain ∂ωi and wavefunction ψi: 1d cut.

The source term represents the free electron (unbound) ”production”. Note that when the
molecules are totally ionized in ωi, the r.h.s is zero, meaning that all the electrons are free
(ψi =0). Inversely if the electric field intensity is too low to produce ionization, the time
derivative of ‖ψi(t)‖L2(ωi)

is zero, corresponding also to a zero free electron production
in Ωi. The time process is more generally the following. In ωi, when the electric field is
intense enough then −N (r)∂t‖ψi(t)‖L2(ωi)

free electrons are released from Ωi. Note that
this free electron evolution model is very similar to classical ones such as in [10] or [18],
where however the free electron production is given by a macroscopic term involving
the number of photons in the multi-ionization. The l.h.s. represents the transport of free
electrons driven by the electric field E at a velocity vE whose evolution, as a function of E,
ρ and B is for instance detailed in [12]. In practice, for high frequency fields (respectively
for fields initially polarized transversely to the propagation direction z), we assume

∇(ρvE)∼0.

The equation modeling the current density evolution is (with e = me = 1 in a.u.), after
having neglected the ponderomotive forces

∂tJ+
1

τc
J=

e2

me
ρE, (2.23)

where τc is the collision time (see again [12]). Note that when pulses are short enough
(typically less than 20 f s) in small density plasmas, the collision term can also be neglected
in (2.23).

Remark 2.1. At the discrete level, in order to avoid or to limit spurious numerical reflec-
tions, discrete absorbing boundary conditions are often used for solving time dependent
Schrödinger equations (see [3], for instance).

Due to ionization, the Gauss equation becomes

∇·
(
E(r,t)+4πP(r,t)

)
= e

(
ρI(r,t)−ρ(r,t)

)
,

where ρI is the ion density (if the medium is not neutral) and e = 1. The WASP model
corresponds to Eqs. (2.21)-(2.23).
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Remark 2.2. Following the approach proposed in [1], we present here the semi-discrete
approach for solving (2.21)-(2.23) on a spatial domain Ω, which is supposed to be polyg-
onal, to simplify the notations. We assume that E is constant in space in each mesh cell
Ωh,i, (i=1,··· ,m) and equal to Eh,i(·), where

Ωh =
m⋃

i=1

Ωh,i =Ω (index h refers to discrete version of variables and operators).

We choose Ωh,i = Ωi (with notations of Section 2.1) and we denoted by △h the approxi-
mate Laplace operator and by ∇h the approximate gradient, so that for t∈ [tn,tn+1], we
have

∂2
ttE

(n)
h (t)−c2△hE

(n)
h (t)+c2∇h(∇h ·E(n)

h (t))

=∂2
tt

((
α̃1+ α̃2ρ

(n)
h (t)

)
E

(n)
h (t)+ α̃3|E(n)

h (t)|2E
(n)
h (t)

)
, (2.24)

with ρ
(n)
h discrete free electron density

E
(n)
h : t∈ [tn ,tn+1] 7→E

(n)
h (t)=

m

∑
i=1

1Ωh,i
E

(n)
h,i (t),

E
(n+1)
h =E

(n)
h (tn+1).

The semi-discrete approximation of the WASP model can be expressed as

∂2
ttE

(n)
h (t)−c2△hE

(n)
h (t)+c2∇h

(
∇h ·E(n)

h (t)
)
=−4π

(
∂2

ttP
(n)
h (t)+∂tJ

(n)
h (t)

)
. (2.25)

The polarization is computed from the Schrödinger equations by

P(r,t)=N (r)
m

∑
i=1

Pi(r,t)=N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

ψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dR′dr′, (2.26)

where (ψi)i are computed by using a Crank-Nicolson scheme.

