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Abstract. In a two-dimensional (2D) photonic crystal (PhC) composed of circular cylin-
ders (dielectric rods or air holes) on a square or triangular lattice, various PhC devices
can be created by removing or modifying some cylinders. Most existing numerical
methods for PhC devices give rise to large sparse or smaller but dense linear systems,
all of which are expensive to solve if the device is large. In a previous work [Z. Hu et al.,
Optics Express, 16 (2008), 17383-17399], an efficient Dirichlet-to-Neumann (DtN) map
method was developed for general 2D PhC devices with an infinite background PhC
to take full advantage of the underlying lattice structure. The DtN map of a unit cell is
an operator that maps the wave field to its normal derivative on the cell boundary and
it allows one to avoid computing the wave field in the interior of the unit cell. In this
paper, we extend the DtN map method to PhC devices with a finite background PhC.
Since there is no bandgap effect to confine the light in a finite PhC, a different tech-
nique for truncating the domain is needed. We enclose the finite structure with a layer
of empty boundary and corner unit cells, and approximate the DtN maps of these cells
based on expanding the scattered wave in outgoing plane waves. Our method gives
rise to a relatively small and sparse linear systems that are particularly easy to solve.

AMS subject classifications: 78M25, 78M16, 78A45
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1 Introduction

Due to its periodic variation of the refractive index, a photonic crystal (PhC) [1] exhibits
unusual dispersion properties and frequency intervals (i.e., bandgaps), in which propa-
gating Bloch waves do not exist. Using the bandgap effect, waveguides and microcavities

∗Corresponding author. Email addresses: jianhua yuan@126.com (J. Yuan), mayylu@cityu.edu.hk (Y. Y. Lu)

http://www.global-sci.com/ 113 c©2011 Global-Science Press



114 J. Yuan and Y. Y. Lu / Commun. Comput. Phys., 9 (2011), pp. 113-128

can be created by introducing line or point defects. In a PhC waveguide, high transmis-
sion through a sharp bend is possible [2]. Microcavities in PhCs can have very high
quality factors and small mode volumes. When waveguides and cavities are combined,
many PhC devices can be developed. Some examples are frequency filters [3], channel
drop filters [4], waveguide branches [5], waveguide couplers [3], Mach-Zehnder interfer-
ometers [6], etc. The unusual dispersion properties and nonlinear optical effects can be
used to further develop useful PhC devices.

To analyze, design and optimize PhC devices, numerical simulations are essential.
Unlike the eigenvalue problem for the band structure of a perfectly periodic and infinite
PhC, mathematical problems associated with a PhC device are boundary value problems
in the frequency domain or initial and boundary value problems in the time domain, and
they must be solved in a much larger computation domain (compared with the unit cell)
using proper boundary conditions. Although different time domain methods exist [3],
many authors have used the finite difference time domain (FDTD) method [7] for sim-
ulating PhC devices. For problems such as the propagation of a pulse in the device, a
time domain approach is essential. However, FDTD is often used for other problems,
such as the transmission and reflection spectra of a PhC device, which are more naturally
formulated in the frequency domain. One reason is that FDTD is easy to understand
and widely available in existing software packages. Another reason is that standard fre-
quency domain methods, such as the finite element [8] and finite difference (in frequency
domain) methods, often give rise to large, indefinite and complex linear systems that are
expensive to solve. However, FDTD often requires prohibitive computer resources and
produces solutions of limited accuracy.

In the frequency domain, special numerical methods can be developed to take advan-
tage of the geometric features of the PhC devices. For ideal two-dimensional (2D) PhC
devices, we can identify three geometric features: the refractive index function is piece-
wise constant, often with only two different values; the PhC and the defect structures are
often composed of circular cylinders surrounded by a homogeneous medium, where the
cylinders are either air-holes or dielectric rods; the cylinders, include the defects, often
form a square or triangular lattice. A number of existing numerical methods can take ad-
vantage at least some of these geometric features. The boundary integral equation (BIE)
method [9] can take advantage of first feature. We can formulate integral equations for
functions defined on the dielectric interfaces. The multipole method [10–13] can take ad-
vantage of the first and second features. Around a circular cylinder, we can write down
the solution in cylindrical wave expansions and solve for the coefficients. The Dirichlet-
to-Neumann (DtN) map method, first developed in [14] and [15], can take advantage of
all three features.

