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Abstract. In this paper, a novel implementation of immersed interface method com-
bined with Stokes solver on a MAC staggered grid for solving the steady two-fluid
Stokes equations with interfaces. The velocity components along the interface are in-
troduced as two augmented variables and the resulting augmented equation is then
solved by the GMRES method. The augmented variables and/or the forces are related
to the jumps in pressure and the jumps in the derivatives of both pressure and veloc-
ity, and are interpolated using cubic splines and are then applied to the fluid through
the jump conditions. The Stokes equations are discretized on a staggered Cartesian
grid via a second order finite difference method and solved by the conjugate gradient
Uzawa-type method. The numerical results show that the overall scheme is second or-
der accurate. The major advantages of the present IIM-Stokes solver are the efficiency
and flexibility in terms of types of fluid flow and different boundary conditions. The
proposed method avoids solution of the pressure Poisson equation, and comparisons
are made to show the advantages of time savings by the present method. The gener-
alized two-phase Stokes solver with correction terms has also been applied to incom-
pressible two-phase Navier-Stokes flow.
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1 Introduction

Many problems of fluid flows with interfaces between two different fluids have a broad
range of natural, science, engineering, and physiological applications. A popular ap-
proach for solving such fluid problems on a Cartesian grid is Peskin’s immersed bound-
ary method (IBM) [28], which was originally developed to study the fluid dynamics of
blood flow in a human heart [27], and was further developed and has been used in a
wide variety of applications, particularly applied to biological problems where complex
geometries and immersed elastic interfaces are present. Some examples include the de-
formation of red blood cell in a shear flow [7], swimming of organisms [10], platelet ag-
gregation [11, 12], cochlear dynamics [2], biofilm processes [6], wood pulp fiber dynam-
ics [33], and so on. A summary of the development of the immersed boundary method
can be found in [28].

An alternative approach is the immersed interface method (IIM) which can capture
the solution and its derivative jumps sharply and maintains second-order accuracy via
incorporating the known jump conditions into the finite difference approximations near
the interface. The IIM was originally proposed by LeVeque and Li [19] for solving elliptic
equations, and was later extended to Stokes flow with elastic boundaries or surface ten-
sion [18]. The IIM was developed further for the Navier-Stokes equations in [16,17,23,25,
38]. The IIM was also used in [4, 24, 30] for solving the two-dimensional streamfunction-
vorticity equations on irregular domains. Xu and Wang [39] have extended the IIM to
the 3D Navier-Stokes equation for simulating fluid-solid interaction. Other more appli-
cations on the IIM can be found in Li’s recent review article [20] or the book by Li and
Ito [21] and the references therein.

Recently, Li et al. [22] developed an augmented IIM for incompressible 2D Stokes
flows with discontinuous viscosity. However, the method employed a explicit time step-
ping and a standard (not MAC) grid, so the time step is strictly restricted and the bi-
periodic boundary condition also has to be assumed. A numerical method for solving
the two-fluid Stokes equations with a moving immersed boundary was presented by
Layton [15], which uses integral equations to reduce the two-fluid Stokes problem to
the single-fluid case. In [35], Tan et al. developed an IIM for the Navier-Stokes equa-
tions with discontinuous viscosity across the interface based on the pressure increment
projection method. For most biological flows, however, the Reynolds number is pretty
low such that Stokes flow simulation is just simply more appropriate. The approach
of [35] using Navier-Stokes equation directly to get the steady state solution for such
flows is deemed generally impractical and much more expensive. Also using the method
in [35] to approach the Stokes flow regime, needs to solve a pressure Poisson equation
with discontinuous coefficient subject to Neumann boundary condition, which is a fairly
large time-consuming step. On the other hand, to the best of our knowledge, no work
on IIM for the steady two-phase Stokes flows involving moving interface with Dirichlet
boundary conditions exists in the literature so far. The previously published work on
IIM for two-phase Stokes flow with interface is based on solving three Poisson problems
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on a regular non-staggered grid, which is seriously limited to the case of the bi-periodic
boundary conditions [22]. Based on these considerations, in this study, the non-trivial
implementation of IIM-Stokes solver is presented, where the fluid dynamics is described
as a creeping flow using the two-phase Stokes equations. One of the advantages for such
problems is that an efficient Stokes solver can be directly applied here based on the ef-
ficient preconditioners for saddle point systems and fast Poisson solver. The number
of CG iterations and the number of GMRES iterations are shown to be independent of
the mesh size, so the proposed IIM-Stokes solver is very efficient. Another advantage
is that the proposed IIM-Stokes solver is flexible for different types of two-phase flow
problems, which can be easily extended to solve for almost all other types of two-fluid
flows (including the steady two-phase Navier-Stokes flows, unsteady two-phase Stokes
flows and unsteady two-phase Navier-Stokes flows) with interfaces and singular forces.
It needs only a simple extension from the present Stokes solver to the efficient gener-
alized Stokes solver [9, 14, 31] in a fairly straightforward manner. So particular interest
in this work is focused on steady two-phase Stokes flows with interfaces. In addition,
the present IIM-Stokes solver can be used to solve the two-fluid problems subject to not
only Dirichlet boundary conditions but also periodic boundary conditions. As such, the
present method is very flexible for solving different types of two-phase flow problems
in terms of different boundary conditions. The main objective of this paper is to de-
velop an efficient and flexible IIM-Stokes solver to solve the two-phase Stokes equations.
The implementation of the current IIM combined Stoke solver on a MAC grid for such
two-phase flow problems is both new and non-trivial, which also avails the potential
reader a choice of the associated numerical techniques on IIM combined with efficient
fluid solvers for different applications. The present method has been applied to solve
the incompressible two-phase Navier-Stokes equations with singular forces as a typical
application.

The present IIM is based on the augmented strategy by introducing the velocity com-
ponents along the interface as two augmented variables so that the jump conditions are
decoupled. The augmented variables are determined to satisfy the continuous condition
of the velocity across the interface and the augmented equations are solved by solving a
small system of equations with the GMRES method. The jumps in pressure and velocity
and the jumps in their derivatives are related to the augmented interface variables and/or
the forces which are either prescribed for fixed interface problem or computed from the
configuration of the moving interface and are next interpolated using cubic splines and
then applied to the fluid through the jump conditions together with the augmented vari-
ables. The position of the moving interface is updated implicitly within each time step.
The Stokes equations are discretized on a staggered Cartesian grid by a second order
finite difference method for the pressure and velocity quantities via incorporating the
spatial jump contributions and solved by the conjugate gradient Uzawa-type method.
Fast solvers from the FISHPACK software library [1] are then used to solve the result-
ing discrete systems of the Poisson equations. In this work, the jump condition of the
second-order spatial derivative for pressure has been incorporated. The numerical re-



1336 Z.-J. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 10 (2011), pp. 1333-1362

sults show that second order accuracy for the velocity and nearly second order accuracy
for the pressure are achieved.