2.2.2 Maxwell-Schrödinger-Plasma model

The WASP model presented above is obviously partially derived from the Maxwell equa-
tions. The general model called the Maxwell-Schrödinger-Plasma is naturally given by:






∂tB(r,t)=−c∇×E(r,t),

∂tE(r,t)= c∇×B(r,t)−4π
(

∂tP(r,t)+J(r,t)
)
,

∇·B(r,t)=0,

∇·(E(r,t)+4πP(r,t)
)
= e(ρI−ρ),
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with






P(r,t)=N (r)
m

∑
i=1

Pi(r,t)=N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

ψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dr′dR′,

i∂tψi(R′,r′,t)=−△r′

2
ψi(R′,r′,t)−△R′

mp
ψi(R′,r′,t)+θ(R′,r′)·Eri

ψi(R′,r′,t)

+
(
Vi(R′)+Vc(R′,r′)

)
ψi(R′,r′,t), ∀i∈{1,··· ,m},

coupled with

∂tρ(r,t)=−N (r)
m

∑
i=1

χωi
(r)∂t

∥∥ψi(t)
∥∥

L2(ωi)
,

∂tJ+
1

τc
J=

e2

me
ρE.

The Maxwell-Schrödinger-Plasma model will be used for our numerical simulations in
order to have as much physical information as possible. However the WASP model also
constitutes a precise and alternative to the Maxwell-Schrödinger-Plasma model.

2.2.3 From WASP to nonlinear wave equation: a conjecture

We want to establish in this section that from the Wave-Schrödinger-Plasma (WASP)
equations (2.21) and (2.22), we could derive some nonlinear wave equations taking into
account high order nonlinearities, harmonics and ionization. Recall that the main ad-
vantage of the WASP model is that environmental parameters are computed using the
quantum Schrödinger equations, which allows to obtain realistic parameters (susceptibil-
ity tensors) particularly hard to determine for ionized gaseous media for instance. From
phenomenological and numerical observations and studies (see [6, 19, 20] for instance)
and also formally proven by perturbation theory in [17], we can state the following fun-
damental result:

Theorem 2.2. Suppose that ψ is a solution of the TDSE (in c.g.s.)

i∂tψ(r′,t)=−△r′

2
ψ(r′,t)+

(
Vc(r′)+r′ ·E(t)

)
ψ(r′,t), (2.27)

where E(t) is given by ∑p E(ωp)e−iωpt. Then there exists a sequence of tensors χ(i) of order i+1,
such that the molecule dipole moment is given by

p(t)=
∫

R3×R+

ψ(R′,r′,t)r′ψ∗(R′,r′,t)dR′dr′

=∑
i

∫
χ(i)(t′1,··· ,t′i)·E(t−t′1)···E(t−t′i)dt′1 ···dt′i, (2.28)
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or denoting x1 = x′, x2 =y′ and x3 = z′, the Fourier transform in time of the dipole moment is

d̂k(ω)=F

(∫

R3×R+

ψ(R′,r′,t)xkψ∗(R′,r′,t)dR′dr′
)

= ∑
α1···αj

∫
···

∫
χ

(i)
xkα1···αj

(−
j

∑
l=1

ωl;ω1,··· ,ωj)Êα1(ω1) ···Êαj
δ(ω−

j

∑
l=1

ωl)dω1 ···dωj. (2.29)

This result is based on the perturbation theory apply to the solution of (2.27). This re-
sult gives (weak electric fields) a decomposition in nonlinearities and harmonics of the
dipole moments, that is on the polarization. The usual assumption consists of neglecting
harmonics and nonlinearities beyond the third one (Kerr effect). For instance as shown
in [18], the classical perturbation theory leads to (for an incoming pulse of frequency ω0)

P(3)(r,t)=C(ω0,k0)
(

3χ(3)
(
−ω0;ω0,−ω0,ω0

)
|E |2Eei(k0z−ω0t)

+χ(3)(−3ω0;ω0,ω0,ω0)(E ·E)Eei(3k0z−3ω0t)
)

,

where E is the envelope of the electric field and C a constant that depends on ω0,µ0,ε0,k0.
Note that

χ(3)
(−3ω0;ω0,ω0,ω0

)
and χ(3)

(−ω0;ω0,−ω0,ω0

)
,

correspond to the relevant components of χ(3). In practice, it is often assumed that the
third order harmonic (last term of the r.h.s.) is negligible because too weak, with a large
phase mismatching. Such an approximate P(3) then leads to the usual cubic nonlinear
Schrödinger equation.

