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Abstract. A numerical procedure for the evaluation of equivalent permeability tensor
for fractured vuggy porous media is presented. At first we proposed a new conceptual
model, i.e., discrete fracture-vug network model, to model the realistic fluid flow in
fractured vuggy porous medium on fine scale. This new model consists of three sys-
tems: rock matrix system, fractures system, and vugs system. The fractures and vugs
are embedded in porous rock, and the isolated vugs could be connected via discrete
fracture network. The flow in porous rock and fractures follows Darcy’s law, and the
vugs system is free fluid region. Based on two-scale homogenization theory, we ob-
tained an equivalent macroscopic Darcy’s law on coarse scale from fine-scale discrete
fracture-vug network model. A finite element numerical formulation for homogeniza-
tion equations is developed. The method is verified through application to a periodic
model problem and then is applied to the calculation of equivalent permeability tensor
of porous media with complex fracture-vug networks. The applicability and validity
of the method for these more general fractured vuggy systems are assessed through a
simple test of the coarse-scale model.

AMS subject classifications: 35B27, 35Q30, 76S05
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1 Introduction

Evaluation of the equivalent permeability of fractured vuggy porous media has a great
interest in petroleum and geotechnical engineering. Such porous media, which are very
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Figure 1: Typical outcrop of fractured vuggy porous media: (a) limestone; (b) dolostone; (c) carbonate rock.

common in the earth’s crust especially in carbonate rocks (cf. Fig. 1), contain not only
matrix and fractures but also the vugs that are irregular in shape and vary in size from
centimeters to meters in diameter [1,2]. The presence of vugs which are connected via dis-
crete fracture networks can significantly increase both the porosity and the permeability
of the porous media [3, 4]. Although there are reliable methods to estimate porosity and
fluid saturation, reliable permeability estimation is difficult for fractured vuggy porous
media due to the presence of fractures and vugs at multiple scales. These types of multi-
scale rock fabric are difficult to study mainly because they are on a scale that is too large
to quantify using thin sections, and frequently on a scale that is too large to quantify ade-
quately using core samples which are only a few centimeters in diameter [5]. Therefore, it
is not realistic to predict the effective permeability of these rock fabrics on the field scale
using experimental methods.

As an alternative method, numerical upscaling calculation based on accurate geo-
logic models has received much attention recently. While using numerical upscaling cal-
culation methods to evaluate the permeability of porous materials, two important steps
should be mentioned. Modeling the fluid flow through fractured vuggy porous media
on fine scale is the first step on which the main difficulty is the co-existence of porous
flow and free-flow regions. And then, how to incorporate this fine scale data into coarse
scale flow properties is the key step. Neal et al. [6] are the pioneers of the related re-
search; they studied the impact of spherical vugs on the permeability in homogeneous
isotropic porous media. In their study, creeping Navier-Stokes equation was employed
in the spherical cavity, and the Darcy equation was used to describe the flow in porous
medium. Applying the formula for the pressure field near a single spherical cavity, they
developed an analytical formula for permeability of a vuggy porous medium.

Recently, Arbogast et al. [3, 7, 8] modeled the vuggy porous medium on the fine scale
using Stokes equations in the vugs, Darcy’s law in the porous rock, and the Beavers-
Joseph-Saffman boundary condition on the interface between the two regions. By using
the tools from homogenization theory, they obtained a macroscopic Darcy’s law govern-
ing the medium on coarse scale. In order to evaluate the effective coarse scale permeabil-
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ity, a mixed finite element formulation with a single set of basis functions that applied for
the entire Darcy-Stokes system on fine scale has been developed.

Another similar upscaling approach was recently presented by Popov et al. [9–11].
The Stokes-Brinkman equations, rather than the Darcy-Stokes equations, were used on
the fine scale to compute upscaled effective permeability of fractured karst carbonate
reservoirs based on homogenization theory. The Stokes-Brinkman equations can be re-
duced to either the Stokes or the Darcy equations by appropriate choice of parameters
and avoid the explicit formulation of the boundary conditions at the fluid/porous inter-
faces. In their study, the fractures were treated as free-flow regions as same as vugs. This
approach provided an accurate model. But it was not practical due to a large number
of grids required because of two different length scales (matrix/vug size and fracture
thickness).

Above discussion shows that the main difficulty of numerical upscaling calculation of
equivalent permeability for fractured vuggy porous medium exists in the first step, i.e.,
how to model the fluid flow in fractured vuggy porous media efficiently. The objectives
of this study are (1) to propose a new conceptual model to model the fluid flow in frac-
tured vuggy porous media efficiently on fine scale; (2) to develop a theoretical upscaling
method to estimate the equivalent permeability of fractured vuggy porous medium from
the fine scale to the coarse scale.