The remaining part of the paper is organized as follows. In Section 2, the model of
the steady incompressible two-fluid Stokes equations with interfaces is described, and
the corresponding decoupled jump conditions are presented in Section 3. The numerical
algorithm and numerical implementation are presented in Sections 4 and 5, respectively.
In Section 6, we present some numerical results. Some concluding remarks are made in
Section 7.

2 Two-phase Stokes equations

For simplicity, this paper first considers the steady two-phase Stokes flows with interfaces
in 2D here. Let Ω be a two-dimensional bounded domain containing a material interface
Γ, the steady incompressible Stokes equations formulated in the velocity-pressure vari-
ables are written as

∇p=∇·µ
(
∇u+(∇u)T

)
+F(x)+G(x), x∈Ω, (2.1a)

∇·u=0, x∈Ω, (2.1b)

with boundary conditions

u|∂Ω =ub,

where u = (u,v)T is the fluid velocity, p is the fluid pressure, µ is the fluid viscosity,
x = (x,y) is the Cartesian coordinate variable, G(x,t) = (g1,g2)T (may be discontinuous)
is an external forcing term such as gravity, and F is a singular source which can have a
Dirac delta function singularity,

F(x,t)=
∫

Γ

f(s,t)δ
(
x−X(s,t)

)
ds. (2.2)

Here X(s,t)= (X(s,t),Y(s,t)) is the arc-length parametrization of the interface Γ, s is the
arc-length, f=( f1, f2)T is the force density, and δ(·) is the Dirac delta function defined in
the distribution sense. The interface Γ separates the fluid into two regions Ω

+ and Ω
−

with Ω=Ω
+∪Γ∪Ω

−, where Ω
+ is used to express the exterior region of the interface, and

Ω
− is enclosed by the interface. Eq. (2.1b) together with the Dirichlet boundary condition

Eq. (2.2) leads to the compatibility condition that ub must satisfy:
∫

∂Ω

ub ·nbdS=0, (2.3)

where nb is the outer unit normal to ∂Ω. The reader is refereed to Fig. 1 for an illustration
of the problem. The motion of the moving interface satisfies

∂

∂t
X(s,t)=u(X,t)=

∫

Ω

u(x,t)δ
(
x−X(s,t)

)
dx. (2.4)



Z.-J. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 10 (2011), pp. 1333-1362 1337

nX

sFluid 1

Fluid 2

Figure 1: A typical domain with an interface represented by some Lagrangian control points. The domain Ω
+

and Ω
− are divided by a closed curve Γ across which the viscosity is discontinuous. Here n and τ are denoted

as the unit outward normal and tangential directions of the boundary, respectively.

Eq. (2.2) and Eq. (2.4) represent the interaction between the interface and the fluid. In
this model of moving interface, a fluid problem involving a closed elastic interface is
considered, where the force strength f exerted by elastic interface on the fluid has the
form of

f(s,t)=
∂

∂s

(
T(s,t)τ(s,t)

)
, (2.5)

with the tension T(s,t) given by

T(s,t)=T0

(∣∣∣
∂X(s,t)

∂s0

∣∣∣−1
)

. (2.6)

Here, the tension coefficient T0 is the stiffness constant which describes the elastic prop-
erty of the elastic interface, and s0 is a material parameter and equal to arc-length in the
unstretched configuration of the interface. The vector tangential to Γ is given by τ(s,t) in
the form of

τ(s,t)=
∂X

∂s

/∣∣∣
∂X

∂s

∣∣∣.

Thus, the force density can be computed directly from the location X of the interface Γ.
An equivalent form of Eq. (2.5) can be written as

f(s,t)=
(∂T

∂s

)
τ(s,t)+Tκn, (2.7)

where κ is the curvature defined by ∂τ/∂s=κn.
Over the whole domain, the viscosity µ is assumed to be a piecewise constant across

the interface and can be written as

µ(x)=

{
µ+, if x∈Ω

+,

µ−, if x∈Ω
−,

(2.8)

where µ+ and µ− are two positive constants.
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3 Jump conditions across the interface

Let n=(n1,n2) and τ =(τ1,τ2) be the unit outward normal and tangential vectors of the
interface, respectively. The jump across the interface Γ is by denoted [·] and defined for
of an arbitrary function q(X) along the interface at X by

[q] := lim
ǫ→0+

q(X+ǫn)− lim
ǫ→0+

q(X−ǫn). (3.1)

When the viscosity is discontinuous across the interface Γ, the jump conditions for the
pressure and velocity are coupled together [35] and summarized as follows:

[
µ

∂u

∂n

]
·τ+

[
µ

∂u

∂τ

]
·n+ f̂2 =0, (3.2a)

[
µ

∂u

∂n

]
·n+

[
µ

∂u

∂τ

]
·τ =0, (3.2b)

[µ∇·u]=0, [u]=0, (3.2c)

[p]=2
[

µ
∂u

∂n

]
·n+ f̂1, (3.2d)

[ ∂p

∂n

]
=[G]·n+[µ∆u]·n, (3.2e)

where f̂1 and f̂2 are the force density in the normal and tangential directions, i.e., f̂1 =
f·n and f̂2 = f·τ, denoting f̂ = ( f̂1, f̂2). Furthermore, (ξ,η) denotes the local coordinates
associated with the directions of n and τ at the interface, and the transformed velocity
field is defined as

ũ=µu, ṽ=µv, ũ=(ũ,ṽ).

By introducing the velocity components at the interface as two augmented variables, i.e.,

q(s)=
(
q1(s),q2(s)

)
=u
(
X(s,t),Y(s,t)

)
,

the applicable jump conditions across the interface for pressure can be decoupled from
(3.2a)-(3.2e) as follows (see [35] for details):

[p]= f̂1−2[µ]
∂q

∂η
·τ, [pη ]=

∂ f̂1

∂η
−2[µ]

( ∂2q

∂η2
·τ+κ

∂q

∂η
·n
)

, (3.3a)

[pξ ]= [G]·n+
∂ f̂2

∂η
+2[µ]

∂2q

∂η2
·n−2[µ]κ

∂q

∂η
·τ, (3.3b)

[pηη ]=
d

dη
[pη ]−κ[pξ ], [pξη ]=

d

dη

[∂p

∂n

]
+κ[pη ], (3.3c)

[pξξ ]= [∇·G]−[pηη ]. (3.3d)



Z.-J. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 10 (2011), pp. 1333-1362 1339

The corresponding applicable jump conditions across the interface for the velocity can
also be obtained as follows:

[ũ]= [µ]q, [ũξ ]=
(

f̂2+[µ]
∂q

∂η
·n
)

n2−[µ]
( ∂q

∂η
·τ
)