Remark 2.3. As is well-known in centrosymmetric media, even harmonics cancel.

We now state a fundamental conjecture.

Conjecture 1. Theorem (2.2) is still valid for intense and high frequency incoming electric
fields. Moreover, the electric field spectrum possesses a plateau (HOHG) then a cut-off fre-
quency, beyond which the harmonics are negligible.

Of course the perturbation theory is a priori not valid anymore for intense pulses and
the susceptibility tensors from (2.2), which values can be found in [17], are different. One
of the key point is the fact that high order harmonics/nonlinearities should not a priori be
neglected as it is usually done in nonlinear models. Again and as reminded in [17] and
performed by Corkum [7], a free electron motion approach is more appropriate.

Some elements of proofs of Conjecture 1

1. For very intense and high frequency incoming electric fields, we can illustrate
the fact that high order harmonics and nonlinearities should not necessarily be ne-
glected, by using numerical simulations of laser-molecule interactions by time dependent
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Figure 3: High order harmonic generation in the dipole acceleration.

Schrödinger equations (Fig. 3 in the same framework as Conjecture 1). We represent the
dipole acceleration frequencies (F, Fourier transform in time)

â(ω)=F

(∫
|ψ(r′,t)|2(− ∂Vc

∂r′
+E(t)

)
dr′

)
, (2.30)

after a 5-cycle laser pulse interaction with a H+
2 -molecule. Details can be found in [5], for

instance. We clearly identify beyond the incoming laser frequency, a frequency plateau,
then a cut-off.

2. We here precise the above remark. With the same assumptions as above, it has
been conjectured by Corkum in [7] that there exists an integer Nc, such that the cut-off
frequency in (2.30) is located around

Ncω0∼3.17Up+ Ip, (2.31)

where ω0 is the frequency of the incoming pulse, Ip is the ionization potential of the
atom/molecule,

Up =
e2|E0|2
4mω2

0

is the ponderomotive energy of an electron in an oscillatory field

E(t)=E0cos(ω0t)

of maximum intensity eE2
0/8π. This result has been confirmed experimentally, and nu-

merically on quantum Schrödinger equations (see above). We shortly recall here the
principle. Using a classical mechanics 1d model of the electron in a scalar electric field
E(t)=E0cos(ω0t), we have from Newton’s law

{
ÿ(t)=−E(t),

y(t0)=0, ẏ(t0)=0.
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The solution at time t f is naturally given by

y(t f )=
( E0

ω0
sin(φ0)

)φ f −φ0

ω0
+

(
cos(φ f )−cos(φ0)

) E0

ω2
0

,

where φ0 =ω0t0, φ f =ω0t f and with

ÿ(t f )=
E0

ω0

(
sin(φ0)−sin(φ f )

)
.

We denote by t f the time such that

y(t f )=y(t0),

that corresponds to the coming back of the particle to its initial position (leading to re-
combination). We now search for the maximal kinetic energy

E f =
ÿ(t f )

2

2
=

E2
0

2ω2
0

(
sin(φ0)−sin(φ f )

)2
=4Up

(
sin(φ0)−sin(φ f )

)2
.

It can be proven that the maximum admissible maximum is reached for
(

sin(φ0)−
sin(φ f )

)2 ∼ 3.17 (see [6]), to which we add Ip, the ionization potential (tunnel effect).
This leads to the maximal frequency for the electric field

Ncω0∼3.17Up+ Ip .

This is of course an approximate model as it is based on classical mechanics and for which
the electric field propagates in vacuum, but it gives an outstandingly precise description.
In practice, as shown numerically in [5], this limit can be exceeded if the gas is dense
enough, due to spectral broadening (Kerr). Another way to extend this limit is to couple
intense laser pulses (multicolor pulses). However this simple model is not sufficient to
describe more complex situations, see [21]. In 1d, this result leads us to conjecture the
existence of a sequence of real functions (βi)i such that

∫

R

ψ(r′,t)r′ψ∗(r′,t)dr′∼
Nc

∑
k=1

Ei
0βi(t)cos(ω0it),

with
‖βNc+1‖∞ = o(‖βi‖∞)

for all i in [1,Nc ]. The cut-off frequency function only involves high order frequencies
(around Ncω0). Indeed some frequencies (not necessarily all) are excited, between ω0

and Ncω0. By definition of E and 3d extension, this leads us to conjecture the existence of
a sequence of real tensors χi of order i+1 such that (2.28).

