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Abstract. Two fundamental facts of the modern wave turbulence theory are 1) exis-
tence of power energy spectra in k-space, and 2) existence of ”gaps” in this spectra
corresponding to the resonance clustering. Accordingly, three wave turbulent regimes
are singled out: kinetic, described by wave kinetic equations and power energy spec-
tra; discrete, characterized by resonance clustering; and mesoscopic, where both types
of wave field time evolution coexist. In this review paper we present the results on
integrable dynamics of resonance clusters appearing in discrete and mesoscopic wave
turbulent regimes. Using a novel method based on the notion of dynamical invariant
we show that some of the frequently met clusters are integrable in quadratures for ar-
bitrary initial conditions and some others-only for particular initial conditions. We also
identify chaotic behaviour in some cases. Physical implications of the results obtained
are discussed.
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1 Introduction

The broad structure of modern nonlinear science born at the edge of physics and math-
ematics includes an enormous number of applications in cosmology, biochemistry, elec-
tronics, optics, hydrodynamics, economics, neuroscience, etc. The emergence of non-
linear science itself as a collective interdisciplinary activity is due to the awareness that
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its dynamic concepts first observed and understood in one field (for example, popula-
tion biology, flame-front propagation, non-linear optics or planetary motion) could be
useful in others (such as in chemical dynamics, neuroscience, plasma confinement or
weather prediction). The theory of integrable Hamiltonian systems, a generalization of
the classical theory of differential equations, is the fundamental part of the whole non-
linear science for it yields good mathematical models for many physical phenomena.
Various classifications of integrable systems are presently known which turned out to be
quite useful for physical applications. Classifications are known based on the various
intrinsic properties of integrable systems [56]: symmetries, conservation laws, Lax-pairs,
etc. In [3] the general classification of integrable Hamiltonian systems is presented based
on the form of their topological invariants. The usefulness of this classification is demon-
strated in several problems on solid mechanics. In particular, it is proven that two famous
problems-the Euler case in rigid body dynamics and the Jacobi problem of geodesics on
the ellipsoid-are orbitally equivalent. In [12] the idea of classification is presented based
on normal forms of a certain class of bi-hamiltonian PDEs. Miscellaneous hierarchies of
integrable PDEs are presented in [50].

The list can be prolonged further but the main point for us presently is the following:
the notion of integrability itself is ambitious! There are many quite different definitions of
integrability, for instance integrability in terms of elementary functions (equation ÿ=−y
has the explicit solution y= asin(x+b)); integrability modulo class of functions (equation
ÿ = f (y) has general solutions in terms of elliptic functions), etc. An example of less
obvious definition of integrability is C-integrability, first introduced in [6]: integrability
modulo change of variables, meaning that a nonlinear equation is called C-integrable if it
can be turned into a linear equation by an appropriate invertible change of variables. For
instance, Thomas equation ψxy+αψx+βψy+ψxψy=0 is C-integrable. Profound discussion
on the subject can be found in [36]. In the present paper, integrability is interpreted in
terms of the existence of a number of independent dynamical invariants of the system;
for each in-this-sense-integrable system, solutions are then written out in quadratures.

The dynamical systems we are interested in, describe nonlinear resonance clusters
appearing in evolutionary dispersive wave systems in two space variables. Nonlinear
resonances are ubiquitous in physics. They appear in a great amount of typical mechan-
ical systems [13, 38], in engineering [8, 18, 39, 63], astronomy [55], biology [16], etc. Euler
equations, regarded with various boundary conditions and specific values of some pa-
rameters, describe an enormous number of nonlinear dispersive wave systems (capillary
waves, surface water waves, atmospheric planetary waves, drift waves in plasma, etc) all
possessing nonlinear resonances.

The classical approach of statistical wave turbulence theory in a nonlinear wave sys-
tem assumes weak nonlinearity, randomness of phases, infinite-box limit, existence of an
inertial interval in wavenumber space (k0,k1) (where energy input and dissipation are
separated in scales from both energy input and dissipation area) as well as some other
assumptions omitted here (see [70] for more details). As a result, the wave system is
energy conserving, and wave kinetic equations describing the wave spectrum have sta-
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Figure 1: Color online. Schematic representation of wave turbulent regimes.

tionary solutions in the form of Kolmogorov-Zakharov (KZ) energy power spectra k−α,
α>0 (see [59, 70, 73], etc).

As it was first established in the frame of the model of laminated turbulence, [24],
KZ-spectra have ”gaps” formed by exact and quasi-resonances (that is, resonances with
small enough resonance broadening). This yields two distinct layers of turbulence in an
arbitrary nonlinear wave system-continuous and discrete-and their interplay generates
three possible wave turbulent regimes: kinetic, discrete and mesoscopic as it is shown in
Fig. 1.

The very concept of the mesoscopic regime has been introduced in [74] and its existence
has been demonstrated in numerical simulations with dynamical equations for surface
gravity waves. In this paper, frozen turbulence-characterized by the existence of ”frozen”
(or non-interacting) modes keeping their energy and taking no part in the energy transfer
over k-spectrum at some time-scale-is regarded as an opposite case to the kinetic regime.
Example of frozen turbulence (for capillary waves) is given in [62] where also the notion
of frozen turbulence was originally presented. Frozen turbulence is one possible realiza-
tion of a discrete regime first introduced in [27].

Discrete regime is characterized by the behavior of distinct modes, whether frozen or
taking part in exact and quasi-resonances. The existence of non-interacting modes for
various 3-wave resonance systems has been proven analytically in [21]; in particular, it
was shown that capillary waves with dispersion function ω∼ k3/2 have no exact 3-wave
resonances in bounded domains and therefore all modes will be frozen (at the corre-
sponding time scale and for appropriate energies, this will be explicated below in the
present Section). Example of a wave system where both types of modes do exist (atmo-
spheric planetary waves) is given in [22]: both interacting and frozen modes have been
observed (see [22], Fig. 1 and Fig. 3 correspondingly). Examples of discrete regimes for
capillary waves in various media and for different forms of laboratory tanks can be found
in [10].