The DtN map of a unit cell Ω is the operator that maps the wave field to its normal
derivative on the boundary of Ω, and it can be approximated by a small matrix. Using
the DtN maps of the unit cells, we can reduce various mathematical problems for PhCs
to smaller problems on the edges of the unit cells, avoiding the interiors of the unit cells
completely. In earlier works, the DtN map technique has been applied to eigenvalue
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problems such as band structures [14, 16], waveguide modes [17] and cavity modes [18],
and it has also been applied to boundary value problems involving PhCs of finite thick-
ness [15, 19, 20] and PhC devices with an infinite PhC background [21, 22]. In this paper,
we extend the DtN map method to PhC devices in a finite PhC surrounded by a homoge-
neous medium. Since the structures are not periodic, we cannot reduce the computation
domain to one period as in [15]. Unlike the cases studied in [21], in the homogeneous
medium outside the finite PhC, there is no bandgap effect to confine the light. Therefore,
light waves can be scattered out in all directions and they need careful treatment at the
boundary of the computation domain. Our approach is to enclose the finite PhC struc-
ture by one layer of empty unit cells, and develop special DtN maps for these boundary
cells to simulate the outgoing radiation condition. As a result, we obtain a sparse lin-
ear system for the wave field on all edges of the unit cells in the computation domain. In
contrast, the BIE and multipole methods give rise to linear systems with dense coefficient
matrices.

2 DtN map method

For ideal 2D structures that are invariant in the z-direction and for waves propagating
in the xy-plane, the frequency domain Maxwell’s equations can be reduced to scalar
Helmholtz equations for the two main polarizations. For the E-polarization, the z com-
ponent of the electric field, denoted by u, satisfies

∂2u

∂x2
+

∂2u

∂y2
+k2

0n2u=0, (2.1)

where k0 = ω/c is the free space wavenumber, ω is the angular frequency (for the time
dependence e−iωt), c is the speed of light in vacuum and n=n(x,y) is the refractive index
function. The case of H-polarization is similar.

We consider PhC devices consisting of finite number of circular cylinders surrounded
by a homogeneous medium with refractive index n0, where the centers of the cylinders
are located at lattice points of a square or triangular lattice. A typical example is shown in
Fig. 1, where the cylinders (dielectric rods) are given on a square lattice and the missing
cylinders form a waveguide bend [2]. For such a structure, we specify an incident wave
u(i) which satisfies the Helmholtz equation for the homogeneous medium with n = n0.
The objective is to find the scattered wave u(s), such that the total field

u=u(i)+u(s),

satisfies the Helmholtz equation (2.1) and u(s) satisfies the Sommerfeld radiation condi-
tion at infinity

lim
r→∞

1√
r

[∂u(s)

∂r
−ik0n0u(s)

]

=0, (2.2)



116 J. Yuan and Y. Y. Lu / Commun. Comput. Phys., 9 (2011), pp. 113-128

Figure 1: A 90◦ PhC waveguide bend in a finite PhC consisting of circular dielectric rods on a square lattice.

where r=
√

x2+y2 is the radial variable in a polar coordinate system. Eqs. (2.1) and (2.2)
give rise to a standard scattering problem posed on the entire xy-plane.

In order to take advantage of the underlying lattice structure, we divide the domain
into unit cells. The structure shown in Fig. 1 can be covered by a square domain con-
taining 9×9 unit cells. For this particular example, there are only two different types of
unit cells: the regular unit cell with a circular cylinder and the defect (or empty) unit
cell without the cylinder. To approximate the outgoing scattered wave, we introduce a
layer of empty unit cells surrounding the structure. Therefore, the computation domain
contains 11×11 unit cells as shown in Fig. 1.