τ2, (3.4a)

[ũη ]= [µ]
∂q

∂η
, [ṽξ ]=−

(
f̂2+[µ]

∂q

∂η
·n
)

n1+[µ]
( ∂q

∂η
·τ
)

τ1, (3.4b)

[ũηη]= [µ]
∂2q

∂η2
−κ[ũξ ], [ũξη ]=

d

dη

[∂ũ

∂n

]
+[µ]κ

∂q

∂η
, (3.4c)

[ũξξ ]=−[ũηη ]+[pξ ]n+[pη ]τ−[G]. (3.4d)

It is noted from expressions (3.3a)-(3.4d) that the values of the jumps of the first and
second order derivatives of velocity and pressure can be obtained by a simple coordinate
transformation:

[qx]= [qξ ]n1+[qη ]τ1, [qy]= [qξ ]n2+[wη ]τ2, (3.5a)

[qxx]= [qξξ ]n
2
1+2[qξη ]n1τ1+[qηη ]τ

2
1 , (3.5b)

[qyy]= [qξξ ]n
2
2+2[qξη ]n2τ2+[qηη]τ

2
2 , q= ũ,p. (3.5c)

From (3.3a)-(3.5c), it is noted that, if the augmented variable q and singular force f are
both known, then all the jump conditions, say [p], [px], [py], [pxx], [pyy], [ũ], [ũx], [ũy],
[ũxx], [ũyy], are also known. In this work, the singular force is either prescribed for the
fixed interface or computed from the configuration of the moving interface. Therefore,
with the above strategy, the jump conditions for the velocity, pressure and their deriva-
tives are decoupled in the sense that all the jump conditions are only dependent on the
unknown augmented variables. As such, once the augmented variables are determined,
the immersed interface method for incompressible two-fluid Stokes flows with interfaces
can be implemented as before (for example as in [16]).

4 Numerical algorithm

The numerical algorithm is based on working with ũ= µu instead of u for Stokes equa-
tions as in [22] in order to easily incorporate the decouple jump conditions and use the
direct Stokes solver, which is based on the conjugate gradient Uzawa-type method for the
discretization of the Stokes equations with special treatment at the grid points near the
interface. The spatial discretization is carried out on a standard marker-and-cell (MAC)
staggered grid similar to that found in Tau [36] with mesh size h = ∆x = ∆y. With the
MAC mesh, the pressure field is defined at the cell center (i, j), where i∈{1,2,··· ,Nx} and
j∈{1,2,··· ,Ny}. The transformed velocity components ũ and ṽ are defined at the vertical
and horizontal edges of a cell, respectively. The original velocity components u and v
have the same locations as ũ and ṽ, respectively. The pressure and the velocity compo-
nents ũ and ṽ are arranged as in Fig. 2. An advantage of such a staggered grid is that



1340 Z.-J. Tan, K. M. Lim and B. C. Khoo / Commun. Comput. Phys., 10 (2011), pp. 1333-1362

,1 1
2 2

p
i j

1k

k

1k

,1
2

v
i j

1, 1
2

i j
u, 1

2
i j

u

, 11
2

v
i j

i
x

j
y

p

Control point

u uand

v vand

Figure 2: A diagram of the interface cutting through a staggered grid with a uniform mesh size h, where the
velocity component u, ũ is at the left-right face of the cell and v, ṽ is at the top-bottom face, and the pressure
is at the cell center.

there is no need for pressure boundary conditions when dealing with the derivative of
pressure since the pressure nodes are at the cell center.

4.1 Two-fluid Stokes solver involving correction terms

The discretization of Eqs. (2.1a)-(2.2) by second order MAC finite difference scheme leads
to the following discrete saddle point system

−
( ũi+1,j+ 1

2
−2ũi,j+ 1

2
+ũi−1,j+ 1

2

h2
+

ũi,j+ 3
2
−2ũi,j+ 1

2
+ũi,j− 1

2

h2

)
−C{∆ũ}i,j

+
pi+ 1

2 ,j+ 1
2
−pi− 1

2 ,j+ 1
2

h
+C{px}i,j = g1

i,j, (4.1a)

−
( ṽi+ 3

2 ,j−2ṽi+ 1
2 ,j+ ṽi− 1

2 ,j

h2
+

ṽi+ 1
2 ,j+1−2ṽi+ 1

2 ,j+ ṽi+ 1
2 ,j−1

h2

)
−C{∆ṽ}i,j

+
pi+ 1

2 ,j+ 1
2
−pi+ 1

2 ,j− 1
2

h
+C{py}i,j = g2

i,j, (4.1b)

ũi+1,j+ 1
2 −ũi,j+ 1

2

h
+

ṽi+ 1
2 ,j+1− ṽi+ 1

2 ,j

h
+C{∇·ũ}i,j =0. (4.1c)

Note that the discretization of the Stokes equations at the grid points near the interface
has been modified to account for the jump conditions across the interface due to the pres-
ence of singular forces at the interface. In Eqs. (4.1a)-(4.1c), C{∆ũ}i,j, C{∆ṽ}i,j, C{px}i,j,
C{py}i,j and C{∇·ũ}i,j are the corresponding spatial correction terms, which are added
to the finite difference equations and only non-zero at those points near the interface, to
improve the accuracy of the local finite difference approximations. These corrections will
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be evaluated later. In order to satisfy the discrete compatibility condition corresponding
to (2.3) to thereby ensure the solvability of system Eqs. (4.1a)-(4.1c), a solvable perturbed
system in a way similar to that in [18] via perturbing C{∇·ũ}i,j to Ĉ{∇·ũ}i,j in Eq. (4.1c)
is employed, where

Ĉ{∇·u}i,j =C{∇·ũ}i,j−C̄{∇·ũ}i,j.

Here C̄{∇·ũ}i,j is the mean value of the correction term C{∇·ũ}i,j. The reader is referred

to [18] for details. Let ∆h, GMAC and DMAC be the standard central difference operator,
the MAC gradient, and the divergence operators, respectively, then system (4.1a)-(4.1c)
can be written as

−∆hũ+GMACp=G+C1, (4.2a)

DMACũ=C2−Ĉ2, (4.2b)

where the coefficients C1 and C2 are the spatial correction terms whose expressions will
be given in the next subsection and Ĉ2 is the perturbing term. Let B1 = G(x)+C1 and
B2 =C2−Ĉ2, then (4.2a)-(4.2b) can be written in the matrix-vector form as

(
−∆h GMAC

DMAC 0

)(
ũ

p

)
=

(
B1

B2

)
. (4.3)

There are some fast solvers for the solution of (4.3), such as the PCG method [8, 29], the
PMINRES method [8, 29], the FFT-based method [5], and the multigrid method [8, 26,
29]. In this work, the fast solvers from FISHPACK [1] are utilized to incorporate the
CG-Uzawa method. The Uzawa procedure for problems with immersed interfaces is
analogous to the fast iterative method presented in [32, 36] and it consists of two steps:

Step 1 Solve DMAC
∆
−1
h GMACp= B2+DMAC

∆
−1
h B1 for the pressure p.