These theoretical findings are confirmed by numerous laboratory experiments. For in-
stance, in the experiments with gravity surface wave turbulence in a laboratory flume, [11],
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only a discrete regime has been identified while in [69] coexistence of both types of time
evolution has been established. Taking into account additional physical parameters in
a wave system transition from kinetic to mesoscopic regime can be observed as it was
demonstrated in [9] for capillary water waves, with and without rotation.

It is important to realize that for any of these regimes to be observable, a small pa-
rameter, 0 < ε ≪ 1, should be introduced, i.e., we always regard weakly nonlinear case
yielding small enough energies of wave systems under consideration. There are various
ways of introducing a small parameter: for instance, for planetary waves the ratio of the
particle velocity to the phase velocity is usually taken as the small parameter; for various
water waves it can be taken as the steepness of the waves; etc. Accordingly, in all dy-
namical systems studied further on, the modes’ amplitudes depend on the ”slow” time,
εt, and are usually refereed to as slowly changing amplitudes; time scale t corresponds
to the linear case and is sometimes called ”fast” time.

From a mathematical point of view, the very special role of resonant solutions has
been first demonstrated by Poincaré who proved, using Calogero’s terminology, that a
nonlinear ODE is C-integrable if it has no resonance solutions (see [2] and references
therein). This statement allows the following Hamiltonian formulation [70]:

i ȧk =
∂H
∂a∗k

, (1.1)

where ak is the amplitude of the Fourier mode corresponding to the wavevector k and
the Hamiltonian H is represented as an expansion in powers Hj which are proportional
to the product of j amplitudes ak:

H=H2+H3+H4+··· ,

H2 =
∞

∑
n=1

ωk|ak|2,

H3 = ∑
k1,k2,k3

V3
12a∗1a2a3δ3

12+complex conj.,

H4 = ∑
k1,k2,k3,k4

T12
34 a∗1a∗2 a3a4 δ12

34 +complex conj.,··· .

Here for brevity we introduced the notation aj ≡ ak j
while δ3

12 ≡ δ(k3−k1−k2) and δ12
34 ≡

δ(k3+k4−k1−k2) are the Kronecker symbols for 3- and 4-wave interactions accordingly.
It follows from (1.1) that quadratic Hamiltonian produces a linear equation of motion,
idak/dt = ωkak, while nonlinear contribution is given by the terms H3,H4 and so on. If
H3 6= 0, three-wave resonant processes are dominant (see [28] for more details). These
satisfy the resonance conditions:

{
ω(k1)+ω(k2)−ω(k3)=0,

k1+k2−k3 =0,
(1.2)
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where ω(k) is a dispersion relation for the linear wave frequency. Further on, the nota-
tion ωk is used for ω(k). The corresponding dynamical system has a general form

iḂk = ∑
k1,k2

(
Vk

12B1B2δk
12+2V1∗

k2 B1B∗
2δ1

k3) (1.3)

(notations Bj are used further on for the slowly changing amplitudes of resonant modes).
If H3 = 0, four-wave resonances have to be studied, and so on. To confirm that H3 6= 0
and three-wave resonances are dominant, one has to find solutions of (1.2) and check that
V3

12 6=0 at least at some resonant triads. Afterwards the corresponding dynamical system
has to be studied.

Notice that if some non-zero resonance width ∆ is taken into account,

ω(k1)+ω(k2)−ω(k3)=∆, ∆>0, (1.4)

it can be regarded as a shift in resonant wave frequencies, ∆Bk
, which causes resonance

broadening, [61, 64, 74], etc. Broadening in a three-wave system is characterized by the
interrelation between ∆Bk

and inverse nonlinear oscillation time τ−1
k of resonant modes,

τ−1
k ≈|V3

12Bk|. (1.5)

Accordingly, kinetic regime corresponds to

|∆Bk
|≫τ−1

k , (1.6)

discrete regime corresponds to

|∆Bk
|≪τ−1

k , (1.7)

while mesoscopic regime corresponds to

|∆Bk
|≃τ−1

k . (1.8)

In discrete regime phases of individual modes are coherent; however if the width |∆Bk
|

is substantially larger that τ−1
k , the coherence is lost, which is a necessary condition for

the kinetic regime to occur. This means that in a 3-wave system possessing resonances,
resonance clustering plays major or substantial role (discrete and mesoscopic regimes
correspondingly), while in kinetic regime statistical description should be used. The fact
that generation of kinetic regime occurs via spectral broadening of discrete harmonics has
been demonstrated experimentally in [61] (capillary water waves).

It has been first proven in [23] that for a big class of physically relevant dispersion
functions ω, the set of all wavevectors satisfying (1.2) can be divided into non-intersecting
classes and solutions of (1.2) can be looked for in each class separately; the results keep
true for some non-zero resonance width ∆>0. The method of q-class decomposition first
introduced in [25] has been developed specially for solving systems of the form (1.2) in
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integers; details of its implementation for various rational and irrational dispersion func-
tions are given in [29–31]. General description of the q-class method and corresponding
programming codes are given in [28], in Section 3 and Appendix correspondingly.

An immediate consequence of the q-class method is that dynamical system (1.3) can
be reduced to a few dynamical systems of smaller order, and each of these smaller dynam-
ical systems can be investigated independently from all others. In [34], construction of a
set of reduced dynamical systems corresponding to the solutions of (1.2) and the systems
themselves are given explicitly (as an example, resonances of oceanic planetary waves
were considered in the spectral domain 0≤m,n≤ 50). The integrability of the dynami-
cal system for an isolated triad is well known (see e.g., [68]) while integrability of some
resonance clusters has been studied in [4, 48, 49, 66, 67], etc.

The main goal of the present review is to study systematically the integrable dynamics
of the most frequently met resonance clusters. We begin with a brief introduction of
NR-diagrams (NR for nonlinear resonance) which give a handy graphical representation
of a generic resonance cluster and allow us to recover uniquely the dynamical system
corresponding to each cluster [28].