The DtN map of a unit cell Ω is the operator Λ satisfying

Λu=
∂u

∂ν
, on ∂Ω,

where u is any solution of Eq. (2.1), ∂Ω is the boundary of the Ω, and ν is unit normal
vector of ∂Ω. For the square unit cells shown in Fig. 1, we can replace ∂ν by ∂x or ∂y on
vertical or horizontal edges, respectively. If we choose P points on each edge of a square
unit cell, Λ can be approximated by a (4P)×(4P) matrix based on cylindrical wave ex-
pansions [14, 15]. If the unit cell contains more than one cylinder or the cross section of
the cylinder is not circular, the DtN map Λ can be approximated by the methods devel-
oped in [23] and [24], respectively. To actually write down a matrix approximation of Λ,
we need to order the four edges of Ω. We follow the ordering such that

u|∂Ω =
[

ulower; ule f t; uright; uupper

]

, (2.3)

is a column vector with four blocks, where ule f t denotes u on the left edge of Ω, etc. The
DtN map Λ is then given as a matrix in 4×4 blocks, where each block Λjk (for 1≤ j,k≤4)
is a P×P matrix. Using the DtN maps of the unit cells, we can establish a linear system
for the wave field on all interior edges of the unit cells in the computation domain. To
illustrate the procedure, we consider six unit cells in the lower left corner of the compu-
tation domain shown in Fig. 1 and label the six unit cells from 1 to 6 and their edges (in
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Figure 2: Six unit cells at the lower left corner of the computation domain for the 90◦ bend shown in Fig. 1.

the interior of the computation domain) from 1 to 12 as in Fig. 2. The eighth edge is the
common edge of two interior unit cells Ω5 and Ω6. If we denote the DtN map of Ωj by

Λ(j) and evaluate the x derivative of u on the eighth edge using both Λ(5) and Λ(6), then

Λ
(5)
31 u5+Λ

(5)
32 u7+Λ

(5)
33 u8+Λ

(5)
34 u11 =Λ

(6)
21 u6+Λ

(6)
22 u8+Λ

(6)
23 u9+Λ

(6)
24 u12, (2.4)

where uj denotes u on the jth edge. The above equation connects the seven edges in the

two neighboring square unit cells. Notice that the third row of Λ(5) is used in the left
hand side of Eq. (2.4), since the eighth edge is the third edge of Ω5. The above procedure
was previously used to compute defect modes in PhCs [18] and to analyze PhC devices
in an infinite PhC background (with PhC waveguides extending to infinity) [21], where
non-local boundary conditions that involve all unit cells along the relevant boundary
segments are used to terminate PhC waveguides. The finite PhC structures in this paper
require a different treatment for the boundary conditions.

For a boundary unit cell, such as Ω2, Ω3 and Ω4 in Fig. 2, we can find an approximate
DtN map that gives a relation between u(s) and its normal derivative on three edges (all
interior edges of the computation domain). For Ω2, the DtN map Λ(2) satisfies

Λ(2)









u
(s)
1

u
(s)
2

u
(s)
5









=









∂xu
(s)
1

∂xu
(s)
2

∂yu
(s)
5









. (2.5)

In the discrete case, Λ(2) is given in 3×3 blocks, where each block is a P×P matrix. For
a corner unit cell, we look for a DtN map that links u(s) and ∂νu(s) on the two interior
edges. For Ω1, the DtN map Λ(1) satisfies

Λ(1)

[

u
(s)
1

u
(s)
4

]

=

[

∂xu
(s)
1

∂yu
(s)
4

]

. (2.6)
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When discretized, Λ(1) is a (2P)×(2P) matrix given in 2×2 blocks. Notice that the DtN
maps for the boundary and corner unit cells are defined for the scattered field (instead of
the total field). In Section 3, we present a method for computing these DtN maps.

On each edge of the boundary or corner unit cells, we can establish an equation as
before. However, some care is needed since the scattered field is used for these unit cells.
We choose to use the total field on common edges between interior and boundary unit
cells, and use the scattered field on common edges between boundary cells or corner

cells. For the cells shown in Fig. 2, we establish equations for u
(s)
1 , u

(s)
2 , u

(s)
3 , u

(s)
4 , u

(s)
10 , and

u5, u6, u7, etc. For the first edge, we evaluate ∂xu
(s)
1 by the DtN maps of Ω1 and Ω2, and

obtain
Λ

(1)
11 u

(s)
1 +Λ

(1)
12 u

(s)
4 =Λ

(2)
11 u

(s)
1 +Λ

(2)
12 u

(s)
2 +Λ

(2)
13

[

u5−u
(i)
5

]