Step 2 Solve ∆hũ=B1−GMACp for the transformed velocity ũ.

Here, DMAC
∆
−1
h GMAC is the Schur complement of system (4.3). In Step 1, the system

is solved by the conjugate gradient method (CG) in this work. In the CG method, each
matrix-vector product with DMAC

∆
−1
h GMAC requires the inverse of ∆h which corresponds

to solving a Poisson equation. Several fast methods can be applied, such as the ICCG
method, the FFT method and multigrid method. In the present work, the fast solvers
from FISHPACK [1] are used. Once the pressure is obtained, the transformed velocity
field ũ can be solved by the fast solvers from FISHPACK [1] via Step 2. The computational
complexity for the fast Poisson solver from FISHPACK is O(M log(M)), where M is the
number of interior grid points of the computational domain. The present CG method
converges fast as discussed in [9, 32, 36] and the number of iterations in the CG method
is small and almost independent of the mesh size which can be seen from the numerical
examples in Section 6.
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Figure 3: Interface and mesh geometry near the irregular grid point (i, j), where the symbol ”X” represents the
intersection point between the interface and the grid lines.

4.2 Calculation of correction terms

Accordingly, the correction terms C1 and C2 are evaluated as follows:

C1 =C{∆ũ}−C{∇p}, (4.4a)

C2 =−C{∇·ũ}. (4.4b)

To evaluate the correction term C{∆ũ} of (4.4a) at an irregular point (i, j) as depicted
in Fig. 3, the jump conditions [ũx] and [ũxx] at the intersection point α of the interface
with the grid lines, and [ũy] and [ũyy] at β of the interface with the grid lines, need to be
computed. The correction term C{∆ũ} is calculated as follows:

C{∆ũ}i,j =− [ũ]+h+[ũx]α+ (h+)2

2 [ũxx]α
h2

− [ũ]+k− [ũy]β+ (k−)2

2 [ũyy]β

h2
,

where h+ = xi+1−xα, k−=yj−1−yβ and xα and yβ are the x-coordinate of the intersection
point α and the y-coordinate of the intersection point β as shown in Fig. 3, respectively.
∆ũ is approximated at the irregular point (i, j) as

∆ũ(i, j)=∆hũi,j+C{∆ũ}i,j+O(h).

Similarly, the other correction terms in (4.4a)-(4.4b) can be computed as follows

C{∇·ũ}i,j =− [ũ]+h+[ũx]α+ (h+)2

2 [ũxx]α
h

+
[ṽ]+k−[ṽy]β+ (k−)2

2 [ṽyy]β

h
,

C{∇p}i,j =
(
− [p]+h+ [px]α+ (h+)2

2 [pxx]α
h

,
[p]+k− [py]β+ (k−)2

2 [pyy]β

h

)
.
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4.3 Determination of the augmented variables

Assuming the augmented variable q at X is known, then the jump conditions for the
velocity, pressure and their derivatives are known as a functional of this augmented vari-
able. The transformed velocity field ũ at all the grid points can be then computed via the
CG-Uzawa method as discussed in Section 4.1 with the incorporation of the jumps in the
solutions and their derivatives into the difference schemes. The transformed velocity at
the control points from the outside of the interface X, Ũ+

k , can be interpolated from the
transformed velocity ũn+1 at the grid points and can be written as

Ũ+
k = Ũ+(X)=B+(ũ), (4.5)

where B+ is the modified bilinear interpolation operator which includes the appropriate
correction terms required to guarantee second order accuracy when the velocity is dis-
continuous, which can be found in Appendix A of [35]. Since the relationships between
the singular forces and the jumps in the solution or its derivatives are linear and all the
equations solved are linear in discrete form, Eq. (4.5) can be rewritten as

Ũ+
k (q)= Ũ+

k (0)+A+q, (4.6)

where Ũ+,0
k corresponds to the transformed velocity at the control points from the outside

of the interface at X obtained by solving Eqs. (2.1a)-(2.1b) with q = 0. A+ is a 2Nb×2Nb

matrix, where Nb is the number of control points. The vector A+q is the transformed
velocity at the control points from the outside of the interface X(k) obtained by solving
the following equations:

∇h pq =∆hũq+C̄1, (4.7a)

∇h ·ũq = C̄2, ũq|∂Ω =0, (4.7b)

A+q=B+(ũq). (4.7c)

Here, C̄1 and C̄2 are the correction terms which only take into account the contribution
of q at the interface without the contribution of f̂ to the jump conditions. Note that the
relation Ũ+

k (q) = µ+q, when q is satisfied exactly, then the augmented system Eq. (4.6)
can be further written as

(
A+−µ+ I

)
q=−Ũ+

k (0). (4.8)

Therefore, the augmented variable q at control points is determined by solving Eq. (4.8).
Note that the matrix A+ depends on only the location of the interface. For fixed in-

terface problem, the coefficient matrix A+ is a constant matrix at every time step, so the
augmented system (4.8) can be solved by the LU method. For moving interface problem,
the matrix A+ changes at each time step and have to be formed at every time step. To
avoid generating A+, the GMRES method is employed to solve the linear system (4.8) it-
eratively in this work. Each iteration of GMRES method requires a matrix-vector product
which can be obtained by solving (4.7a)-(4.7c). In the present computations, only a few
iterations are needed in the GMRES iteration, so the algorithm is effective.
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4.4 Numerical implementation

In this section, the implementation of the proposed algorithm is described. For the fixed
interface, the algorithm for finding ũ, u, p and the augmented variable q can be summa-
rized as follows:

Algorithm I: fixed interface

Step 1 Compute the right hand side of (4.8) by calculating Ũ+
k (0).

• Set q=0 and solve (2.1a)-(2.1b) for the velocity at all the grid points.

• Interpolate the transformed velocity at the control points Xk from the outside of the
interface as in (4.5).

Step 2 Compute the augmented variable q by solving (4.8) using the LU method or the GMRES
method.

Step 3 Compute ũ and p using the Stokes solver as described in Section 4.1. The velocity field u can
be directly obtained from the transformed velocity field ũ.

For moving interface problem, the position of the moving interface is updated im-
plicitly within each time step [35] and the BFGS method [34] is employed to solve the
resulting nonlinear system as in [16]. Given the location of the control points Xn, the
transformed velocity ũn, the algorithm for computing the transformed velocity ũn+1 that
satisfies the continuous condition of the velocity at the interface, pressure pn+1 and the
location of the control points Xn+1 can be described as follows:

Algorithm II: moving interface

Step 1 Set k :=0, make an initial guess for Xn+1, i.e., X(0) as X(0) =2Xn−Xn−1 and set the inverse
Jacobian Bn+1

0 =Bn
k . At the first time step, the inverse Jacobian is initialized to the identity

matrix I.