2 NR-diagrams

In systems with cubic Hamiltonian, a resonant triad is called primary cluster (a resonant
quartet is a primary cluster in a system with quadric Hamiltonian, and so on). All other
clusters (formed by a few primary clusters connected via one of a few joint modes) are
called generic clusters or simply clusters. The dynamical system for a complex triad in
the standard Manley-Rowe form reads

Ḃ1 =ZB∗
2 B3, Ḃ2 =ZB∗

1 B3, Ḃ3 =−ZB1B2, (2.1)

and is known to be integrable, with two conservation laws in the Manley-Rowe form
being

I23 = |B2|2+|B3|2, I13 = |B1|2+|B3|2 (2.2)

(notations Bj are used for the amplitudes of resonantly interacting waves forming a triad).

Due to the criterion of nonlinear instability for a triad [17], the mode with maximal
frequency, ω3, is unstable while the modes ω1 and ω2 are neutral. This means that the
form of dynamical systems and accordingly time evolution of the modes belonging to
a generic cluster depends crucially on the fact whether joint modes within a cluster are
stable or unstable. With the purpose to distinguish between these cases, the notations A-
mode (active) and P-mode (passive) are introduced for ω3-mode and ω1- and ω2-modes
respectively, [33]. This allows to describe all possible connection types within a generic
cluster. For instance, 1-mode connection of two triads can be of AA-, AP- and PP-type; 1-
mode connection of three triads can be of AAA-, AAP-, APP-type and PPP-type, 2-mode
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connection between two triads can be of AA-PP-, AP-AP-, AP-PP- and PP-PP-types, and
so on.

In the topological representation [34] of the solution set of (1.2) this dynamical infor-
mation has been kept implicit, as part of a programming code used to construct dynam-
ical system, while each triad within a cluster was shown as an unmarked triangle (see
Fig. 2).

More compact graphical representation of a resonance cluster is given by its NR-
diagram, [27]. In a NR-diagram each vertex represents not a resonant mode but a primary
cluster, that is, a triad and a quartet in a three- and four-wave system correspondingly. A
NR-diagram in systems with cubic Hamiltonian consists of following building elements-
a triangle and two types of half-edges, bold for A-mode and dotted for P-mode. It can
be proven (see [28], Section 3) that in this case the form of NR-diagram defines uniquely
corresponding dynamical system. Examples of NR-diagrams for some resonance clusters
shown in Fig. 2 are displayed in Fig. 3. Below, examples of dynamical systems are given
for two generic clusters shown in Fig. 2:

1. Cluster consisting of two triads a and b, whose connecting mode is active in one
triad and passive in the other triad, say B3a =B1b. In other words, a cluster with one
AP-connection. It is called AP-butterfly [33] and its dynamical system is

{
Ḃ1a =ZaB∗

2aB3a, Ḃ2a =ZaB∗
1aB3a, Ḃ3a =−ZaB1aB2a+ZbB∗

2bB3b,

Ḃ2b =ZbB∗
3aB3b, Ḃ3b =−ZbB3aB2b.

(2.3)

2. Cluster consisting of three triads a, b and c, with one AA- and one PP-connections,
say, B3a = B3b and B1b = B1c. The dynamical system reads





Ḃ1a =ZaB∗
2aB3a, Ḃ2a =ZaB∗

1aB3a, Ḃ3a =−Za B1aB2a−ZbB1bB2b,

Ḃ1b =ZbB∗
2bB3a+ZB∗

2cB3c, Ḃ2b =ZbB∗
1bB3a,

Ḃ2c =Zc B∗
1bB3c, Ḃ3c =−Zc B1bB2c.

(2.4)

The Manley-Rowe constants can be written out immediately for each of these systems,
being combinations of corresponding constants for each triad. For instance, for (2.3) they
have the form

I12b = |B1b|2−|B2b|2, I23b = |B2b|2+|B3b|2, Iab = |B1b|2+|B3a|2+|B3b|2. (2.5)

The main difference between NR-diagram and statistical Wyld diagrams (originating
from Keldysh’s technique for non-equilibrium processes which in its turn is an offspring
of Feynman diagram) used in wave turbulence theory can be formulated as follows. Each
Wyld diagram corresponds to one term in the asymptotic expansion and does not allow to
compute the amplitudes of the scattering process. On the other hand, a set of NR-diagram
describes completely all resonance clusters in a wave system and allows to write out
explicit form of the dynamical system on the modes’ amplitudes for each cluster.
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Figure 2: Topological structure of the cluster set for the oceanic planetary waves, ω ∼ 1/
√

m2+n2, in the
domain m,n≤ 50. 7 types of resonance clusters have been found, the number of the clusters of each type is
shown in parenthesis. Figure is taken from [34].

Figure 3: NR-diagrams for some resonance clusters shown in Fig. 2.

This means that the two techniques are not mutually exclusive and either this or that
should be applied to a particular regime in a wave turbulent system. Rather, these two
diagram’s types are complementary: Wyld diagrams visualize kinetic regime properties
while NR-diagrams-discrete regime properties.

In mesoscopic regime appearing clusters can be fairly big and consist of a few hun-
dreds or even thousands of connected triads. For instance, in [42] resonance clustering of
2-dimensional atmospheric planetary waves in the spectral domain with wave numbers
≤1000 is studied; in this case the maximal cluster consists of about 4000 triads. However,
82,2%% of all clusters are isolated triads and 10.5%% are two-triad clusters, i.e., dynamics
of the majority of clusters can be investigated by the methods presented below.

As it will be shown below, connection types within a cluster define indeed the inte-
grability of the corresponding dynamical systems. In order to demonstrate it we will use
the notion of dynamical invariant first introduced in [4] which is given in the next section
and illustrated by the example of harmonic oscillator.
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3 Dynamical invariants

3.1 Definition

From here on, general notations and terminology will follow Olver’s book [56] and Ein-
stein convention on repeated indices and f,i≡∂ f /∂xi. Consider a general N-dimensional
system of autonomous evolution equations of the form:

dxi

dt
(t)=∆i

(
xj(t)

)
, i=1,··· ,N. (3.1)

Any scalar function f (xi,t) that satisfies

d

dt

(
f (xi(t),t)

)
=

∂

∂t
f +∆i f,i =0

is called a conservation law in [56]. It is easy to see that this definition gives us two types
of conservation laws: (i) those of the form f (xi) (no explicit time-dependence), and (ii)
those of the form f (xi,t), where the time dependence is explicit. The first type determines
an invariant manifold for the dynamical system (3.1) (time-independent conservation law)
and the second type constrains the time evolution of the system within the invariant
manifold(s) (time-dependent conservation law). To keep in mind the difference between
these two types of conservation laws, we call the first type just a conservation law (CL),
and the second type-a dynamical invariant.