. (2.7)

Notice that u
(s)
5 is replaced by u5−u

(i)
5 . Therefore, the above is an inhomogeneous equa-

tion involving u
(s)
1 , u

(s)
2 , u

(s)
4 and u5. For the second edge, we have

Λ
(2)
21 u

(s)
1 +Λ

(2)
22 u

(s)
2 +Λ

(2)
23

[

u5−u
(i)
5

]

=Λ
(3)
11 u

(s)
2 +Λ

(3)
12 u

(s)
3 +Λ

(3)
13

[

u6−u
(i)
6

]

. (2.8)

For the fifth edge, we evaluate ∂yu5 by Λ(5) and ∂yu
(s)
5 by Λ(2). Therefore, we need to add

∂yu(i) to establish the following equation:

Λ
(2)
31 u

(s)
1 +Λ

(2)
32 u

(s)
2 +Λ

(2)
33

[

u5−u
(i)
5

]

+∂yu
(i)
5 =Λ

(5)
11 u5+Λ

(5)
12 u7+Λ

(5)
13 u8+Λ

(5)
14 u11. (2.9)

The above is an inhomogeneous equation involving u
(s)
1 , u

(s)
2 , u5, u7, u8 and u11.

Since the incident field propagates in certain directions, it is possible that u(i) is also
an outgoing field in certain boundary and corner unit cells. In that case, the total field u
also satisfies (2.5) or (2.6), and it can be used to establish the equations. The equations
involving only the total field is always homogeneous. Of course, u(i) must be an incoming
field on some boundary or corner unit cells, where the DtN maps are only applicable to
u(s).

It is clear that the equation for each edge involves only the edges in the two neigh-
boring unit cells. Therefore, the final linear system for all edges in the computation do-
main is sparse. This is different from the cases studied in [21], where non-local boundary
conditions for PhC waveguides partially destroy the sparsity of the coefficient matrix.
This is also the main advantage of our method when it is compared with the multipole
and boundary integral equation methods, since the coefficient matrices appeared in these
methods are dense.

3 DtN maps of boundary and corner cells

From the previous section, it is clear that the DtN maps of the unit cells are the key
elements of our method. For an interior unit cell with a circular cylinder or an empty
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interior unit cell, the DtN map can be constructed using cylindrical wave expansions [14,
15]. For more complicated unit cells, the DtN maps can be constructed using related
numerical solutions of the Helmholtz equation [23, 24]. For a square unit cell, if P points
are used on each edge, then the field in the unit cell is approximated by a sum of 4P
special solutions and the DtN map is approximated by a (4P)×(4P) matrix.

For boundary and corner unit cells, the DtN maps can be constructed based on ap-
proximating the scattered field by outgoing plane waves. Consider the unit cells at the
lower boundary of the truncated domain, such as Ω2 and Ω3 in Fig. 2, if the upper edges
of these cells are located at y=y1, then the scattered wave for y<y1 are down-going plane
waves

u(s)(x,y)=
∫ ∞

−∞
c(α)ei(αx−βy)dα, y<y1, (3.1)

where β=
√

k2
0n2

0−α2 and c(α) is related to the Fourier transform of u(s)(x,y1). Here, β is

defined such that

β= i
√

α2−k2
0n2

0, if |α|> k0n0,

therefore u(s) given in (3.1) includes evanescent plane waves that decay exponentially as
y→−∞. To obtain an approximate DtN map for Ω2, we replace (3.1) by

u(s)(x,y)≈
3P

∑
m=1

cmei(αmx−βmy), y<y1, (3.2)

where αm, for 1≤m≤3P, are uniformly sampled from the interval (−α∗,α∗) for some α∗

and βm =
√

k2
0n2

0−α2
m. Typically, we choose α∗, such that

4≤ α∗
k0n0

≤6.