Step 2 • Compute the force strength along the moving interface using expression (2.5).

• Compute the augmented variable q at the moving interface to satisfy the continuous
condition of the velocity u. That is, calculate the right hand side vector of (4.8). Then
solve for the small system of Eq. (4.8) using the GMRES method to obtain the augmented
variable q along the interface.

Step 3 • Compute ũn+1 and pn+1 using the Stokes solver. This step involves computing the
appropriate correction terms as described in Section 4.1, the velocity field un+1 can be
also obtained from the transformed velocity field ũn+1.

• Compute the velocity un+1(X(k)) at X(k) based on the interpolated transformed velocity

Ũ+
k (X(k)) at the control points from the outside of the interface X(k), which is interpolated

from the transformed velocity ũn+1 at the surrounding grid points.

Step 4 • Evaluate Q(X(k)).

• If ‖Q(k)‖<ε then Xn+1 =X(k) and stop the iteration. Otherwise, update X(k+1) and the
inverse Jacobian matrix Bn+1

k+1 [34]. Set k=k+1 and go to Step 2.
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5 Application to two-phase Navier-Stokes equations

The previous method can be extended to other types of fluid flow (including the unsteady
two-phase Stokes flow, steady two-phase Navier-Stokes flow and unsteady two-phase
Navier-Stokes flow) involving interfaces based on the generalized Stokes solver. With-
out loss of generality, only the unsteady two-phase Navier-Stokes flow is considered in
this section. The two-phase Stokes equations (2.1a)-(2.2) describe fluid only for very low
Reynolds number. In modeling flows with higher Reynolds numbers, Eqs. (2.1a)-(2.2) are
replaced by the following two-phase Navier-Stokes equations

ut+(u·∇)u+∇p=∇·µ
(
∇u+(∇u)T

)
+F(x,t)+G(x,t), x∈Ω, (5.1a)

∇·u=0, x∈Ω. (5.1b)

The initial condition and the Dirichlet boundary conditions for the velocity fields are
given by u(x,0)=u0 and u∂Ω =ub, respectively. With a semi-implicit temporal discretiza-
tion by using the Crank-Nicolson scheme for the viscous terms and the Adams-Bashforth
scheme for the convective terms, then the time integration from tn to tn+1 can be written
as:

ũn+1−ũn

µ∆t
+

1

µ
(u·∇ũ)n+ 1

2 +∇pn+ 1
2 =

1

2
(∆ũn+1+∆ũn)+Gn+ 1

2 −C{ũt}
µ

, x∈Ω, (5.2a)

∇·ũn+1 =0, x∈Ω, (5.2b)

where (u·∇ũ)n+1/2 is approximated by,

(u·∇ũ)n+ 1
2 =

3

2
(u·∇ũ)n− 1

2
(u·∇ũ)n−1. (5.3)

Next put the known terms in Eq. (5.2a) to the right side and denote in the form of

G =
1

µ∆t
ũn+

1

2
∆ũn− 1

µ
(u·∇ũ)n+ 1

2 +Gn+ 1
2 −C{ũt}

µ
,

where C{ũt} is the correction term for the discretization of ũt and is only nonzero at a
particular grid point which the interface crosses over the time interval [tn,tn+1].

Given the transformed velocity ũn, the transformed velocity ũn+1 and pressure pn+1/2

at the next time step can be computed by solving Eqs. (5.2a)-(5.2b), which is equivalent to
find the solution (ũn+1,pn+1/2) from the following generalized Stokes interface problem
with slightly modified jump conditions similar to those in (3.3a)-(3.4d):

χũ−ν∆ũ+∇p=G , x∈Ω, (5.4a)

∇·ũ=0, x∈Ω, (5.4b)
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where χ=1/(µ∆t) and ν=1/2. Similar to the case of Steady two-phase Stokes equations
(when χ=0 and ν=1), the discretization of Eqs. (5.4a)-(5.4b) by second order MAC finite
difference scheme leads to the following discrete saddle point system:

(
χI−ν∆h GMAC

DMAC 0

)(
ũ

p

)
=

(
B̃1

B̃2

)
, (5.5)

where B̃1 and B̃2 are the right hand terms which involve the appropriate correction terms
similar to those in Section 4.1. The above system Eq. (5.5) can be efficiently solved by the
preconditioned conjugate gradient Uzawa-type method with the preconditioners pro-
posed by Cahouet and Chabard [3]. Based on the generalized Stokes solver for system of
Eq. (5.5), the similar IIM algorithm as in Section 4.4 can be implemented for two-phase
Navier-Stokes equation with interfaces.

6 Numerical experiments

In this section, several numerical experiments are carried out to demonstrate the capa-
bilities of the proposed method. All the simulations are done on a Laptop with 2.00GHz
processor.

Example 6.1 (An example with an exact solution under Stokes flow). In the first example
taken from [22], the numerical test is performed to check the accuracy of the algorithm.
The provided exact velocity and pressure are given by

u=





y

4
, x2+y2

<1,

y

4
(x2+y2), x2+y2≥1,

(6.1a)

v=





− x

4
(1−x2), x2+y2

<1,

− xy2

4
, x2+y2≥1,

(6.1b)

p̃=






(
− 3

4
x3+

3

8
x
)

y, x2+y2
<1,

0, x2+y2≥1,
(6.1c)

p= p̃−mean( p̃), (6.1d)

where mean( p̃) is the average of p̃. The external force term g=(g1,g2)T is derived directly
from the exact solution as follows

g1 =





(
− 9

4
x2+

3

8

)
y, x2+y2

<1,

−2µ+y, x2+y2≥1,
(6.2a)

g2 =





−3

4
x3+

3

8
x− 3µ−

2
x, x2+y2

<1,

µ+

2
x, x2+y2≥1.

(6.2b)
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And the singular force terms in the normal direction and tangential direction are

f̂1 =
(3

4
cos3θ− 3

8
cosθ

)
sinθ− 3

2
[µ]cos3 θsinθ, (6.3a)

f̂2 =
1

2
µ++

3

4
[µ]cos2θ(1−2cos2 θ) (6.3b)

calculated from (3.2a) and (3.2d), respectively, where θ is the angle between the x-axis
and the normal direction at the point of the interface.

The simulation is performed with a 64×64 grid on a computational domain of [−2,2]×
[−2,2]. The interface is presented by 64 control points. Fig. 4 shows the plots of the x-
component of the transformed velocity field, the x-component of the velocity field and
the pressure profile with µ+=0.1 and µ−=1. It is observed that the discontinuities in the
transformed velocity and the pressure are well captured.
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Figure 4: The x-component of the transformed velocity field ũ (left), the x-component of the velocity field u
(middle) and the pressure profile (right) with µ+ =0.1 and µ−=1.