Towards these goals, we firstly consider the fractured vuggy rock as a composite
porous medium, consisting of fractures system, matrix system, and vugs system. The
flow in matrix and fractures systems follows Darcy law, and the vugs system is consid-
ered as free-flow region in which Stokes equations are considered. With these assump-
tions, in Section 2 we derive a new conceptual model namely discrete fracture-vug net-
work (DFVN) model and its mathematical formulation, which is an extension of classic
discrete fracture model of fractured porous media. In Section 3.1, via a two-scale homog-
enization limit as period tends to zero, we obtain an equivalent macroscopic Darcy’s law
governing the medium on coarse scale. A mixed finite element numerical formulation for
homogenization equations is developed in Section 3.2. Finally, the equivalent permeabil-
ity of some fractured vuggy porous media with typical rock fabrics has been analyzed in
Section 4. At the end, the applicability and validity of the method for these more general
fractured vuggy systems are assessed through a simple test of the coarse-scale model.

2 Discrete fracture-vug network model on fine scale

As observed in carbonate formation, three porosity types (matrix, fractures, and vugs)
are typically presented in naturally fractured vuggy porous media. These fractures and
vugs distribute irregularly and vary in size, from microscopic to macroscopic. Several
continuum conceptual models are proposed to study the flow behavior through such
media in [12–14]. In the DFVN conceptual model, the fractures and vugs are embed-
ded in porous rock, and the isolated vugs are connected via discrete fracture networks
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Figure 2: Conceptualization of fractured vuggy porous medium as a DFVN model, with fractures system, vugs
system and porous rock matrix system.

(cf. Fig. 2). Furthermore, we conceptualize fractured vuggy porous media as compos-
ite porous materials, consisting of (1) fractures system, (2) matrix system, and (3) vugs
system. The flow in matrix and fractures follows Darcy law, and the vugs are free-flow
region. In this paper, we consider the fluid flow is isothermal, single phase, and in-
compressible with constant fluid viscosity, and all rock properties, e.g. permeability and
initial porosity, are constant.

2.1 Free-flow region

Considering the creeping flow of an incompressible Newtonian fluid in the vugs, the
Stokes equation, used to describe the free-flow, has the form

▽·u=0, (2.1)

−µ▽
2u+▽ps =ρ f , (2.2)

where u is fluid velocity (m/s), ▽ is gradient operator, µ is fluid viscosity (Pa·s), ps is
pressure in free-flow region (Pa), ρ is density (kg/m3), f is body force per unit mass
(m/s2). The first expression is the mass continuity equations, and the second is the bal-
ance of momentum. Also, recall the incompressible Newtonian fluid stress tensor which
is given by the formula

σ =−ps I+2µS(u), (2.3)

where I is unit tensor, and S(u) is strain rate

S(u)=
1

2
(▽u+u▽). (2.4)
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The boundary conditions for Eqs. (2.1) and (2.2) can be classified into two types:
Dirichlet (velocity) and Neumann (traction) conditions [15–17] as follows

u=u
D

, on Γ
D

, (2.5)

n·σ = t
N

, on Γ
N

, (2.6)

where uD is the specific velocity on Dirichlet boundary ΓD , n is the outward unit normal
vector of boundary, tN is the specific traction. No-slip boundary conditions are specified
on the impermeable wall of the open fluid domain. Traction-free boundary conditions
are imposed on the outlet surface. The conditions at the interface between the free-flow
region and porous medium need to be handled carefully; details of such interfacial con-
ditions will be presented in Section 2.3.

2.2 Porous flow region

For the matrix system, which is a typical porous flow region, one has the classical Darcy
law, along with conservation of mass

▽·v=0, (2.7)

µ(K)−1v+▽pd =ρ f , (2.8)

where v is Darcy velocity i.e. the volume average velocity (m/s), K is the permeability
tensor (m2), and pd is the pore average pressure (Pa).

In the former study [9–11], the fractures were explicitly treated as free-flow regions as
same as vugs. This approach provided an accurate model, but it was not practical due to
a large number of grids required because of two different length scales (matrix/vugs’ size
and fractures’ aperture). In fact, the fluid flow model in the fracture could be simplified
to a parallel plate laminar flow model with non-slip boundary condition. And then it
could be described as the form of Darcy formula with the equivalent flow rate i.e. cubic
law [18]. So the fractures system could be considered as porous flow region like rock
matrix; and the Eqs. (2.7) and (2.8) could be written separately for the porous matrix and
the fractures.

Based on this equivalent concept, all variables remain constant in the lateral direction
(along aperture); and the fluid flow along aperture direction is neglected. So the frac-
tures are geometrically simplified by using (d-1)-dimensional entities in a d-dimensional
domain. In other words, in 2D space, the fractures are represented by the linear enti-
ties, which are 1D (cf. Fig. 3) [19–21]. To examine this idea, we consider a portion of a
porous medium that includes one fracture (cf. Fig. 3). The whole porous flow region is
represented by Ωd, which includes the porous rock matrix Ωm and the macro fractures
Ωf. Let CEQ represent the flow control equations Eqs. (2.7) and (2.8). According to Fig. 3,
the integral form of these equations for the original model (single-porosity model) can be
written as

∫

Ωd

CEQ dΩ=
∫

Ωm

CEQ dΩm+
∫

Ωf

CEQ dΩf. (2.9)
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Figure 3: Schematic representation of discrete fracture approximation.