On the left, right and upper edges of Ω2, we choose 3P points uniformly (avoiding the
corners) and evaluate u(s) at these points using (3.2). This gives rise to a matrix C that
maps the coefficients {cm} to the 3P values of u(s) on the boundary. Similarly, we evaluate
the normal derivative of u(s) at these 3P points using (3.2), and obtain a matrix D that
maps {cm} to the normal derivatives. Therefore, we obtain the following approximate
DtN map of Ω2:

Λ(2) = DC−1. (3.3)

Since all boundary unit cells below the line y = y1 are identical, so are their DtN maps.
Therefore, we have

Λ(3) =Λ(2),

etc. For boundary unit cells at the left, right or upper boundaries of the truncated domain,
we can construct their DtN maps using similar expansions in outgoing plane waves.
Alternatively, the DtN maps of these boundary unit cells can be obtained from Λ(2) using
simple matrix transforms.
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The DtN map of a corner unit cell can be constructed by the same approach. We
consider the lower-left corner unit cell Ω1 whose right and upper edges are assumed to
be given at x = x1 and y = y1, respectively. To maintain the symmetry between x and y,
we rotate the coordinate axes by −45◦, so that a point (x,y) becomes (x′,y′) given by

x′=
1√
2
(x−y), y′ =

1√
2
(x+y). (3.4)

In the half plane given by

x+y< x1+y1

(

or y′ <
x1+y1√

2

)

,

the scattered field can be written as

u(s)(x,y)=
∫ ∞

−∞
c(α)ei(αx′−βy′)dα, y′ <

x1+y1√
2

, (3.5)

where c(α) is related to the Fourier transform of u(s) evaluated on the line x+y= x1+y1.
To construct the DtN map for Ω1, we approximate u(s) by 2P plane waves

u(s)(x,y)≈
2P

∑
m=1

cmei(αmx′−βmy′), y′<
x1+y1√

2
, (3.6)

where αm, for 1≤m≤ 2P, are uniformly sampled from the interval (−α∗,α∗) and βm is
defined as before. To obtain the matrix Λ(1), we choose 2P points uniformly on the right
and upper edges of Ω1, and calculate u(s) and its normal derivative at these 2P points
using (3.6). This gives rise to two (2P)×(2P) matrices similar to the matrices C and D

above. The DtN map Λ
(1)
1 is then obtained from these two matrices by a formula similar

to (3.3). The DtN maps of the other corner unit cells can be constructed similarly or
obtained from Λ(1) directly through suitable matrix transforms.

The number of sampling points P on each edge of the unit cells is typically quite small.
This is related to the fact that the wave field in each interior unit cell is approximated
by 4P cylindrical waves. Since the typical size of the unit cells is smaller than the free
space wavelength, a small P such as P = 7, is usually sufficient. On the other hand, if
a larger P is used, the construction of the DtN maps for the boundary and corner unit
cells may encounter some difficulties, due to the possible near linear dependence of the
plane waves evaluated at the boundary points. More precisely, the matrix C appeared in
(3.3) may be near singular, then Λ(2) cannot be obtained accurately. This difficulty can
be partially overcome by a sub-cell approach. The idea is to divide a boundary or corner
unit cell as four smaller sub-cells, then calculate the DtN maps of the sub-cells and use
them to obtain the DtN map of the original unit cell. The sub-cells for Ω1 and Ω2 are
depicted in Fig. 3. We observe that Ω1 has one interior sub-cell Ω22

1 , two boundary sub-
cells Ω12

1 and Ω21
1 , and one corner sub-cell Ω11

1 , and Ω2 has two interior sub-cells and
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Figure 3: Sub-cells for the corner unit cell Ω1 and the boundary unit cell Ω2.

two boundary sub-cells. The DtN maps of the sub-cells can be obtained by the method
described above using P/2 points on each edge, assuming that P is an even integer. Based
on these DtN maps of the sub-cells, we can eliminate the field on the interior edges shown
as the dashed lines in Fig. 3, and then obtain the DtN maps of the original unit cell. As
an example, we consider Ω1. Using the DtN maps of the four sub-cells, we have

[

∂xu
(s)
1

∂yu
(s)
4

]

= A1

[

u
(s)
1

u
(s)
4

]

+A2v, (3.7)

where v is a vector of length 2P representing u(s) on the four interior edges of the sub-
cells in Ω1, A1 and A2 are (2P)×(2P) matrices. As in Fig. 2, the right and upper edges
of Ω1 are the first and fourth edges, respectively. Meanwhile, we can establish equations
for u(s) on the interior edges by evaluating its normal derivative using the DtN maps of
the two neighboring sub-cells. This gives rise to

A3v= A4

[

u
(s)
1

u
(s)
4

]

,

where A3 and A3 are (2P)×(2P) matrices. Solving v from the above equation and sub-
stituting the solution into (3.7), we obtain the DtN map of Ω1

Λ(1) = A1+A2A−1
3 A4.