The result of the convergence rate analysis is shown in Table 1 and Table 2, which
indicates that the velocity is second order accurate, and the pressure is nearly second
order accurate. The sixth column and the seventh column show the number of average
CG iterations in the Stokes solver and the number of GMRES iterations in the augmented
system, which indicates that a limited number of iterations are needed and the number
of iterations is almost independent of the mesh size. The CPU time in seconds is listed in
the last column, which shows that the present method is efficient.

Table 1: Grid refinement analysis for Example 6.1 with µ+ =1 and µ−=0.1.

N ‖Eu ‖∞ Order ‖Ep ‖∞ Order NCG NGMRES CPU(s)
32 1.5714E-02 – 1.8547E-02 – 10 8 0.39
64 3.8476E-03 2.03 5.1587E-03 1.85 10 8 1.15

128 9.7853E-04 1.98 1.3662E-03 1.92 11 7 3.95
256 2.4679E-04 1.99 3.6514E-04 1.90 12 7 20.79
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Table 2: Grid refinement analysis for Example 6.1 with µ+ =0.1 and µ−=1.

N ‖Eu ‖∞ Order ‖Ep ‖∞ Order NCG NGMRES CPU(s)
32 5.8091E-03 – 2.5077E-02 – 9 9 0.36
64 1.5286E-03 1.93 6.6728E-03 1.91 10 9 1.45
128 3.5029E-04 2.13 1.8554E-03 1.85 11 9 5.17
256 8.9237E-05 1.97 5.0759E-04 1.87 12 9 22.52

Example 6.2 (Rotational flow under Stokes flow). In the second example, a fixed interface
problem with no known solution under Stokes flow is considered. The computational
domain is [−1,1]×[−1,1]. The involved interface is a circle with radius r = 1/2, which
is placed at the center of the domain. The no-slip boundary condition for the velocity is
taken. The force is only taken along the tangential direction and the normal force is set
as f̂1 = 0. In the cases below, the tangential force is taken as f̂2 = 0.1 unless it is stated
otherwise.

In the computations, a 64×64 grid is used and 48 control points are set to represent
the interface. For the first case, the viscosities outside and inside the interface are taken
as µ+ = 1 and µ− = 0.1, respectively, where the viscosity outside the interface is larger
than that inside the interface. The solution is presented in Fig. 5, and Fig. 5 (left) and
Fig. 5 (middle) show the x-component of the transformed velocity ũ and the x-component
of the velocity u with the viscosity ratio λ = 10, respectively. From Fig. 5 (middle) it
can be observed that the velocity u is continuous but not smooth, as expected. Due to
discontinuous viscosity across the interface, the transformed velocity ũ is discontinuous,
however, the discontinuity is well captured sharply by the proposed algorithm, which
can be observed in Fig. 5 (left). The velocity field is presented in Fig. 5 (right), which
corresponds to a rigid body motion inside the interface.

Next, the second case is considered, where the viscosity outside the interface is less
than that inside the interface. Compared with the previous first one, the viscosities out-
side and inside the interface are just exchanged. That is, µ+ =0.1 and µ− =1 with λ=0.1
are taken for the second case. The corresponding plots for the velocity are presented in
Fig. 6. From Fig. 5 and Fig. 6, it can be seen that the respective velocity fields indicate
some differences for the solution. A grid refinement analysis is carried out, using a ref-
erenced grid of 512×512, to determine the order of the convergence of the algorithm.
The results in Table 3 indicate that the velocity is second order accurate and pressure is
nearly second order accurate. The number of CG iterations and the number GMRES are
independent of the mesh size and shown in the sixth column and seventh column in the
table. The last column shows the CPU time required. It is noted that the required CPU
time using the current IIM-Stokes solver is 0.76s and 0.71s on a 64×64 grid for two cases
of different viscosity ratios, respectively, compared to the computational cost of 218.85s
and 226.51s by using the method in [35] directly to get the steady state solution. From the
comparison, it is clearly seen that the computational cost is fairly low using the present
method to solve steady two-phase Stokes flows.
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Figure 5: For Example 6.2 on rotational flow, first case. The x-component of the transformed velocity field ũ
(left), the x-component of the velocity field u (middle) and the velocity field u (right), with f̂1 = 0, f̂2 = 0.1,
µ+ =1, µ−=0.1 and λ=10.
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Figure 6: For Example 6.2 on rotational flow, second case. The x-component of the transformed velocity field
ũ (left), the x-component of the velocity field u (middle) and the velocity field u (right), with f̂1 =0, f̂2 =0.1,
µ+ =0.1, µ−=1 and λ=0.1.

Table 3: Grid refinement analysis for Example 6.2.

N ‖Eu ‖∞ Order ‖Ep ‖∞ Order NCG NGMRES CPU(s)
(a) µ+ =1, µ− =0.1

64 1.5476E-05 – 7.1017E-04 – 8 5 0.76
128 3.8411E-06 2.01 2.0536E-04 1.79 8 5 2.74
256 9.0184E-07 2.09 5.5408E-05 1.89 8 5 12.15

(b) µ+ =0.1, µ− =1
64 1.9673E-05 – 8.4538E-04 – 8 6 0.71

128 4.4178E-06 2.15 2.2495E-04 1.91 8 6 3.39
256 1.0955E-06 2.01 6.1968E-05 1.86 8 6 14.18

Example 6.3 (Ellipse-shaped membrane under Stokes flow). In the second example, a
moving interface problem which involves an ellipse-shaped membrane [17,18,37] is con-
sidered under Stokes flow. The initial elliptical membrane (the solid line in Fig. 7, labeled
”Initial”) has the semi-major axis a=0.75 and semi-minor axis b=0.5. The computational
domain is [−1,1]×[−1,1] and the ellipse is located at the center of the domain. The un-
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Figure 7: The interface configurations at different states in a square domain.

stretched state of membrane (the dashed line in Fig. 7, labeled ”Unstretched”) is a circle
with radius r0 =0.5. The tension coefficient T0 is set as 1 in this example.

Due to the restoring force, the ellipse will relax to a circle (the dashdotted line in

Fig. 7, labeled ”Equilibrium”) with radius re =
√

ab≈0.61237, which is larger than the un-
stretched interface but has the same area as the initial ellipse because of the incompress-
ibility of the enclosed fluid. In the computations, the homogeneous Dirichlet boundary
condition is applied, i.e., u|∂Ω =0 unless it is stated otherwise. In this example, a 64×64
grid is employed, and 64 control points are used to represent the interface. In the simu-
lations, the velocity and pressure at time t = 0 based on the initial elliptical interface are
first computed before the interface has moved.