The same integral form for the discrete fracture model is written as

∫

Ωd

CEQ dΩ=
∫

Ωm

CEQ dΩm+e×
∫

Ωf

CEQ dΩf, (2.10)

where e is the fracture aperture (or thickness).

This simplification removes the length-scale contrast caused by the explicit represen-
tation of the fracture aperture as in Popov’s study. As a result, computational efficiency
is improved considerably. The boundary conditions for equations Eq. (2.7) and Eq. (2.8)
can also be classified into two types: Dirichlet (pressure) and Neumann (fluid flux) con-
ditions, expressed as

p
d
= p

D
, on Γ

D
, (2.11)

n·K

µ
(▽pd−ρ f )=qN , on ΓN , (2.12)

where p
d

is the specific pressure on Dirichlet boundary ΓD , qN is a specific value or ex-
pression of the inward Darcy flux (m/s) on Neumann boundary ΓN .
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2.3 Interfacial boundary conditions

The problem then remains in defining relevant boundary conditions at the interface be-
tween the two regions. It is clear that the mass and momentum must be balanced across
the interface between the free flow region and porous medium. Continuity of normal
stress tensor and normal velocity (i.e. mass conservation) are robust and generally ac-
cepted boundary conditions expressed as

u·n=v·n, on Σ, (2.13)

n·(−σ ·n)=n·(pd I ·n), on Σ. (2.14)

Then, the natural choices regarding the tangential velocity component would be either
that it vanishes on low permeable porous wall or that it is continuous for large permeabil-
ity. However, both turn out to be inaccurate, as shown for instance by the experiments of
Beavers et al. [22, 23]. They proposed a discontinuity condition in the interfacial tangen-
tial velocity, which is proportional to the shear rate of the free fluid, i.e.,

us−vd =

√
K

α

∂us

∂y
, on Σ, (2.15)

where y is the direction perpendicular to the interface, us is the stokes velocity calcu-
lated in free-flow region, vd is Darcy velocity calculated in porous medium and K is the
permeability. The dimensionless slip coefficient α characterizes the structure of the per-
meable material near its interface with the free flow region. Saffman [24] justified this
law theoretically, and showed that the term involving vd could be dropped. Jones [25]
reinterpreted this law so that it applied to curved boundaries and non-tangential flows
by formulating the boundary condition in terms of the tangential component of the fluid
stress tensor as follows

u·τ =

√
τ ·K ·τ

µα
(−σ ·n)·τ, on Σ, (2.16)

where τ is the unit tangential vector of boundary. For Newtonian fluid, the interfacial
boundary conditions Eq. (2.14) and Eq. (2.16) can be simplified to

2µn·S(u)·n= ps−pd, on Σ, (2.17)

u·τ =−2

√
τ ·K ·τ

α
n·S(u)·τ, on Σ. (2.18)

Here the expression (2.17), namely so-called Beavers-Joseph-Saffman (BJS) condition, is
supported by other independent work [26–28]. And the suggested values range of α is
between 0.01 and 4.
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3 Upscaling and numerical implementation

3.1 Upscaling based on homogenization

In this section, we consider the upscaling of the DFVN model from the fine scale to the
coarse scale based on homogenization theory. The main idea of homogenization theory
is to replace a real heterogeneous structure with effective or equivalent properties which
has the same average macroscopic behavior [29]. The short summary presented next is
based on two-scale asymptotic expansion (cf., e.g., [30–33]).

For ease of presentation we assume that the overall domain Ω is Lipchitz and bounded
in R

2. And the geometric domain Ω is periodic of period εY , where Y is a base cell for
the periodic tilling of unit volume |Y |. Let Ωε

s be the free-flow region, Ωε
d the porous flow

region and Σε the interface between two. Let ns be the outer unit normal vector to Σε,
and τs be a unit tangent to Σε. The DFVN model on fine scale satisfies the following set
of equations.

Free-flow region (Stokes equation)

−µε2
▽

2uε+▽pε
s =ρ f , in Ωε

s, (3.1)

▽·uε =0, in Ωε
s. (3.2)

Porous flow region (Darcy equation)

µK−1vε+▽pε
d =ρ f , in Ωε

d, (3.3)

▽·vε =0, in Ωε
d. (3.4)

Interfacial boundary conditions

uε ·ns =vε ·ns, on Σε, (3.5)

2µε2ns ·S(uε)·ns = pε
s−pε

d, on Σε, (3.6)

uε ·τs =−2
ε
√

τs ·K ·τs

α
ns ·S(uε)·τs, on Σε. (3.7)

Outer boundary conditions

uε =0, on ∂Ω∩∂Ωε
s, (3.8)

vε ·n=0, on ∂Ω∩∂Ωε
d. (3.9)