Clearly, the DtN maps of Ω2 or any other boundary or corner unit cells can be similarly
obtained from the DtN maps of the sub-cells.

To assess the accuracy of the DtN maps for boundary and corner unit cells, we test the
DtN maps on a few exact solutions. For the unit cell Ω2 shown in Fig. 2, we choose four
exact solutions which are cylindrical waves originated from the centers of the Ω5 and Ω6.
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Let c5 and c6 be the centers of Ω5 and Ω6, respectively, then the four special solutions are

U1(r)= H
(1)
0

(

k0n0|r−c5|
)

, (3.8a)

U2(r)= H
(1)
0

(

k0n0|r−c6|
)

, (3.8b)

U3(r)= H
(1)
1

(

k0n0|r−c5|
)

exp(iθ5), (3.8c)

U4(r)= H
(1)
1

(

k0n0|r−c6|
)

exp(iθ6), (3.8d)

where r =(x,y), θ5 and θ6 are the polar angles of r−c5 and r−c6, respectively. For each
special solution Uj and a given integer P, we can evaluate its normal derivative ∂νUj at
the 3P sampling points on the three interior edges of Ω2 exactly. We can also approximate
∂νUj at these points by the DtN map of Ω2. Then, we can calculate the relative error Ej

for ∂νUj at these 3P points using the vector 2-norm. For ωL/(2πc) = 0.353, n0 = 1 and
α∗ = 6k0n0, where L is the length of the edges of the square unit cells, we obtain the
relative errors listed in Table 1. We observe that the relative errors tend to decrease as P
is increased up to P=9. Roughly 3 digits of accuracy can be obtained for P=7, 8 and 9.
Additional calculations are performed for other values of α∗ satisfying

4k0n0≤α∗≤6k0n0.

It appears that the best value of α∗ should increase as P is increased. Unfortunately,
the errors cannot be reduced by further increasing P. One reason is that the boundary
DtN map is only a local approximation (at the level of a unit cell) to the exact non-local
outgoing radiation condition. In addition, for a larger P, the construction the DtN map
becomes ill-conditioned, since the plane waves with nearly identical wave vectors are
nearly linearly dependent.

Table 1: Relative errors of the normal derivatives on three edges of Ω2 calculated by the DtN map for four
special solutions.

P E1 E2 E3 E4

5 0.0318 0.4129 0.1912 0.2859
6 0.0397 0.0206 0.0280 0.0457
7 0.0037 0.0046 0.0031 0.0055
8 0.0029 0.0014 0.0019 0.0035
9 0.0006 0.0007 0.0030 0.0012

10 0.0013 0.0007 0.0019 0.0016

For the corner unit cell Ω1, we test the accuracy of its DtN map by computing ∂νUj

on the two interior edges. The first three exact solutions are used and the relative errors
are similarly defined. For ωL/(2πc)=0.353, n0 =1 and α∗ =4k0n0, the results are given
in Table 2. Since only 2P plane waves are used to construct the DtN map of the corner
unit cell, the relative errors are larger. Roughly two significant digits can be obtained in
these calculations. Since the wave field at the corners are typically very weak, the lower
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Table 2: Relative errors of the normal derivatives on two edges of Ω1 calculated by the DtN map for three
special solutions.

P E1 E2 E3

5 0.1252 0.0682 0.0832
6 0.1686 0.0794 0.1108
7 0.0415 0.0179 0.0273
8 0.0265 0.0106 0.0144
9 0.0205 0.0083 0.0320

10 0.0477 0.0105 0.2256

accuracy of corner DtN maps should not significantly reduce the accuracy of the final
solution.