We are interested in determining the solution xi(t), i =1,··· ,N, of a given dynamical
system of the form (3.1). One possible way to do that is by finding N functionally inde-
pendent dynamical invariants for the system (3.1). This is equivalent to finding (N−1)
functionally independent conservation laws and one dynamical invariant (the equiva-
lence can be proven, for example, using the implicit function theorem).

As it was shown in [5], in some cases the knowledge of only (N−2) functionally inde-
pendent CLs is enough for constructing explicitly: (i) a new CL functionally independent
of the others, and (ii) a corresponding dynamical invariant, determining the solution
xi(t), i =1,··· ,N. This follows from the Theorem on (N−2)-integrability [5], whose for-
mulation is given below for the readers’ convenience.

Theorem 3.1. (Theorem on (N−2)-integrability) Let us assume that the system (3.1) pos-
sesses a standard Liouville volume density

ρ(xi) : (ρ∆i),i =0,

and (N−2) functionally independent CLs, H1,··· ,HN−2. Then a new CL in quadratures can be
constructed, which is functionally independent of the original ones, and therefore the system is
integrable.
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3.2 Example: damped harmonic oscillator

3.2.1 Dynamical invariants, CLs and solutions

To illustrate the complementarity of conserved laws and dynamical invariants, we present
an illustrative example from mechanics for the case N = 2. Consider the damped har-
monic oscillator. The equations of motion in non-dimensional form can be written as:

q̇= p, ṗ=−q−αp, (3.2)

where α≥0 is the damping coefficient. This is a dynamical system of the form (3.1) with
N = 2. Now we want to fully determine the solution of the dynamical system (3.2). For
this we need to know both a CL and a dynamical invariant. Indeed, let us consider sepa-
rately the cases α=0 (harmonic oscillator) and 0<α<2 (sub-critically damped harmonic
oscillator).

1. Case α=0. We have the CL

E(q,p)=
1

2

(
p2+q2

)
(3.3)

(energy) and the dynamical invariant

T(q,p,t)= t−arctan
( q

p

)
. (3.4)

Since
d

dt

(
E(q(t),p(t))

)
=0,

d

dt

(
T(q(t),p(t),t)

)
=0,

then we have
E(q(t),p(t))=E0, T(q(t),p(t),t)=T0,

constants depending on the initial conditions q(0),p(0). This information is enough to
find the solution q(t),p(t) of the system:

q(t)=
√

2E0sin(t−T0), p(t)=
√

2E0cos(t−T0), (3.5)

which can be checked by direct substitution in (3.2).
In Fig. 4, we show level surface of conservation law E = 30 (Fig. 4(a)), level surface

of dynamical invariant T = 0 (Fig. 4(b)) and solution trajectory q(t),p(t) (Fig. 4(c)). This
solution is actually the intersection of the level surfaces E=30 and T=0; for completeness
of presentation, we show together the level surfaces and the solution in Fig. 5 (left panel).

Notice that coordinates q,p are not suitable for a global parametrization of dynamical
invariant T, (3.4), because arctan(x) is multi-valued. This problem can easily be overcome
by using new coordinates (R,θ):

q= Rsinθ, p= Rcosθ (3.6)
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Figure 4: Color online. Harmonic oscillator (case α = 0): (a): a level surface of conservation law E(q,p)= 30,
Eq. (3.3); (b): a level surface of dynamical invariant T(q,p,t)=0, Eq. (3.7); (c): solution trajectory (q(t),p(t)),
Eq. (3.5), corresponding to E=30, T=0. Sub-critically damped harmonic oscillator (case 0<α<2): (d): a level
surface of conservation law C(q,p)= 30, Eq. (3.11); (e): a level surface of dynamical invariant D(q,p,t)= 20,
Eq. (3.8); (f): solution trajectory (q(t),p(t)), Eq. (3.12), corresponding to C =30, D=20.

-5
0

5

qHtL

-5

0

5

pHtL

0

5

10

15

t

-5

0

5

pHtL

-4
-2

0
2

4

qHtL

-2.5

0

2.5
5

pHtL

0

2.5

5

7.5

10

t

-2.5

0

2.5
5

pHtL

Figure 5: Color online. Left panel: harmonic oscillator (case α=0): combined plot of level surface of conservation
law E(q,p), level surface of dynamical invariant T(q,p,t) and solution trajectory (q(t),p(t)). Notice the general
property that the intersection of the level surfaces of E and T is the solution trajectory. Right panel: sub-
critically damped harmonic oscillator (case 0<α<2): combined plot of level surface of conservation law C(q,p),
level surface of dynamical invariant D(q,p,t) and solution trajectory (q(t),p(t)). Notice the general property
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which allow us to rewrite T as

T(q,p,t)= T̃(R,θ,t)= t−θ, (3.7)

thereby eliminating the ambiguity. The plot of level surface T̃ = 0 in the upper middle
panel of Fig. 4 was done using the parameters (R,t).

2. Case 0<α<2. Let α/2=sin ϕ, then a dynamical invariant for the system is known:

D(q,p,t)=
(

p2+q2+2pqsin ϕ
)

exp
[
2tsin ϕ

]
. (3.8)

We need to find a CL in order to determine the solution. Here we simply state the follow-
ing CL:

C(q,p)=
cosϕ

2

(
p2+q2+2pqsin ϕ

)
×exp

[
2tan ϕarctan

( q

p
secϕ+tanϕ

)]
. (3.9)

The method of construction of this CL is not important right now, it will be detailed in
the next section. In Fig. 4, we show level surface of conservation law C = 30 (Fig. 4(d)),
level surface of dynamical invariant D = 20 (Fig. 4(3)) and solution trajectory q(t),p(t)
(Fig. 4(f)). This solution corresponds to the intersection of the level surfaces C = 30 and
D =20; for completeness, the level surfaces and the solution are shown together in Fig. 5
(right panel).