3. Some numerical simulations will be presented in the next section, illustrating Con-
jecture 1.

Conjecture 1 leads to the following corollary:
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Corollary 2.1. From system (2.21)-(2.22), we can derive a nonlinear wave equation, with
high order nonlinearities and saturation terms.

Proof. As

P(r,t)=N (r)
m

∑
i=1

χΩi
(r)

∫

R3×R+

ψi(R′,r′,t)r′ψ∗
i (R′,r′,t)dr′dR′ (2.32)

using Theorem 2.2, we can rewrite (2.32)

P(r,t)=N (r)
( m

∑
k=1

(
1Ωk

(r)∑
i

∫
χ

(i)
k (t′1,··· ,t′i)·Ek(t−t′1)···Ek(t−t′i)dt′1 ···dt′i

)
(2.33)

with

∂2
ttE(r,t)−c2△E(r,t)+c2∇

(
∇·E(r,t)

)
=−4π

(
∂2

ttP(r,t)+∂tJ(r,t)
)
.

This is a formal generalization of the nonlinear wave equation model, from which we can
derive nonlinear Schrödinger equations.

2.3 About filamentation

We give here a phenomenological definition of filaments and filamentation. Our moti-
vation is to try to characterize these structures, and study if our model will be able to
predict them. Note that a scale transform (x∗= Lx, t∗=Tt,··· ,) in our model is ultimately
necessary for comparing our simulations with the experiments. This general formalism
that will be useful to guide our numerical simulations and explain the obtained results.

Definition 2.1. [Couairon & Mysyrovicz, 2007] The term filament or filamentation de-
notes a dynamic structure with an intense core, that is able to propagate over extended
distances much larger than the typical diffraction length while keeping a narrow beam
size without the help of any external guiding mechanism.

Note that as precised in [10], a constraint on the intensity can be added: the term
filament describes the part of propagation during which the pulse generates a column of
weakly ionized plasma in its wake. Remark that in [22] are also defined Optical Vortex
Solitons (OVS) and Localized Optical Vortex Solitons (LOVS) as filaments, although they
are defined as zero intensity center solution surrounded by a bright infinite background
and nonzero asymptotes at infinity (LOVS). As is commonly admitted, the two main
ingredients of filamentation are the optical Kerr effect (self-focusing effect) and multi-
photon absorption that limits (saturation) locally the power of the beam (defocusing).
Although these two effects have a crucial role we are overall interested in knowing if
and how, other important effects can be involved in filament creation and propagation.
Giving a mathematical definition of filamentation is very hard, as we have to translate
in a rigorous way these features. An attempt of definition for single filaments is as fol-
lows. Note that this definition is not exhaustive but allows to identify certain structures
as filaments.
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Figure 4: Single filament evolution.

Definition 2.2. (Geometric definition) A solution E of a nonlinear optics model for laser-
gas interaction and propagating along ez is a z-filament (Fig. 4) of diameter δ and length
L if for all ε small enough, it satisfies the following conditions. Denoting by B(0,δ) the
ball of R

2 of center (0,0) and diameter δ, and by τz̃ >0 with z̃∈ [0,L] fixed, the times (not
necessarily unique) such that

max
t∈R+

∫

B(0,δ)
‖E(x,y, z̃,t)‖2dxdy=

∫

B(0,δ)
‖E(x,y, z̃,τz̃)‖2dxdy

with ‖·‖ denoting the L2-norm on R
3:

1. For all z̃∈ [0,L] and t∈V(τz̃) a neighborhood of τz̃, we have

∫

R2−B(0,δ)
‖E(x,y, z̃,t)‖2dxdy

∫

R2
‖E(x,y, z̃,t)‖2dxdy

< ε.

2. L=O(
δ−1

)
.