For the case of λ=0.1 with µ+ =0.1 and µ+ =1, where the viscosity outside the inter-
face is less than that inside the interface. The x-component of the transformed velocity
field ũ and the x-component of velocity field u at t = 0 are presented in Fig. 8 (left) and
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(right) at t=0 with T0 =1, µ+ =0.1, µ−=1 and λ=0.1.
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Fig. 8 (right), respectively. The corresponding velocity field u and pressure profile are pre-
sented in Fig. 9 (left) and Fig. 9 (right), respectively. As expected, it can be observed from
these figures that the transformed velocity ũ and pressure p are discontinuous across
the interface while the velocity u is continuous but not smooth. Fig. 10 shows this more
clearly with the plots of cross section of ũ-component and u-component along the line
y =−0.39 and the plot of cross section of p along the line y =−0.015 at t = 0. The dis-
continuities in the transformed velocity, the derivative of the velocity and pressure are
very sharply captured across the interface as shown in Fig. 10 (left), Fig. 10 (middle) and
Fig. 10 (right), respectively.

For the case of λ=10 with µ+ =1 and µ+ =0.1, where the viscosity outside the inter-
face is larger than that inside the interface, the x-component of the transformed velocity
field ũ, the x-component of velocity field u and pressure profile at t = 0 are plotted in
Fig. 11 (left), Fig. 11 (middle) and Fig. 11 (right), respectively. Again, the sharp jump
in the transformed velocity, the derivative of the velocity and the pressure are well re-
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ũ field at t = 0

y

ũ
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boundary condition is used.
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Figure 12: The x-component of the transformed velocity field ũ (left), the x-component of velocity field u
(middle) and pressure profile (right) at t = 0 with T0 = 1, µ+ = 1, µ− = 0.1 and λ = 10, where the periodic
boundary condition is used.

solved. The present method can also directly be used to solve the flow problem with the
periodic boundary condition. The corresponding solutions are presented in Fig. 12 for
the same case, which can be compared to Fig. 11 where the Dirichlet boundary condition
is employed. Some differences can be found due to the use of the different boundary
condition from these two figures. It demonstrates that the present method is flexible for
different boundary conditions.

The convergence analysis for the flow field is performed. Since the analytic solution
is not available, the error in velocity and pressure are measured via using a reference so-
lution which is obtained on a fine 512×512 grid. In Table 4, the convergence rate analysis
at t = 0 is shown, and the expected second order accuracy for the velocity and near sec-
ond order accuracy for the pressure are achieved. Again it can be seen that the number
of CG iterations and the number of GMRES iterations remains almost the same with grid
refinement. The required CPU time is shown in the last column of the table, which shows
the efficiency of the present IIM-Stokes solver. The CPU time performed on a 64×64 grid
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Table 4: Grid refinement analysis for Example 6.3.

N ‖Eu ‖∞ Order ‖Ep ‖∞ Order NCG NGMRES CPU(s)
(a) µ+ =1, µ− =0.1

64 1.3070E-03 – 5.4706E-03 – 11 8 1.21
128 3.2273E-04 2.02 1.4966E-03 1.87 12 7 4.54
256 7.3159E-05 2.14 3.9275E-04 1.93 13 7 21.70

(b) µ+ =0.1, µ− =1
64 2.2359E-03 – 5.6951E-03 – 11 9 1.48

128 5.3925E-04 2.05 1.5154E-03 1.91 12 8 5.33
256 1.0277E-04 2.39 4.0887E-04 1.89 13 8 23.43

up to t = 0.01 by the current method is 8.32s and 9.34s for corresponding cases, respec-
tively, compared to the computational cost of 138.69s and 139.17s by the method in [35]
using Navier-Stokes equation and letting the low Reynolds number become very low so
as to approach the Stokes flow regime. The comparison shows clearly the advantage of
time savings for solving the Stokes solution in the present work vs-a-vs the Navier-Stokes
equations in [35].

For the purpose of the comparison of viscosity effects on interface motion over longer
times, the evolutions of the semi-major and semi-minor axes versus time for four cases
are plotted in Fig. 13. It can been observed that, under the elastic force and viscosity,
the elliptical interfaces relax gradually to the circular shape without oscillations until the
equilibrium is reached for all the cases. At t = 150, the maximum amplitude between
semi-major axis and re is 8.1185e−5, and the maximum amplitude between semi-minor
axis and re is 3.9432e−5 among them. The final numerical equilibrium is in good agree-
ment with the true equilibrium. It is also noted that, time taken to reach the equilibrium
state is different due to different viscosities. For the case of same viscosities µ+ =0.1 and
µ− = 0.1, the viscosities taken are the smallest outside and inside the interface, and the
interface takes the shortest time to converge to the equilibrium state as seen from the dot-
ted line in Fig. 13. However, for the case of same viscosities with µ+ =1 and µ− =1, the
viscosities taken are the largest outside and inside the interface, and the interface takes
the longest time to converge to the equilibrium state as seen from the solid line in Fig. 13.
For the other two cases of different viscosities outside and inside the interface, the times
taken are between above-mentioned two cases of same viscosities. With larger viscos-
ity outside the interface, i.e., µ+ = 1 and µ− = 0.1, the interface takes a relatively larger
time to relax to the equilibrium state than the other one as seen from the dashed line and
dash-dot line in Fig. 13.

In Fig. 14, the plots of the absolute value of the numerical divergence of velocity
field, |divhu|, versus time up to t = 150 with different viscosities are given. It shows
that, the divergence of the velocity field on the discrete level is small and the maximum
discrete divergence of velocity field among the four cases reaches an accuracy of 4.2106e−
5. Moreover, after a later time the discrete divergence of the velocity field is getting very
close to zero for all the cases.
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Figure 13: For Example 6.3. The evolution of rx and ry with T0 = 1 and different viscosities. The interface
relaxes gradually to the equilibrium state without oscillations.
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Figure 14: For Example 6.3. The absolute value of the numerical divergence of velocity field, |divhu|, versus
time with T0 =1 and different viscosities.

The area conservation in the simulation is also found to be kept well. In Fig. 15,
the plots of the area conservation error versus time up to t = 150 for the four cases are
presented. In the figure, the maximum area conservation error is 1.4166e−004 and it
indicates only a small area loss of 0.01202% in percentage.

Finally, the iteration in GMRES is briefly discussed for this problem. In Fig. 16 (left),
the number of total GMRES iterations versus time for the case with µ+=1.0, µ−=0.1 and
λ = 10 is presented. The number of total GMRES iterations versus time with µ+ = 0.1,
µ−=1.0, and λ=0.1 is presented in Fig. 16 (right). It can be seen that the number of total
GMRES iterations is not very large for the present cases. In these plots, the number of
total GMRES iterations means the sum of the number of GMRES iterations at each BFGS
iteration within one time step.
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Figure 16: For Example 6.3. Number of total GMRES iterations with T0 = 1 and ∆t = h/8 (left) µ+ = 1 and
µ−=0.1 (right) µ+ =0.1 and µ−=1.