Similar to the case of α=0 dynamical invariant, the CL C(q,p) is not globally defined.
The following change of variables is needed:

q= Rsecϕ sin(θ−ϕ), p= Rcosθ secϕ, (3.10)

in order to parameterize globally the CL. The result is

C(q,p)= C̃(R,θ)=
cosϕ

2
R2exp

[
2θtan ϕ

]
. (3.11)

It is important to realize that the two changes of variables (3.6) and (3.10) are suggested
by the form of the respective invariants. Moreover, in the new variables (R,θ), both T
and C take a simpler form (see (3.7) and (3.11)). The reason for it is clear in the case
α = 0 because (R,θ) are the well-known action-angle variables. In the general case, the
variables (R,θ) determine a covering of the original variables.

The solution of the dynamical system is finally

q(t)=
√

D sin
(

tcos ϕ+
1

2
log

( C

D

)
cotϕ−ϕ

)
(cos ϕ exp[tsin ϕ])−1, (3.12a)

p(t)=
√

Dcos
(

tcos ϕ+
1

2
log

( C

D

)
cotϕ

)
(cosϕexp[tsin ϕ])−1

. (3.12b)
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3.2.2 Construction of conservation law

To illustrate the procedure of construction of a conservation law, we take as an example
the sub-critically damped harmonic oscillator, i.e., Eq. (3.2) with 0<α<2. Here N=2 and
∆1 = p, ∆2 =−q−αp. The dynamical system is just 2-dimensional and we will write it
as a vector (∆1,∆2)T. The Theorem requires the existence of a standard Liouville volume
density ρ(x1,x2) satisfying

(ρ∆1),1+(ρ∆2),2 =0, (3.13)

and does not require the knowledge of conservation laws. In general, a Liouville density,
solution of (3.13), is interpreted as follows. A small region R(t) with a volume V(t)
in phase space (x1,x2), will evolve in time due to the dynamical system (3.2). Then, ρ
is defined in such a way that the product ρV(t) is conserved in time as R(t) evolves.
For the harmonic oscillator, it is well known that the volume of R(t) is preserved, i.e.,
a constant function is a Liouville density. For the damped harmonic oscillator, a direct
check shows that a Liouville density is ρ(q,p)=(q2+p2+2αq p)−1. With this information
we just need to solve (3.14) for H:

(
0 1
−1 0

)(
H,1

H,2

)
=

(
ρ∆1

ρ∆2

)
. (3.14)

The answer can be obtained by direct integration (see [4] for more details):

H(q,p)=−
( qαarctan

(
2 p+qα√

−(q2(−4+α2))

)

√
−(q2(−4+α2))

)
+

log(p2+q2+pqα)

2
. (3.15)

The conservation law C(q,p) given by Eq. (3.9) is a function of H, chosen for its nice form:

C=
cosϕ

2
exp(2H).

4 Triad

As it was shown above, the notion of dynamical invariant is an important tool for con-
structing new physically relevant conservation laws that can afterwards be studied in
a simple laboratory experiment. In this section we would like to use this approach to
prove integrability of a complex triad with dynamical system (2.1). Though integrability
of (2.1) is a well-known fact, the explicit solution of (2.1) is usually written for a partic-
ular case, namely, when the dynamical phase-a phase combination corresponding to the
chosen resonance conditions-is either zero or constant (see [41], pp.132, Eq. (6.7) and [58],
pp.156, Eq. (3.26.19), etc). Accordingly, till recently all known analytical solutions of the
dynamical equations for a triad has been obtained for this particular case of initial condi-
tions.
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On the other hand, it is well known that dynamical phases play a substantial role
in the dynamics of resonant clusters, e.g., [65], and their effect can easily be observed
in numerical simulations [5]. This was our motivation for constructing first an explicit
solution in the amplitude-phase presentation, with generic initial conditions. Another im-
portant point is that an elastic pendulum with suitably chosen parameters can be used as
a mechanical model of a resonant triad, and the results can be applied for the description
of large-scale motions in the Earth’s atmosphere, e.g., [44]. In fact, this simple mechanical
model can be used for a laboratory study of dynamical characteristics of primary clusters
in an arbitrary system with cubic Hamiltonian.

4.1 Integrability

In this case the system can be reduced to N =4 (see [4] for more details), the Theorem on
(N−2)-integrability can be applied and we obtain the following CL:

HT = Im(B1B2B∗
3), (4.1)

which is the canonical Hamiltonian for this case and can, of course, be written out di-
rectly. A dynamical invariant for this system was originally presented in [4], in terms of
the three real roots R1 < R2 < R3 of the cubic polynomial

x3+x2 =
2

27
−

(
27H2

T−(I13+ I23)(I13−2I23)(I23−2I13)
)[

27(I2
13− I13 I23+ I2

23)
3
2
]−1

,

but these roots’ dependence on the coordinates or the CLs was not made explicit. More-
over, the explicit solution for the amplitudes Cj and phases θj in the amplitude-phase
representation

Bj =Cjexp(iθj),

was not provided. Here we improve the form of dynamical invariant and also produce
explicit and useful expressions for the full solution, based on the trigonometric represen-
tation of the three real roots in the so-called Casus Irreducibilis.