3. For all z̃ ∈ [0,L] and t ∈ V(τz̃) and there exists η less than δ such that

for all (x,y) in B(0,η),
E(x,y, z̃,t) 6=0.

In practice the filament will be admissible if L is ”large” enough and δ ”small”
enough. Note that 1 corresponds to the condition on the beam size that has to stay nar-
row. Condition 2 ensures us that the beam propagates over a sufficiently large distance
and remains intense. Finally 3 ensures us that the field is not zero in its core. Then we
define multiple filaments as a beam composed of a limited number of filaments.

Definition 2.3. We say that a solution is called K-multiple filament if it possesses K zk-
filaments (Fig. 5) of lengths (Lk)k=1,···,K and diameters (δk)k=1,···,K propagating respec-
tively in the directions z1,··· ,zK in R

3 if for all k∈{1,··· ,K}, each zk-filament is a single
filament of length Lk and diameter δk.
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Figure 5: Evolution of multiple filament envelope.

Again, these general geometric definitions are supposed to describe several kinds of
filament envelopes, usually observed experimentally and numerically, but is not exhaus-
tive. See for instance [10, 12, 14]. Note that these structures are very complex and still
not totally understood, which motivates this work. To our knowledge, there is no rig-
orous general proof of prediction of filamentation for the nonlinear wave or nonlinear
Schrödinger equations, even if some incomplete arguments exist (see for instance [14]
or [23]) or prediction on some very particular cases. However numerical observations
exhibited solutions having a filament-like behavior.

Remark 2.4. From the nonlinear wave equation (2.18), we can derive a nonlinear
Schrödinger equation using the slowly varying envelope approximation (SVEA) in the
paraxial approximation. Suppose that E can be written as

E(r,t)exp
(
i(kz−ωt)

)
ey,

we obtain by slowly envelope approximation on the wave equation (see [23] for instance)
and in the referential z′ = z, t′ = t−z/c with p=(x,y,z′)T

∂z′E(p,t′)− i

2kz
△⊥E(p,t′)=

δn
(|E |2,ρ

)

n0
E(p,t′). (2.34)

The term δn is a nonlinear refraction index taking into account the Kerr and the plasma
effects, and can be modeled using (2.19), (2.20) as ( [10] or [22])

δn
(|E |2,ρ

)

n0
E =−i

k0

2n0ρc
ρE+ik0n2|E |2E , (2.35a)

∂t′ρ=σK|E |2Kρatm, (2.35b)

where K =<Ui/h̄ω0+1> (Ui ionization potential of the medium) is the number of pho-
tons involved in the multiphoton ionization, σK the coefficient of the multiphoton ion-
ization rate, ρatm the neutral atom density (see [10]). Note that without plasma term,
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the existence of solutions in H1 is a particular case of [24]. For E0 in H1 a solution in
C(z0,z f ;H

1) exists for z f infinite or z f finite such that the L2 norm of E tends to infinity
when z tends to z f .

The evolution process of filamentation is roughly the following for NLSs. The Kerr
effect modeled by ik0n2|E |2E has a self-focusing effect (it amplifies the focusing of a
Gaussian beam), so that |E | increases and the gas is partially ionized so that free elec-
tron density ρ increases. When ρ increases the defocusing effect due to −i

(
k0/2n0ρc

)
ρE

makes |E | decrease. Over long distances filaments may be created (if an equilibrium is
reached). In a more formal way the process can be described as follows. We first take
an initial data defined by ρ(·,0)=0 (when initially the gas is not ionized) and the initial
electric field envelope, is the following Gaussian beam (details can for instance be found
in [25])

E0(r⊥,t′,z′ =0)=
√

I0exp
(
−‖r⊥‖2

w2
0

−i
k0‖r⊥‖2

2 f

)
exp

(
− t′2

t2
p

)
, (2.36)

where f is the curvature radius, w0 is the beam waist, tp the pulse duration, and
ρ(r⊥,t′,z′ =0)=0. Starting from

∂z′E =
i

2kz
△⊥E+ik0n2|E |2E−

ik0

2n0ρc
ρE , (2.37)

we multiply this equation by Ē , integrate by parts in dr⊥ =(x,y)T , leading to

∂z′

∫
dr⊥|E |2+2i

∫
dr⊥Im

(Ē∂z′E
)

=− i

k

∫
dr⊥|∇⊥E|2+2ik0n2

∫
dr⊥|E |4−

ik0

n0ρc

∫
dr⊥ρ|E |2.