4 Numerical examples

In this section, we apply our method to analyze a number of finite PhC structures con-
sisting of circular dielectric rods on a square lattice, where the refractive index of the
rods is n = 3.4, the medium surrounding the rods is air (thus n0 = 1), the radius of the
rods is a = 0.18L and L is the lattice constant. It is known that the bulk PhC has a
bandgap given by 0.302 < ωL/(2πc) < 0.443 for the E-polarization. If a row of rods is
removed, a PhC waveguide is formed and it has a single propagating Bloch mode for
0.312<ωL/(2πc)<0.443.

Our first example is a finite version of the 90◦ PhC waveguide bend proposed by
Mekis et al. [2]. A small version of the structure is shown in Fig. 1. In principle, the ideal
bend is a defect structure embedded in an infinite PhC where the waveguide extends to
infinity in the negative x and positive y-directions. In an earlier work [21], the DtN map
method was used to analyze this ideal bend based on rigorous (but non-local) boundary
conditions for terminating the semi-infinite PhC waveguides. In the following, we con-
sider a bending structure in a finite PhC involving 16×15 unit cells (larger than the 9×9
structure shown in Fig. 1). Since we enclose the structure with a layer of empty unit cells,
the actual computation domain involves 18×17 unit cells. For simplicity, we choose the
xy coordinates, such that the computation domain is given by 0<x<18L and 0<y<17L.
Furthermore, the unit cells are bounded and separated by vertical and horizontal lines
given by

x= xj and y=yk, for 0≤ j≤18 and 0≤ k≤17,

where

xj = jL and yk = kL.

For this problem, we specify an incident field which is a Gaussian beam satisfying

u(i) = e−[(y−y∗)/w]2 , x= x1, (4.1)



124 J. Yuan and Y. Y. Lu / Commun. Comput. Phys., 9 (2011), pp. 113-128

where w = 0.5L and y∗ corresponds to the center of the horizontal waveguide. Besides
(4.1), u(i) also satisfies the Helmholtz equation for the homogeneous medium, where
n=n0. Since it is a beam propagating in the positive x-direction, it can be written as

u(i) =Φeik0n0x,

where Φ is the slowly varying envelope satisfying the paraxial wave equation. As a
result, we have

∂u(i)

∂x
≈ ik0n0e−[(y−y∗)/w]2

{

1+
2[(y−y∗)/w]2−1

k2
0n2

0w2

}

, x= x1. (4.2)

It is well known that this sharp waveguide bend exhibits high transmission for a
large interval of frequencies. In particular, near 100% transmission can be realized at
ωL/(2πc)= 0.353. For this particular frequency, using P = 7 points on each edge of the
unit cells, we obtain the electric field pattern shown in Fig. 4. Nearly 100% transmission
is observed, since the electric field has about the same magnitude in the incoming (hori-
zontal) and outgoing (vertical) waveguides. However, even if we consider only the field
around the bend in the PhC, the field pattern is not identical to that in the ideal bend [21],
since there are reflected waves at the boundary of the structure where the PhC waveguide
is terminated.

For this example, we compare the numerical solutions obtained with a few differ-
ent values of P at three check points A, B and C. These three points are located at the
entrance, the center and the exit of the bent waveguide, respectively. In the computa-
tion domain given by 0 < x < 18L and 0 < y < 17L, the coordinates of A, B and C are
(1.5L,6.5L), (9.5L,7.5L), (10.5L,16.5L), respectively. Using α∗ = 6k0n0 for the boundary
DtN maps and α∗=4k0n0 for the corner DtN maps, we obtain the results given in Table 3.
It appears that the solutions are accurate to two or three digits for P=7, 8 and 9, and they
are consistent with the accuracy of the boundary and corner DtN maps. Although the
accuracy of the solution is limited, we emphasize that the computation domain is quite
small.

Table 3: Numerical solutions at the three points A, B and C in the waveguide bend. The boundary and corner
DtN maps are obtained with α∗ =6k0n0 and α∗ =4k0n0, respectively.