4.2 Amplitude-phase representation

System (2.1) in the standard amplitude-phase representation Bj =Cjexp(iθj) reads:
{

Ċ1 =ZC2C3cos ϕ, Ċ2 =ZC1C3cos ϕ,

Ċ3 =−ZC1C2cos ϕ, ϕ̇=−ZHT(C−2
1 +C−2

2 −C−2
3 ),

(4.2)

where ϕ= θ1+θ2−θ3 is the dynamical phase. The conservation laws (2.2) do not change
their form in the new variables: I23 =C2

2+C2
3, I13 =C2

1+C2
3, but the Hamiltonian HT reads

now HT =C1C2C3sinϕ. Let us introduce new variables:

ρ=
I23

I13
(4.3)
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and α∈ [0,π] defined by

cosα=

(
−2+3ρ+3ρ2−2ρ3

)
I13

3−27HT
2

2
(
1−ρ+ρ2

) 3
2 I13

3
. (4.4)

Notice that |cosα|≤1 for dynamically accessible system’s configurations. Indeed, the use
of intermediate variables

p=2
(
1−ρ+ρ2

) 3
2 and q=−2+3ρ+3ρ2−2ρ3,

allows one to conclude immediately that p≥0 and p≥|q|, ∀ρ. Both inequalities become
equalities if ρ=0 or ρ=1. This yields

(
H2

T

)
max

=
( I13

3

)3
(p+q)≥0, for cosα=−1,

and (cosα)max = q/p≤1, for HT =0, where (H2
T)max and (cosα)max are maximum values

of H2
T and cosα correspondingly.

Now, the solution of (4.2) is obtained in terms of Jacobian functions with modulus

µ=cos
(α

3
+

π

6

)[
cos

(α

3
−π

6

)]−1
, (4.5)

and period

T =

√
23

1
4 K(µ)

Z(1−ρ+ρ2)
1
4

√
cos

(
α
3 − π

6

)√
I13

, (4.6)

where K(µ) is the complete elliptic integral of the first kind.

4.3 Solutions for amplitudes

We present explicit expressions for the amplitude squares. The convention used here
is that the amplitudes are positive, which is the generic situation when HT 6= 0. In this
convention, when HT = 0 the individual phases have discontinuities in time to account
for the amplitudes’ sign changes. The amplitude squares are proportional to the modes’
energies and can be of great use for physical applications:






C2
1(t)=−µ

(2K(µ)

ZT

)2
sn2

(
2K(µ)

(t−t0)

T
,µ

)
+

I13

3

(
2−ρ+2

√
1−ρ+ρ2 cos

( α

3

))
,

C2
2(t)=−µ

(2K(µ)

ZT

)2
sn2

(
2K(µ)

(t−t0)

T
,µ

)
+

I13

3

(
2ρ−1+2

√
1−ρ+ρ2 cos

(α

3

))
,

C2
3(t)=µ

(2K(µ)

ZT

)2
sn2

(
2K(µ)

(t−t0)

T
,µ

)
+

I13

3

(
ρ+1−2

√
1−ρ+ρ2 cos

( α

3

))
,

(4.7)
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where sn(·,µ) is Jacobian elliptic function and t0 is given in terms of the initial conditions
for the amplitudes C2

1(0), C2
2(0), C2

3(0) and t0 is defined by the initial conditions as:

t0 =sign(cosϕ(0))
T

2K(µ)
×F(arcsin

√
x0,µ), (4.8)

where

x0 =
cos

(α

3

)

√
3cos

(α

3
+

π

6

) +
Z2 T2(C2

3(0)−C2
2(0)−C2

1(0))

12µK(µ)2
(4.9)

and F(·,µ) is the elliptic integral of the first kind.
Notice that each equation in (4.7) is a sum of two terms where the left terms are time-

dependent and the right terms are not. Each right term, for instance

I13

3

(
2−ρ+2

√
1−ρ+ρ2 cos

(α

3

))

can be written explicitly as a function of conserved quantities I13, I23, HT (expressions for
ρ and α are given by (4.3) and (4.4)) and is, therefore, defined by the initial conditions.

The same is true for µ and T as it follows from (4.5) and (4.6). In particular, one can
use the equations in (4.7) to determine the minimum and maximum accessible values of
each amplitude (using the fact that sn2 oscillates between 0 and 1). The characteristic
energy variation of any resonant mode Emode, between these minimum and maximum
values, has a very simple form: Emode(t)∼ sn2(kt,µ).

4.4 Solution for dynamical phase

The dynamical phase satisfies an evolution equation:

ϕ̇=−ZHT

(
C−2

1 +C−2
2 −C−2

3

)
. (4.10)

The solution for the dynamical phase cannot be obtained by simply replacing the solution
for the amplitudes in the Hamiltonian HT =C1C2C3sinϕ and solving for ϕ. The reason is
that non-zero ϕ generically evolves between 0 and π, crossing the value ϕ=π/2 period-
ically. This implies that sin−1 is double-valued and thus it is not possible to obtain ϕ in a
unique way.

Another way to obtain the solution for dynamical phase might be integrating (4.10)
in time, using the solution for the amplitude squares (4.7), but this way is also rather
involved. On the other hand, some simple considerations allow us to find an analytical
expression for the dynamical phase. Indeed, let us rewrite (4.2), taking into account that
dC2

1/dt=2C1Ċ1 and HT =C1C2C3sinϕ:

d

dt
C2

1 =2ZC1C2C3cos ϕ=2ZHT cotϕ.
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This equation can be solved for ϕ in each of the disjoint domains (0,π) and (−π,0):

ϕ(t)=sign(ϕ(0))arccot
( sign(ϕ(0)) d

dt C2
1

2ZHT

)
,

using the convention that the function arccot takes values on (0,π). Using solution (4.7)
together with the identity sn′(x,µ)= cn(x,µ)dn(x,µ), we arrive at an explicit expression
for the dynamical phase:

ϕ(t)=sign(ϕ0)arccot
(
− µ

|HT|
(2K(µ)

ZT

)3
y
)

, (4.11a)

y= sncndn
(

2K(µ)
(t−t0)

T
,µ

)
, (4.11b)

where sncndn(·,µ)≡ sn(·,µ)cn(·,µ)dn(·,µ).
The restriction to the domain ϕ ∈ (−π,0)∪(0,π) is quite general: if ϕ is initially in

the domain (nπ,(n+1)π), n∈Z, one can take ϕ to either (−π,0) or (0,π) by an appro-
priate shift of 2mπ,m∈Z, without changing the evolution equations. Due to its special
dynamics, the phase will remain in the domain where it was initially.