We now denote by

‖E‖2
⊥ =

∫
dr⊥|E |2.

By taking the real and imaginary parts, we deduce that
∫

dr⊥Ē∂z′E is purely imaginary,

∂z′‖E‖2
⊥ =0, (2.38a)

1

k
‖∇⊥E‖2

⊥−2k0n2‖E‖4
⊥+

k0

n0ρc
‖√ρE‖2

⊥+2
∫

dr⊥Ē∂z′E =0, (2.38b)

∂t′ρ=σK |E |2Kρatm, (2.38c)

with

∂t′ρ=σK|E |2Kρatm.
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We of course recognize the power conservation. We now apply a similar approach mul-
tiplying by ∂z′ Ē integrating by parts and taking the real part. This leads this time to

1

4kz
∂z′‖∇⊥E‖2

⊥−
k0n2

4
∂z′‖E‖4

⊥+
k0

2
n0ρc

∫
dr⊥ρ∂z′ |E |2 =0, (2.39)

that we can rewrite

∂z′‖∇⊥E‖2
⊥−kzk0n2∂z′‖E‖4

⊥+
2kzk0

n0ρc
∂z′

∫
dr⊥ρ|E |2− 2kzk0

n0ρc

∫
dr⊥|E |2∂z′ρ=0,

that is

‖∇⊥E‖2
⊥−kzk0n2‖E‖4

⊥+
2kzk0

n0ρc
‖√ρE‖2

⊥−
2kzk0

n0ρc

∫
dr|E |2∂z′ρ=constant.

For all r and t these equalities are satisfied by the model ensuring an equilibrium be-
tween Kerr, diffusion and plasma effects. We note that ‖∇⊥E‖2

⊥ increases with ‖E‖4
⊥

corresponding to a focusing when the laser intensity increases, and decreases because of
the plasma term when the ionization increases.

Remark 2.5. Note that working in polar coordinates, Skarka et al. [26] have been able
to identify filaments (more precisely OVS and LOVS that have been described in the
introduction) writing E(x,y,z,t) in cylinder coordinates as A(r)exp(imθ+iβz), so that

A
′′
(r)+

1

r
A′(r)−

(m2

r2
+2βkz

)
A(r)=2ikzSA.

The laser beam power is given by

P =2π
∫

A(r)2dr.

SA can be naturally be expressed as a power sum of A. The solution is dependent of m
that corresponds to the eigenmode.

More generally, many numerical simulations using model (2.34), (2.35) have exhibited
filaments. See again [10] or [12] for a full bibliography on these simulations.

As proving analytically that the WASP or Maxwell-Schrödinger models can exhibit
filament-like structure is very challenging (due to the complexity of the mathematical
equations), we propose a numerical study of the model (Maxwell-Schrödinger) for the
propagation of intense, short and high frequency Gaussian-like beam propagation in a
gas.
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3 Numerical simulations

We perform some numerical simulations of intense, ultrashort and high frequency elec-
tromagnetic fields propagating in a dense H+

2 -gas. In the following simulations, we will
work under the Born-Oppenheimer approximation. We then fix the internuclear distance
that we will denote by R (that is R′= R=constant). The chosen incoming field is a Gaus-
sian beam (3.1), that has the property to focus on a very short distance (focusing and
defocusing). The interest of such a pulse is that it will allow us to compare efficiently
the pulse thickness and intensity in gas and in vacuum. Moreover this is typically the
kind of pulses that is experimentally used in laboratory. The equations that are solved
are (2.4a), that is the global Maxwell-Schrödinger model, where the plasma equation is
not included. As discussed above this model is still relevant when the pulse time dura-
tion is small enough (as plasma effects are included). Indeed molecule wavefunction is
mainly not absorbed at the TDSE computational domain boundaries, so that ”free elec-
trons” (or electron far enough from the nuclei) are almost totally treated by the TDSEs.
For longer pulses the plasma equation should be added and numerical simulations will
be presented in a forthcoming paper. We suppose that 5 initial components are non-zero
(E0,B0),