Example 6.4 (Flower-shaped membrane under Stokes flow). This example is to show that
the present method can handle flows with a more complicated initial interface like the
configuration found in the literature [18] for a stiff problem. Similar to the above example,
the initial interface is now stretched to a flower shape describing in polar coordinate
as is given by r(θ) = 0.8+0.3sin(9θ) in polar coordinates. The unstretched interface is
a circle with the radius r0 = 0.3. Both are shown in Fig. 17 (solid line and dashdotted
line, respectively). In the computations, a 128×128 grid on a computational domain
of [−1.5,1.5]×[−1.5,1.5] is employed, and 160 control points are used to represent the
interface. The tension coefficient T0 is set as 0.5.

In Fig. 17, the configurations of the interface at t = 0, t = 0.2, t = 0.4 and t = 1 are
plotted with µ+=1.0 and µ−=0.1. At t=1, the interface is almost in the equilibrium state
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Figure 18: For Example 6.3. The velocity field (left) and pressure contours (right) at t = 0.2 with µ+ = 1.0,
µ−=0.1 and T0 =0.5.

depicted as a circle in Fig. 17 (dashdotted line). The corresponding velocity field and
pressure contour at t = 0.2 are plotted in Fig. 18. From Fig. 18 (right) it is clear that the
present method can capture the highly localized discontinuous profile for the pressure.

Example 6.5 (Elastic membrane under Navier-Stokes flow). This example is to show the
current IIM combined with the generalized Stokes solver is flexible in terms of types of
fluid flows, which is applied to solve for the incompressible two-phase Navier-Stokes
equation with moving interface. Similar to the above Example 6.3, the initial interface is
stretched to a ellipse-shaped membrane. The Navier-Stokes flow in the square domain of
[−1.5,1.5]×[−1.5,1.5] is considered and the ellipse is located at the center of the domain.
The semi-major and semi-minor axes of ellipse are a = 0.75, b = 0.5, respectively. The
radius of unstretched circle-shaped membrane is r0 = 0.5. The tension coefficient T0 is
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set as 10 in this example. The flow is initially at rest with u0 = v0 = 0. Under the effect
of the elastic force and viscosity, the membrane finally converge to a circular shape. The
simulations are conducted on a 64×64 grid and 64 control points are used to represent
the interface.
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Figure 19: The x-component of the transformed velocity field ũ (left), the x-component of velocity field u
(middle) and pressure profile (right) at t=0.47 with T0 =10, µ+ =1, µ−=0.1 and λ=10.
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Figure 20: The x-component of the transformed velocity field ũ (left), the x-component of velocity field u
(middle) and pressure profile (right) at t=0.61 with T0 =10, µ+ =0.1, µ−=1 and λ=0.1.

The x-component of the transformed velocity field, the x-component of velocity field
and the pressure profile are presented in Fig. 19 and Fig. 20 for the case with λ = 10
(µ+ =1 and µ−=0.1) and the case with λ=0.1 (µ+ =0.1 and µ−=1.0), respectively. It can
be observed that the sharp jump in the transformed velocity field and pressure is well
captured by the present algorithm.

Fig. 21 shows the evolutions of the semi-major and semi-minor axes for λ=10, λ=1
and λ = 0.1 with µ+ = 0.1 fixed, and reference to the same viscosities of µ+ = µ− = 1 as
shown in the dotted line. It is observed that, the membrane with these three cases of
different viscosities oscillates and finally converge to a circular shape and the effect from
different viscosities results in a different oscillation number and a decay of the different
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Figure 21: The evolution of rx and ry with fixed µ+ =0.1, for λ=10, λ=1 and λ=0.1.
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Figure 22: The evolution of rx and ry with fixed µ−=0.1, for λ=10, λ=1 and λ=0.1.

oscillation amplitude before the equilibrium is reached. For the referred case with the
same viscosities of µ+ = µ− = 1, the membrane relax gradually to the equilibrium state
without oscillations. With larger viscosity ratio the fluids (inside and outside the inter-
face) move faster. In Fig. 22, the evolutions of the semi-major and semi-minor axes are
presented for λ = 10, λ = 1 and λ = 0.1 with µ− = 0.1 fixed, the larger the viscosity ratio
the fluids move slower. For the case of λ = 10 with µ+ = 1 and µ− = 0.1, the membrane
relax gradually to the equilibrium state without oscillations, however, for the referred
case with the same viscosities of µ+ = µ− = 0.01, the membrane takes the longest time
to oscillate with most cycles before setting down to the equilibrium state. It is clearly
demonstrated from Fig. 21 and Fig. 22 that with more viscosity the fluid moves slower. It
is also interesting to compare Figs. 21 and 21 broadly with Fig. 13, the latter under Stokes
flow dynamics. It is clear under Stokes flow, the time taken to reach equilibrium is far
longer and there is the absence of oscillations.
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Figure 23: For Example 6.4. The absolute value of the numerical divergence of velocity field, |divhu|, versus
time with T0 =10 and different viscosities.
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Figure 24: For Example 6.4. Plot of the absolute error in area versus time with T0 =10 and different viscosities.

Fig. 23 shows the plot of the absolute value of the numerical divergence of velocity
field, |divhu|, versus time up to t=150 for fixed µ−=0.1 with different viscosity ratios. In
Fig. 24, the corresponding plots of the area conservation error versus time up to t = 150
are presented. It indicates that the divergence-free condition on the discrete level and
area conservation are both satisfied well with the present method.

7 Concluding remarks

In this paper, a novel implementation of MAC grid-based IIM combined with Stokes
solver for solving incompressible two-phase flow with the interface is presented. The
components of the transformed velocity are introduced as two augmented variables to
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satisfy the continuous velocity condition across the interface. The augmented variables
are solved by the GMRES method. The Stokes equations are discretized on a MAC grid
via a second order finite difference method by incorporating the jump conditions and
then solved by the conjugate gradient Uzawa-type method. The present method is flex-
ible for different types of two-phase flow problems and different boundary conditions.
The numerical results show that the proposed algorithm can achieve second order accu-
racy for the velocity and nearly second order accuracy for the pressure. The proposed
method is efficient, and the advantages of time and computing resources savings for
solving Stokes equation in the present work vis-a-vis the Navier-Stokes are shown. The
present IIM combined with generalized two-phase Stokes solver with correction terms
has also been applied to solve for incompressible two-phase Navier-Stokes flow with in-
terfaces. Current method is limited to cases where the topology of the interface exists
changes. Future works include the extension to 3D.
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