4.5 Dynamical invariant

Below we present a dynamical invariant for (4.2) which has been used for the construct-
ing the solution (4.7). Recall that a dynamical invariant depends on time, amplitudes and
phases: S(t,C1,C2,C3,ϕ), with the property that it is a constant along any solution of the
dynamical system. Generically, only local expressions can be obtained for a dynamical
invariant, due to the multi-valuedness of the inverse functions involved. In this particu-
lar case, however, since we know the period of any trajectory, this multi-valuedness can
be eliminated partially by patching appropriately local expressions yielding

S(t,C1,C2,C3,ϕ)= t−
⌊2(t−t0)+T

2T

⌋
T+

(−1)

⌊2(t−t0)+T

T

⌋

T

2K(µ)
F(arcsin

√
xt,µ), (4.12)

where ⌊·⌋ is the floor function and xt can be obtained from the expression (4.9) for x0 by
substituting Cj(t) instead of Cj(0), for all j=1,2,3.

This dynamical invariant satisfies

S(t,C1(t),C2(t),C3(t),ϕ(t))= t0, ∀t,

where t0 is given in Eq. (4.8), and is an improvement of the corresponding formula pre-
sented in [4].

In Fig. 6, we show, for fixed I13 =2.00 and I23 =2.06: level surface of conservation law
HT = 0.763 (Fig. 6(a)), level surface of dynamical invariant S = 2.69 (Fig. 6(b)), solution
trajectory and combined plot, in the domain (C1,ϕ,t) (Fig. 6(c) and (d) correspondingly).
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Figure 6: Color online. Triad system in coordinates (C2
1 ,ϕ,t), with fixed values of the Manley-Rowe conservation

laws: I13=2.00 and I23=2.06. (a): level surface of conservation law HT =0.763. (b): level surface of dynamical
invariant S = 2.69, Eq. (4.12). (c): solution trajectory (C2

1(t),ϕ(t)), Eqs. (4.7) and (4.11), corresponding to
HT =0.763, S=2.69. (d): combined plot of level surface of dynamical invariant S=2.69 and solution trajectory

(C1(t)2,ϕ(t)). (e): combined plot of level surface of conservation law HT = 0.763, level surface of dynamical

invariant S=2.69 and solution trajectory (C2
1(t),ϕ(t)). Notice the general property that the intersection of the

level surfaces of HT and S is the solution trajectory. (f): combined plot of Manley-Rowe conservation laws

I13 =2.00 and I23 =2.06, in coordinates (C2
1 ,C2

2 ,C2
3).
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Figure 7: Color online. With fixed values of the Manley-Rowe conservation laws: I13 =2.00 and I23 =2.06, plot
of period T from Eq. (4.6) as a function of HT , normalized with respect to the period at HT =0. The decreasing
character is a generic feature of this function.
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In Fig. 6(a), the surface S = 2.69 is a helicoidal surface revolving around a vertical
axis. This axis is the surface’s natural interior boundary: the constant-in-time trajectory
corresponding to the highest possible value of |HT | for given I13, I23 (obtained from the
condition cosα=−1). In the present case, the highest possible value of |HT | is 1.114. This
trajectory is physically interpreted as ”maximum interference”, due to the fact that the
modes do not interact. The dynamical phase is constant: ϕ(t) = π/2, ∀t, and all ampli-
tudes are constant as well: from the condition µ =0 and Eq. (4.7), we obtain in this case:
C2

1(t)=1.33, ∀t. The exterior boundary of the surface is the piecewise continuous trajec-
tory corresponding to the limit HT=0: in this limit the surface becomes non-differentiable
at the ”corners” C2

1 = 0, I13, ϕ = 0,π, due to the fact that the dynamical phase ϕ is only
piecewise continuous for HT =0. This trajectory corresponds to the usual case treated in
textbooks, when amplitudes are considered real and individual phases vanish.

By looking at this figure we notice that the period T decreases with increasing HT:
the trajectories closer to the exterior boundary are more elongated than the trajectories
closer to the interior boundary. In fact, from formula (4.6) one can prove this property
analytically. In Fig. 7 we plot the period T as a function of HT. We observe in this case a
reduction of the period by a factor 0.5 when HT is changed from 0 to Hmax =1.114.

In Fig. 6(e) and (f), combined plots are shown to clarify that the solution trajectory is
the intersection of the level surfaces of Hamiltonian and dynamical invariant. In the right
lower panel, we show a combined plot of level surfaces of Manley-Rowe conservation
laws I13, I23 in the domain (C2

1,C2
2,C2

3).

4.6 Special case HT =0

Direct substitution shows that if we put HT = 0, then new modulus and period take the
form

µ=ρ and T =
2K(ρ)

Z
√

I13

,

correspondingly, while the solutions for the amplitude squares read





C̃2
1(t)=dn2((t−t0)Z

√
I13,ρ

)
I13,

C̃2
2(t)=cn2

(
(t−t0)Z

√
I13,ρ

)
I23,

C̃2
3(t)=sn2

(
(t−t0)Z

√
I13,ρ

)
I23.

(4.13)

As for the dynamical phase, from Eq. (4.11) it is seen that in the limit HT → 0 it behaves
as a step function, jumping from 0 to πsign(ϕ(0)):

ϕ̃(t)=
πsign(ϕ(0))

2

(
1−(−1)

⌊2(t−t0)

T

⌋)
.

To understand the meaning of this behaviour, notice that the Hamiltonian HT is vanishing
for ϕ = nπ, n∈Z. The abrupt jumps of the dynamical phase is due to the jumps of the
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individual phases (solution not shown). These jumps replace the changes of sign of the
modes’ amplitudes in the usual textbook descriptions.

As it was shown in [5], initial dynamical phase not in Zπ substantially affects the
magnitudes of resonantly interacting modes during the evolution, not only in a triad but
also in a butterfly. This fact might have important implications (see [5], Discussion), for
instance, for interpreting results of numerical simulations and for performing laboratory
experiments.