Ex =iE0ε2
4Q2xy

w2
0

ψ0ei(ωt0−kz),

Ey =−iE0ψ0

(
1−2Qε2

(
i+

2Qy2

w2
0

))
ei(ωt0−kz),

Ez =iE0

(
ε

2Qy

w0
ψ0−

1

k2

∂2ψ0

∂z∂y

)
ei(ωt0−kz),

Bx =iE0

(
ψ0−

1

k

∂ψ0

∂z

)
ei(ωt0−kz),

By =0,

Bz =−iE0ε
2Qx

w0
ψ0ei(ωt0−kz),

(3.1)

where w0 is the beam waist, and zR = kw2
0/2 the Rayleigh range. Moreover

ψ0(r,z)=
w0

w
exp

(
− r2

w2

)
exp

(
i

(
φR−

r2z

w2zR

))
, w=w0

√
1+z/zR ,

Q=
1

z/zR +i
, φR = tan−1

( z

zR

)
, ε=

1

kw0
.

More precisely our initial data is the real part of E0 and B0 defined above. We will see in
the following simulations, that as expected the focus is obtained on very short distances:
zR 65µm (in fact, even with Ex = Ez = Bz =0 at t = t0 =0). The other physical data are as
follows:

• the laser pulse possesses 5−6 cycles;

• the propagation length in the gas is ∼10µm;
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• the total length of the domain in z is ∼25µm;

• the transverse window size is ∼10µm×10µm.

The numerical approach is the one presented in [2], where the gas domain is divided
in small cells of gas denoted by ∆v (corresponding the Ωi’s of Section 2) and in which we
solve 1 TDSE, representing the Nvol(∆v) molecules of the cell. In practice, 3d Maxwell’s
equations are solved in parallel with ∼ 140,000 1d TDSEs, see Fig. 6 and [27]. Solving
1d TDSEs do not allow us to capture all the laser-molecule interactions but allows us
to consider ”large” gas domains. The orientation of the molecule has been chosen in
order to produce the highest harmonics and nonlinearities (see [28]). We can justify this
uniform orientation by the common process in experimental physics, consisting of using
a pumping laser pulse that polarizes all the molecules in the same direction before the
interaction with the probe-pulse. However, random orientation x, y, z, can easily be
implemented within the numerical code. More complex interactions would necessitate
the use of 2d or 3d Schrödinger equations (also simple to implement, but then would
lead to a much higher computational time).

z

x

y
Gas divided in small volumes

x

y

z

H2+

ZOOM

Incoming laser pulse

|ψ|2

ndv molecules

Figure 6: Computational geometry.

We represent at different times (tk)k, the transverse cut of the pulse at (zk)k such that
|Ey(0,0,z,tk)| is maximal at zk on (Oz). In other words,

• at tk fixed, and we denote

|Ey|∞ =max
z

|Ey(0,0,z,tk)|

the maximal value on the (Oz) axis, reached at zk;

• we represent Ey(x,0,zk,tk)|/|Ey|∞ to have normalized graphs, in order to compare
with the propagation in vacuum.
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Figure 7: Pulse thickness during propagation 3.2µm, 1µm before the waist, and Imax∼6×1014W·cm−2.
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Figure 8: Pulse thickness during propagation 1.5µm, 4µm after the waist, and Imax∼6×1014W·cm−2.
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Figure 9: Comparison of maximal intensity for Imax =6×1014W·cm−2, N =3×1020mol·cm−3 as a function of
propagation length.