The homogenization problem is to determine the behavior of the system as ε→0. In
order to ensure the existence of limitation of pressure and velocity as ε→0, in the equa-
tions we have scaled both the viscosity µ and the permeability tensor K by ε2 [3,30]. And
the permeability of porous medium is also required to multiply a similar scaling factor.
These considerations then are imposed to the interfacial boundary conditions Eqs. (3.6)
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and (3.7). We assume that there is a Representative Element of Volume (REV) which fea-
tures both porous and fluid domains. As ansatz, a formal asymptotic expansion of the
type

uε(x)=
∞

∑
i=0

εiui(x,y)=u0(x,y)+ε1u1(x,y)+ε2u2(x,y)+··· , (3.10)

vε(x)=
∞

∑
i=0

εivi(x,y)=v0(x,y)+ε1v1(x,y)+ε2v2(x,y)+··· , (3.11)

pε
s(x)=

∞

∑
i=0

εi pi
s(x,y)= p0

s(x,y)+ε1 p1
s(x,y)+ε2 p2

s(x,y)+··· , (3.12)

pε
d(x)=

∞

∑
i=0

εi pi
d(x,y)= p0

d(x,y)+ε1p1
d(x,y)+ε2p2

d(x,y)+··· (3.13)

is substituted in Eqs. (3.1)-(3.9). Firstly one obtains that the first term in the pressure
expansions does not depend on the fine-scale variable y, that is

p0(x)= p0
s(x)= p0

d(x), on Ω. (3.14)

Next, one obtains a set of cell problems that are used to compute the equivalent (or
upscaled) permeability of the REV. Let d be the dimension (2 or 3) and ej be a unit vector
in the j-th direction. And then the d cell problems can be obtained, i.e.

−▽
2
yw

j
s+▽yπ

j
s = ej, in Ys, (3.15)

▽y ·wj
s =0, in Ys, (3.16)

K−1w
j
d+▽yπ

j
d = ej, in Yd, (3.17)

▽y ·wj
d =0, in Yd, (3.18)

w
j
s ·ns =w

j
d ·ns, on Σ, (3.19)

2ns ·S
(

w
j
s

)

·ns =π
j
s−π

j
d, on Σ, (3.20)

w
j
s ·τs =−2

√
τs ·K ·τs

α
ns ·S(w

j
s)·τs, on Σ, (3.21)

where w
j
l and π

j
l (l = s,d) are the Y-periodic vector fields. The macroscopic equivalent

permeability κ is then computed by averaging the fine-scale velocities

κ=
1

|Y |

(

∫

Ys

w
j
sdy+

∫

Yd

w
j
ddy

)

, (3.22)

and its components are given as

κij =
1

|Y |

(

∫

Ys

(

w
j
s

)

i
dy+

∫

Yd

(

w
j
d

)

i
dy

)

,
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where
∫

Yd

(

w
j
d

)

i
dy=

∫

Ym

(

w
j
m

)

i
dy+e×

∫

Yf

(

w
j
f

)

i
dy, m=matrix, f=fracture.

The macroscopic equivalent flux is given by the Darcy’s law on coarse scale as ε→0

µ(κ)−1u+▽p0 =ρ f (3.23)

and subject to conservation of mass
▽·u=0. (3.24)

Note that wj, j =1,··· ,d (d=2 or 3) in Eqs. (3.15)-(3.18) are the fine-scale velocities in
the base cell, that is Y , and are subject to unit forcing in the respective direction. Since ej

can also be transferred to the pressure term, as follows

▽y

(

π
j
l−yj

)

=▽yπ
j
l−ej. (3.25)

One can consider the velocity wj as the results over a unit pressure drop in the j-th co-
ordinate in base cell along with periodic boundary conditions. Above procedure is very
similar to the one employed for upscaling the Stokes-Darcy equations in a vuggy porous
media. The reader is thus referred to [3, 11] for technical details.

3.2 Numerical implementation

There exist a number of studies which aim at developing efficient methods for Darcy-
Stokes problem and Darcy-Brinkman problem [7,8,34–37]. In this paper, we use a mixed
finite element method in the porous flow and free-flow domains and special transition
elements near the interface to allow for tangential discontinuities. A multigrid method
has been designed to solve the resulting saddle point linear system. For more details on
these types of numerical scheme, the reader is referred to [7, 8].

The treatment with fractures is the key point in DFVN model. Let’s recall the Fig. 2,
the DFVN model could be decomposed into two parts (the free-flow region and the
porous flow region). In our study, the porous flow region is described as a discrete
fracture model, in which the fluid flow in fractures is demonstrated as a narrow high-
permeable (d−1)-dimensional region based on equivalent concept (cf. Section 2.2). First
the geometry is discretized using triangular elements for the matrix and line elements for
the fractures in 2D problem (cf. Fig. 4). In the numerical implementation proceeding for
porous flow region, the superposition principle has been used to couple the rock matrix
and fractures (for details, cf. Fig. 5).

4 Examples and discussion

In this section, we consider the solution of the homogenized cell problem (3.15)-(3.21),
and in particular the equivalent permeability that results from the formula (3.22). At
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Figure 4: Schematic of matrix and fracture elements.
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Figure 5: Schematic of FEM implementation for matrix and fracture elements.

first, a simple layered medium was conducted in Section 4.1. Analytical solutions based
on the BJS interfacial conditions are derived, which are used to estimate the accuracy of
our numerical calculation. Next the equivalent permeability for a porous medium with
a single vug has been discussed. In Section 4.2, the impacts of the vug size, shape, and
location on the equivalent permeability also have been investigated. In Section 4.3, we
calculated the equivalent permeability for the porous medium with different fracture-
vug networks. At last the applicability of the method to the scale up of more general
system was assessed.