P u|A u|B u|C
7 0.4750+0.3992i 0.7067−0.4247i 0.9010−0.4494i
8 0.4790+0.3977i 0.7066−0.4256i 0.9017−0.4519i
9 0.4750+0.3967i 0.7062−0.4265i 0.9006−0.4534i

Next, we consider the Y branch and T branch previously analyzed by Koshiba et
al. [3]. The structures are shown in Fig. 5. In our calculations, we assume that the two
branches are embedded in a finite PhC involving 17×16 unit cells. With the additional
layer of empty unit cells surrounding the structure, our computation domain covers 19×
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Figure 4: Magnitude of the electric field for the 90◦ PhC waveguide bend at ωL/(2πc)=0.353.

Figure 5: Y branch (left) and T branch (right) for photonic crystal waveguides.

(a) (b)

Figure 6: Magnitude of the electric field in the Y branch at ωL/(2πc) = 0.42 (a), and in the T branch at
ωL/(2πc)=0.40 (b).
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18 unit cells. For this problem, we use the same incident field given earlier. For the Y
branch and the normalized frequency ωL/(2πc) = 0.42, we use P = 7 for the number
of points on each edge and obtain the electric field pattern shown in Fig. 6(a). For the
T branch and the normalized frequency ωL/(2πc) = 0.4, we use P = 5 points on each
edge and obtain the electric field pattern shown in Fig. 6(b). Our results are consistent
with those given in [3]. It can be seen that the transmission is not as high as desired for
both branches, but the T branch performs better than the Y branch. For the computation
domain with 19×18 unit cells, we have 647 interior edges. For P=5 and P =7, the total
number of unknowns is 3235 and 4529, respectively. However, the coefficient matrix is
sparse, since each equation involves at most 7 edges, i.e., 7P unknowns.

5 Conclusions

In this paper, we developed an efficient DtN map method for finite 2D PhC devices. The
structures analyzed consist of finite number of cylinders on a square lattice, where the
cylinders are surrounded by a homogeneous medium. Although it is a standard mul-
tiple scattering problem, existing methods such as the multipole and boundary integral
equation methods, fail to take advantage of the underlying lattice structure. Due to the
existence of many identical unit cells, the DtN maps of the unit cells can be used to derive
efficient numerical methods for various problems associated with PhCs. In particular, the
DtN maps allow us to set up a linear system of equations for wave fields on the edges
of the unit cells only. Compared with standard numerical methods (such as the finite
element method) that discretize the 2D computation domain directly, the number of un-
knowns in our method is much smaller. Another main advantage of the DtN map method
is that the coefficient matrix of the linear system is sparse. In contrast, the multipole and
boundary integral equation methods give dense coefficient matrices, while the numbers
of unknowns in these two methods are close to that of the DtN map method.

In a previous work [21, 22], the DtN map approach has been used to analyze PhC
devices embedded in an infinite PhC with a few PhC waveguides extending to infinity.
Rigorous boundary conditions were developed to terminate semi-infinite PhC waveg-
uides [21]. These non-local boundary conditions partially destroy the sparsity of the co-
efficient matrix. The PhC devices considered in this paper are embedded in a finite PhC,
where the medium away from the finite structure is homogeneous. Based on a layer of
empty unit cells enclosing the finite PhC structure, we obtain a truly sparse linear system
for wave fields on the edges of the unit cells. The key step is to construct the DtN maps
of the boundary and corner unit cells for the scattered waves using expansions in outgo-
ing plane waves. Numerical examples involving hundreds of unit cells (or cylinders) are
used to illustrate the efficiency of our method.

The DtN maps for the boundary and corner unit cells are local at the level of unit
cells, and they are used to approximate the true outgoing radiation condition which is
non-local. As a result, the accuracy of these DtN maps cannot be continuously improved
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by increasing P (the number of sampling points on each edge). Since we have used these
boundary and corner DtN maps in the immediate neighborhood of the scatterers (the
cylinders in the PhC), the overall accuracy of the numerical solution is also limited to
two or three digits. In analog to the local absorbing boundary conditions, if we enlarge
the computation domain with more layers of empty unit cells, the accuracy of the final so-
lution could be improved, but it also increases the computational complexity. Currently,
we are exploring various ways to improve the accuracy.
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