With the following data: Imax∼6×1014W·cm−2, N ∼3×1020mol·cm−3 and with w0∼
1.5λ0 (where λ0 is the incoming pulse wavelength), we obtain the following transverse
cuts on Figs. 7-9 that clearly make appear an amplification of the laser pulse focusing
compared to vacuum and an increasing of the intensity, which corresponds exactly to the
Kerr effect (self-focusing).
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Figure 10: Pulse thickness during propagation 6µm, 2.8µm before the waist, and Imax∼2×1016W·cm−2.
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Figure 11: Pulse thickness during propagation 0.5µm, 4.5µm after the waist, and Imax∼2×1016W·cm−2.
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Figure 12: Pulse thickness during propagation 7µm after the waist, and Imax ∼2×1016W·cm−2.

As expected, if we increase the intensity (Imax ∼ 2×1016W·cm−2) of the pulse, the
focusing is also amplified in the medium (N ∼ 3×1020mol·cm−3), see Figs. 10-12. We
note in particular, that after the waist the pulse remains narrow, which is a feature of
filaments.

The maximal intensity is ∼2.5 times greater than in vacuum for the same propagation
length and note that the ratio increases with the molecular density. We however suspect
this ratio to be under-estimated by the model.
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Figure 13: Electric field harmonics as a function of ω/ω0 for R=2.a.u, R=3.2a.u.
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Figure 14: Electric field transverse cut in the waist for R=2.a.u, R=3.2a.u., for Imax =6×1014W·cm−2.

Remark 3.1. In Fig. 14, we compare the electric field harmonics in the waist region for
Imax =6×1014W ·cm−2, and the 5-cycle pulse, for two different internuclear distances R=
2.a.u and R = 3.2a.u. As expected, the third harmonic (χ(3)) is more intense than the
seventh one (χ(7)) for R = 3.2a.u (due to 3-photon resonance, [28] for instance), Fig. 13.
However and as observed in Fig. 14, the pulse width seems to be weakly dependent on
R (for the chosen set of physical data).

These numerical results make appear structures that could be identified as filaments
as the pulse thickness keeps a narrowness after the waist. Note again that due to the
fact that the considered pulses are very short it was not necessary to include the plasma
equation in the simulations (free electrons are mainly included in the TDSEs). Moreover
it was confirmed numerically that the transmitted electric field possesses high order har-
monics (Fig. 13) and nonlinearities, in particular the third order one (Kerr effect). A study
of high harmonic effects is in progress as well as more complete tests. Numerical simula-
tions with inclusion of the plasma equation in the model have been performed and show
clearly filament-like behaviors, in particular the defocusing effect of the plasma of free
electrons. These results will be presented in a forthcoming paper.
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4 Conclusions

In this paper, we have first proven the existence and uniqueness of weak solutions for the
Maxwell-Schrödinger model presented in [2] and describing intense and short laser-gas
interaction and propagation. Using classical functional analysis tools, we have in par-
ticular proven the conservation in time of the initial data regularity. It was remarked in
this paper, that the Maxwell-Schrödinger model is no more appropriate for long (>20 f s)
and intense pulses, as free electron effects are then badly described. We then have added
to the model a plasma equation based on the density of free electrons absorbed at the
boundary of the TDSE computational domains. Such an equation allows in particular to
precisely (as it is an ab initio free electron description) include plasma defocusing effects,
experimentally observed. Some elements for deriving a nonlinear wave equation from
the WASP model has also been discussed allowing a purely macroscopic (then much less
computational costly) description of the gas response. Finally some high performance
computations have been performed in order to validate the model. In particular the
performed simulations have brought to light the first observation (to our knowledge)
of a self-focusing effect (due to the 3rd nonlinearity at least, Kerr), with an ab initio gas
description. Moreover it has been observed that during the propagation, the pulse thick-
ness remains relatively narrow compared to vacuum as expected for filamentation. A
complete comparison of the pulse thickness depending of the internuclear distance is
still to be performed even if some preliminary observations have been provided in this
paper. Additional tests are currently performed to confirm these effects on longer pulses
where much denser plasmas of free electrons will be considered. These results will be
presented in a forthcoming paper. In order to link our study to existing works on fila-
mentation, a scale transformation (x∗ = Lx, t∗ = Tt, ···,) has to be performed (work in
progress) to consider large domains (more than 1 meter). Several interesting questions
regarding the WASP model are still open such as, in particular, a rigorous proof that it
can analytically predict filament-like structures.
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