4.1 A layered porous medium

We begin with a study of a layered medium, which has a square base cell Y=(−L/2,L/2)
×(−L/2,L/2) with Ys=(−L/2,L/2)×(−b/2,b/2) and Yd=Y−Ys, as illustrated in Fig. 6.
The base case of our studies in this part is an 8 cm × 8 cm (L = 8 cm) sample with slip
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Figure 6: A layered porous medium.

coefficient α = 1.0, homogeneous isotropic rock matrix’s permeability Km = 10 mD, and
vugs with b = 1cm. Since this problem can be solved analytically (see Appendix), this
example can be viewed more as an estimation of the accuracy of our numerical solution.
The analytical equivalent permeability is expressed as

κ=

[

κ11 0
0 κ22

]

,

where

κ11 =
1

L

(

1

12
b3+

√
K

2α
b2+K(L−b)

)

, κ22 =
L

L−b
K.

At first, the impact of BJS slip coefficient α on the equivalent permeability calcula-
tion of the layered medium is tabulated in Table 1. A good match with analytical and
numerical solutions has been achieved, which verifies the accuracy of the finite element
numerical scheme of this study. The results show that the κ22 permeability is not affected
by the slip coefficient α because the tangential flow does not exist in this direction. As
discussion in Section 2.3, the dimensionless slip coefficient α characterizes the structure
of the permeable material near its interface with the free flow region, and must therefore
be determined for each particular system in principle. However, the slip coefficient α has
small influence on the equivalent permeability if the matrix permeability Km ≤ 105 mD
(detailed analysis see Appendix).

Next, results of varying the rock matrix permeability Km are given in Table 2. The
results show again the excellent agreement between analytical and our numerical solu-
tions. And then a more interesting experiment is designed to vary the vug aperture b.
Results are shown in Table 3. It can be seen that permeability component κ11 is much
larger than the rock permeability with the increase of vug aperture. Large aperture vugs
usually result in κ11 of a million to a billion times greater than that of the rock matrix
permeability. However, the influence of vug aperture on κ22 is relatively small. When the
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Table 1: Impact of different Beavers-Joseph-Saffman slip coefficient α on the equivalent permeability of the
layered medium.

κ11 (mD) κ22 (mD)
α analytical this work analytical this work

0.01 1.0479167E+09 1.0479170E+09 11.4285714 11.42857
0.1 1.0422917E+09 1.0422920E+09 11.4285714 11.42857
1 1.0417292E+09 1.0417290E+09 11.4285714 11.42857

10 1.0416729E+09 1.0416730E+09 11.4285714 11.42857
100 1.0416673E+09 1.0416670E+09 11.4285714 11.42857

Table 2: Effect of varying the rock matrix permeability Km for the layered medium.

κ11 (mD) κ22 (mD)
Km (mD) analytical this work analytical this work

1 1.041686E+09 1.041687E+09 1.142857143 1.142857
10 1.041729E+09 1.041729E+09 11.42857143 11.42857

100 1.041864E+09 1.041865E+09 114.2857143 114.2857
1000 1.042293E+09 1.042293E+09 1142.857143 1142.857

Table 3: Effect of varying the vug aperture b for the layered medium.

κ11 (mD) κ22 (mD)
b/L analytical numerical analytical numerical

0.001 547.32333 547.31990 10.01001 10.01001
0.01 5.3374323E+05 5.3374320E+05 10.10101 10.10101
0.05 6.6676676E+07 6.6676680E+07 10.52632 10.52632

0.125 1.0417292E+09 1.0417290E+09 11.42857 11.42857
0.5 6.6667667E+10 6.6667900E+10 20.00000 19.99999
0.9 3.8880324E+11 3.8880810E+11 100.0000 99.99986
1 5.3333333E+11 5.3334570E+11 5.333333E+11 5.333457E+11

aperture of vug tends to zero, namely the vug disappears, κ11 and κ22 achieve the mini-
mum that are equal to rock permeability Km. As the ratio b/L approaches 1, i.e., the vug
is full of the overall base cell, then κ11 and κ22 achieve the maximum with 5.3334×1011

mD.

4.2 Porous medium with a single vug

4.2.1 Medium with a circular vug

Fig. 7 depicts a homogeneous and isotropic porous medium with a circular vug. The
dimensions of base cell is Y = (−L/2,L/2)×(−L/2,L/2), where Ys represents vug, Yd

represents porous medium. L is the length of base cell; r is the radius of circular vug. The
matrix permeability Km = 10 mD, and L = 1 m. In this case, the equivalent permeability
is diagonal due to the symmetric structure, with κ11 =κ22. Results of different vug radius
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Figure 7: Porous medium with a circular vug.

Table 4: The equivalent permeability of base cell with different vug radius.

κ11 =κ22 (mD)
2r/L α =0.1 α =1.0 α =10.0
0.02 1.000628E+01 1.000627E+01 1.000627E+01
0.1 1.015803E+01 1.015807E+01 1.015803E+01
0.2 1.064756E+01 1.064751E+01 1.064774E+01
0.4 1.287336E+01 1.287336E+01 1.287336E+01
0.6 1.790391E+01 1.790382E+01 1.790388E+01
0.8 3.104431E+01 3.104436E+01 3.104398E+01

0.98 1.374829E+02 1.374829E+02 1.374823E+02
1 7.024635E+07 7.018975E+07 7.018408E+07

and slip coefficients are shown in Table 4. It is clear that, with the increase of vug radius,
the equivalent permeability increases, but has the same order of magnitude of matrix
permeability. When the vug diameter 2r approaches to the length of base cell L, the
equivalent permeability increases rapidly and improves 6 orders of magnitude of Km. It
again shows that the calculation is not affected by the slip coefficient α.

The two cases above show that the permeability is strongly influenced by the size
of vug. Both two examples indicate that, when the vugs are connected with each other
through base cells, the equivalent permeability would increase several orders of magni-
tude of Km. However this is not expected when the vugs do not form channels. Such
medium with disconnected vugs, i.e., a free-flow region completely surrounded by rock
matrix, have the similar orders of magnitude of rock matrix permeability. So the vug
connectivity is the most critical variable in predicting equivalent permeability.

4.2.2 Effect of vug shape and location

At first, an evaluation of the geometric dependence of the homogenized permeability
tensor is demonstrated with four basic shapes: square, disk, hexagon, and cross-shape,
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Figure 8: Four base cells with different shape vug: (a) disk, (b) square, (c) hexagon, (d) cross-shape.

which are shown in Figs. 8(a)-(d). The length of base cell L=1 m, and in all cases the area
of Ys is 1/4. Furthermore, the geometric symmetry of square and disk ensures that the
equivalent permeability tensor will be a scalar multiple of the identity.

The computed equivalent permeabilities with different shape vug and rock matrix
permeability are displayed in Table 5 (in all cases, the slip coefficient α = 1.0). In order
to study the effect of different shapes for the base cell, the percentage differences rel-
ative to the square cell are calculated: (1) disk cell approximates −3.01%; (2) hexagon
cell approximates −2.10%, (3) cross-shape cell approximates 187.7%. It suggests that the
effective permeability with a concave vug is quite different to that of convex vug. The
shape of vug has important impacts on the effective permeability. The results in Table 6
suggest that it is independent on the location of vug (in this Table the matrix permeability
Km =100 mD).

In Fig. 9, the solutions of Darcy-Stokes equations for cell problems (3.15)-(3.21) with
different shape vug are displayed. The velocity wj is plotted in Figs. 9(a)-(d). And the
pressure profiles of π j are shown in Figs. 9(e)-(h). The numerical results indicate that
the velocity and pressure distribution throughout the base cell should be symmetric or
antisymmetric, and the physical quantities take equal values on the opposite sides of the
base cell due to the periodic boundary conditions.
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Figure 9: Variations in the velocity wj (along y1-direction) and the pressure π j of base cell with different
shape vug based on periodic boundary conditions: (a)-(d) velocity profiles; (e)-(h) pressure profiles. Properties:
Km =10 mD, µ=1 Pa·s, slip coefficient α=1.0.
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Table 5: Homogenized permeability tensors obtained with different matrix permeability for the three represen-
tative cells shown in Fig. 8.

κ11 (mD)
Km (mD) disk square hexagon cross-shape

0.1 1.6676E-01 1.7195E-01 1.6832E-01 4.9469E-01
1 1.6676E+00 1.7195E+00 1.6832E+00 4.9469E+00

10 1.6676E+01 1.7195E+01 1.6832E+01 4.9469E+01
100 1.6676E+02 1.7195E+02 1.6832E+02 4.9469E+02

Table 6: κ11 of three representative cells with different vug location, shown in Fig. 8.

κ11 (mD)
location of vug center (m) disk square hexagon

(0.0 , 0.0) 1.66757E+02 1.71948E+02 1.68322E+02
(0.1 , 0.0) 1.66757E+02 1.71957E+02 1.68327E+02
(0.0 , 0.1) 1.66757E+02 1.71969E+02 1.68324E+02
(0.1 , 0.1) 1.66757E+02 1.72174E+02 1.68323E+02

4.3 Porous medium with fracture-vug network

In this section, the equivalent permeability of a base cell is computed for four different
types of fracture-vug networks. A base cell with three large elliptical vugs imbedded
inside the rock matrix is considered. A fracture network connecting to the vugs is estab-
lished. Four cases are illustrated in Fig. 10. And the bold black lines represent fractures;
L = 1 m; the homogeneous and isotropic permeability Km of rock matrix region Yd is 10
mD; all fractures’ aperture a=2 mm; radius of circular vug r =0.1 m, semi-major axis of
elliptical vug r1 =0.25 m, semi-minor axis of elliptical vug r2 =0.1 m.

Table 7 shows the equivalent permeability tensor of four typical base cells. As ex-
pected, case (a) is similar to the previous sections. The equivalent permeability increased
by 25%-45% computed to the rock matrix permeability. Since vugs are connected via
fractures in case (b), its equivalent permeability tensor improves 200%-300% to the rock
matrix permeability. However, the order of magnitude of equivalent permeability is the
same as that of surrounding porous rock. When the fluid flows through the two typical
base cells above, the fluid can not enter the vugs and fractures directly but needs to pass
through the rock matrix, thus the matrix determines the order of magnitude of the overall
matrix permeability.

The calculation of case (c) shows that the equivalent permeability is about six or-
ders of magnitude more than the matrix permeability in the horizontal direction (i.e. y1-
direction). The vertical (i.e. y2-direction) permeability is same as that of case (b). The
large increase in horizontal direction is due to the fact that most of the fluids flow runs
directly through the fractures and the rock matrix contributes very little to the overall
flow rate. This is again verified by the case (d), in which both the horizontal and verti-
cal permeabilities improve six orders of magnitude of the matrix permeability. Note that
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Figure 10: Base cells with different fracture-vug networks: (a) isolate vugs i.e. ignoring all the fractures, (b)
fractures connecting to vugs but not to the boundary of base cell, (c) fractures connecting to vugs and to the
boundary of base cell only in y1-direction, (d) fractures connecting to vugs and to the boundary of base cell
both in y1-direction and y2-direction.

Table 7: The equivalent permeability tensor of four typical base cells in Fig. 10.

base cell types equivalent permeability tensor κ (mD)

Case (a)

(

12.7307 0
0 14.6830

)

Case (b)

(

36.4326 0
0 29.8007

)

Case (c)

(

19.8282×105 0
0 29.8057

)

Case (d)

(

19.8282×105 42.1934
42.1934 8.6050×105

)

the offdiagonal components of case (d) are non-zero due to the incompletely symmet-
ric base cell. The above results show that the connectivity of the fracture-vug network
has an important influence on the equivalent permeability, especially for those discrete
fracture-vug networks connecting to each other in overall domain.
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Figure 11: Fine-scale domain (a) consisting of rock matrix and discrete fracture-vug networks. The coarse-scale
block partitioning (b) used for numerical calculations of equivalent permeability.

4.4 A simple computation test of the coarse-scale model

In practice, for full field-scale problems, we need to solve the Darcy macro-model (3.23)-
(3.24) on a coarse grid, using equivalent permeability (3.22) upscaling from the fine scale
Darcy-Stokes cell problem (3.15)-(3.21). The objective of this section is to illustrate this
procedure. Then we compare a fine-scale reference solution of Eqs. (3.15)-(3.21) with the
coarse-scale model (3.23)-(3.24) to verify the validity of the proposed upscaling method
and the accuracy of the calculation for equivalent permeability. We consider a fine-scale
domain populated with some discrete fracture-vug networks, illustrated in Fig. 11. The
sample is 5 m by 5 m square, and we divide it into a coarse scale grid of 5×5 blocks
(so the grid blocks are 1 m by 1 m square). The background permeability of rock matrix
is homogeneous and isotropic with Km = 10 mD, the fluid viscosity µ = 1 Pa·s, and the
BJS slip coefficient α = 1.0. We consider no flow at top and bottom sides of the domain
(Fig. 11(a)). The flow is driven by a unit pressure drop in the horizontal (x1) direction.
This is achieved by imposing a 5 Pa pressure at the left side and zero at the right side of
the domain. The fine scale solution is displayed in Fig. 12(a).

We next solve the reference cell problem (3.15)-(3.21) for the equivalent permeability
(3.22). For each coarse scale grid block, the upscaled permeability is computed using peri-
odic boundary conditions. In Fig. 12(b), we plot the corresponding coarse scale pressure.
We have compared this coarse scale pressure with the averaged coarse scale pressure ob-
tained from the fine scale solution. The relative L2 error was found to be less than 10%.
The comparisons of pressure profiles at various y or x locations are plotted in Fig. 13.
The coarse scale results are about conformable to the fine scale results with the relative
L2 errors (1) 7.081% at x = 0.5, (2) 10.786% at y = 3.5, (3) 4.966% at y = 1.0. These results
indicate that the proposed method to calculate the equivalent permeability for fractured
vuggy porous medium is valid and applicable.



Z. Huang et al. / Commun. Comput. Phys., 9 (2011), pp. 180-204 199

Figure 12: Comparison of the fine scale (a) and coarse scale (b) pressure solutions.

x or y (m)0 1 2 3 4 5pressure(P a) 012
345 coarse scale simulat ion(dashed curves)f ine scale simulat ion (solid curves)

x =0.5y =3.5
y =1. 0

Figure 13: Comparison of the fine scale (solid curves) and coarse scale (dashed curves) pressure profiles at
various values of y and x.

5 Conclusions

Equivalent permeability provides a valid prescription of large scale flow through frac-
tured vuggy porous medium. In this paper, a new conceptual model, i.e., discrete fracture-
vug network model has been proposed. And we have developed a general numerical
method to accurately compute this equivalent permeability tensor based on this new
model and homogenization theory. Our brief study allows us to make several important
conclusions about modeling fluid flow in fractured vuggy media.

First, the calculation results show that the presence of fractures and vugs can increase
the overall permeability. The equivalent permeability, as computed from (3.22) and cell
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problem (3.15)-(3.21), is mildly sensitive to the location of the vug, but is very sensitive
to the size and shape of vugs, and extremely sensitive to the connectivity of fractures
and vugs. When the fluids flow in a fractured vuggy porous medium in which the vugs
and fractures are not well connected, the equivalent permeability remains the same order
of magnitude of matrix permeability. However, a connected fracture-vug systems could
increase the equivalent permeability by many orders of magnitude. Thus the connectivity
of the discrete fracture-vug network is the dominant consideration in understanding the
flow in fractured vuggy porous media.

Second, the simple computation test case of Section 4.4 supports the overall validity of
the coarse scale model of (3.23)-(3.24). Usually natural fractured vuggy porous media are
not periodic, thus the periodic boundary condition is problematic in that periodic repeti-
tions of base cell may artificially destroyed the connectivity of the fracture-vug network.
Thus, when upscaling fractured vuggy porous media, in order to improve the accuracy
of calculation, the coarse scale grid should maintain the topology of the facture-vug net-
work (cf. Fig. 11(b)).

Third, the discrete fracture-vug network model provides a natural way of modeling
fluids flow through fractured vuggy porous media. Due to the simplification of fractures,
the computation efficiency of this model improves greatly. The use of finite element tech-
nique for the calculation of equivalent permeability allows for the accurate modeling of
complex discrete fracture-vug network models. The dimensionless slip coefficient has
small influence on the equivalent permeability when the matrix permeability Km ≤ 105

mD. Thus α=1.0 in this paper is reasonable.
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Appendix

Consider Darcy-Stokes system that consists of a channel of width b limited above and
below by a homogeneous isotropic porous medium (see Fig. 6). The flow in the channel
satisfies the Stokes equation, and the flow in the porous medium obeys Darcy’ law.

Firstly, we assume that a uniform pressure gradient −δp/L is maintained in the lon-
gitudinal direction y1 in both the channel Ys and the permeable materials Yd. So if we
ignore all the body forces, the velocity field does not depend on the y1-coordinate. Let
u(y2) denote the velocity of the fluid along the y1-coordinate. The Stokes equation for the
velocity field in the channel and the corresponding Beavers-Joseph-Saffman conditions
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are written as

−µu′′(y2)−
δp
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=0, (A.1)
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and the solution is
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The average velocity in the channel along y2-coordinate is

u=
1

b

∫ b/2

−b/2
u(y2)dy=

(√
K

2α
b+

b2

12

)

δp

µL
. (A.5)

On the other hand, Darcy’s law implies that

v=
K

µ

δp

µL
. (A.6)

For the base cell problem, both the pressure gradient along y1-direction and viscosity
are unit amount. And then through calculating the total average velocity of Stokes and
Darcy flow throughout the base cell, the equivalent permeability components related to
y1-direction can be obtained

κ11 =
1

L

(

1

12
b3+

√
K

2α
b2+K(L−b)

)

, κ12 =0. (A.7)

The similar analytical process is conducted to calculate the equivalent permeability
components related to y2-direction. We also assume that a same pressure drop −δp is
exerted along y2-direction, and that the flow is stationary. In the porous materials, a
uniform fluid flow along y2-direction is expected. On the other hand, because the fluid
velocity out from porous medium into vug is uniform, the viscous force does not exist.
Thus the velocity and pressure is constant in vug because the fluid meets no resistance in
the vug. So the velocity in the overall base cell is uniform and equals the Darcy velocity
of porous medium, expressed as follows

u=
LK

L−b

δp

µL
. (A.8)

And then the equivalent permeability components related to y2-direction can be obtained

κ22 =
L

L−b
K, κ21 =0. (A.9)



202 Z. Huang et al. / Commun. Comput. Phys., 9 (2011), pp. 180-204

From the above discussion, we can find that the slip coefficient α only affects the fluid
flow in vug or free-flow region. So we can analyze the following ratio

λ=

√
K

2α b2

1
12 b3

=
6
√

K

αb
. (A.10)

Here we let

λ≤0.05⇒K≤
(

5αb

6

)2

×10−4. (A.11)

As discussed in Section 1, the vugs usually are macroscopic and their diameters are
greater than or equal to 0.01 m, here we specify the width of vug b =0.01 m and α =1.0.
Then we can obtain

K≤6.944×10−9 m2
(

6.944×106 mD
)

. (A.12)

Therefore, if the permeability is less than
(

6.944×106 mD
)

which is the common case
in oil-field, the slip coefficient α has little impact on the calculation of permeability and α
= 1.0 in this study is reasonable.
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