5 Generic clusters

In a three-wave resonance systems the most frequently met clusters are isolated triads or
clusters consisting of two variously connected triads, e.g., [27,29,33,35]. Below we show
how to construct new CLs making use of the notion of dynamical invariant. In the last
subsection, another method is briefly outlined which was presented in [66,67] and allows
one to prove, in some cases, integrability of bigger clusters.

5.1 Butterfly

A PP-butterfly consists of two triads a and b with wave amplitudes Bja, Bjb, j=1,2,3, and
connecting mode, say B1a = B1b = B1 is passive in both triads. The dynamical system for
PP-butterfly reads

{
Ḃ1 =ZaB∗

2aB3a+ZbB∗
2bB3b, Ḃ2a =ZaB∗

1 B3a,

Ḃ2b =ZbB∗
1 B3b, Ḃ3a =−ZaB1B2a, Ḃ3b =−ZbB1B2b.

(5.1)

We have studied this in [4]; we present here the results in order to compare the dynamics
of different butterfly types and confirm the qualitative analysis given in [33]. System (5.1)
has 3 quadratic CLs analogous to (2.2) and 1 cubic CL corresponding to its Hamiltonian:





I23a = |B2a|2+|B3a|2, I23b = |B2b|2+|B3b|2,

Iab = |B1|2+|B3a|2+|B3b|2,

HPP = Im(ZaB1B2aB∗
3a+ZbB1B2bB∗

3b).

(5.2)

Standard amplitude-phase representation. Here, one can rewrite the cubic conservation
law as

HPP =CPP

(
ZaC2aC3asinϕa+ZbC2bC3bsinϕb

)
. (5.3)

Here

ϕa = θ1a+θ2a−θ3a, ϕb = θ1b+θ2b−θ3b (5.4)
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are dynamical phases and C(PP) is the real amplitude of a common mode in PP-butterfly.
This allows us to reduce System (5.1) to only four real equations:

{
Ċ3a =−ZaCPPC2acosϕa, Ċ3b =−Zb CPPC2bcos ϕb,

ϕ̇a =−HPP(C−2
PP +C−2

2a −C−2
3a ), ϕ̇b =−HPP(C−2

PP +C−2
2b −C−2

3b ).
(5.5)

Now the overall dynamics of the PP-butterfly is confined to a 3-dimensional manifold.
The same can be done for the two other types of butterflies.

Modified amplitude-phase representation. The following change of variables was sug-
gested in [4]:

αa =arctan
(C3a

C2a

)
, αb =arctan

(C3b

C2b

)
, (5.6)

with the inverse transformation being

{
C2a =

√
I23acosαa, C3a =

√
I23a sinαa,

C2b =
√

I23b cosαb, C3b =
√

I23bsinαb.
(5.7)

This change of variables allows further substantial simplification of (5.1) and (5.5):





α̇a =−ZaCPPcos ϕa, α̇b =−ZbCPPcos ϕb,

ϕ̇a =ZaCPP(cotαa−tanαa)sinϕa−HPP/C2
PP,

ϕ̇b =ZbCPP(cotαb−tanαb)sinϕb−HPP/C2
PP.

(5.8)

In these new variables, the amplitude CPP >0 reads

CPP =

√
Iab− I23a sin2αa− I23bsin2 αb (5.9)

and the Hamiltonian is now

HPP =
CPP

2
Za I23a sinϕasin2αa +

CPP

2
Zb I23bsinϕbsin2αb. (5.10)

Eqs. (5.8)-(5.10) represent the final form of our three-dimensional general system in the
modified amplitude-phase presentation.

Of course, the form of the conservation laws is arbitrary in the sense that any set of
functionally independent CLs will be suitable. For instance, in the case HPP =0 we could
choose the conserved quantity

Ab =sinϕbsin2αb instead of Aa =sinϕasin2αa

but not both because they are functionally dependent:

Za I23a Aa+Zb I23b Ab ≡0.
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Figure 8: NR-diagram for PP-butterfly.

Figure 9: NR-diagram for AA-butterfly.

Generally, we try to find the simplest presentation for our new constants of motion.

Analogously with the previous case, AA-butterfly is a two-triad cluster with a common
mode which is A-mode in both triads, B3a = B3b. Dynamical system and Manley-Rowe
constants read:

{
Ḃ1a =ZaB∗

2aB3a, Ḃ1b =−ZbB∗
2bB3a, Ḃ2a =ZaB∗

1aB3a,
Ḃ2b =ZbB∗

1bB3a, Ḃ3a =−ZaB1aB2a−ZbB1bB2b,
(5.11)

I12a = |B1a|2−|B2a|2, I12b = |B1b|2−|B2b|2, Iab = |B1a|2+|B3a|2+|B3b|2. (5.12)

The integrability of (5.11) can be investigated along the same lines as for (5.1) above.
The analysis is omitted here. We just partly outline one particular case of this cluster:
AA-ray, which can be regarded as a degenerate AA-butterfly, so that ω1b =ω2b=ω3/2. In
this case, the dynamical system obtained from first principles will have the form

Ḃ1a =ZaB∗
2aB3, Ḃb =ZbB∗

b B3, Ḃ2a =ZaB∗
1aB3, Ḃ3 =−ZaB1aB2a−2ZbB2

b . (5.13)

Notice that there is a factor 2 in the last term of last equation, which would not appear
if we made the direct substitution B1b = B2b = Bb into system (5.11). Rather, the simple
change of variables B1b = B2b =

√
2Bb will transform the AA-butterfly (5.11) into the ray

equations (5.13). This means in particular that integrable cases of AA-butterfly can be di-
rectly mapped to some integrable cases of AA-ray. Another interesting point is that AA-
ray cluster might also have a nice mechanical model-Wilberforce pendulum (P. Lynch,
private communication, 2009).

Conservation laws for AA-ray are inherited from conservation laws for AA-butterfly:

I12a = |B1a|2−|B2a|2, Iab = |B1a|2+2|Bb|2+|B3|2, (5.14a)

Hray = Im(−ZaB1aB2aB∗
3−2ZbB2

b B∗
3), (5.14b)

with dynamical phases

ϕa = θ1a+θ2a−θ3, ϕb =2θb−θ3. (5.15)
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This reduces four complex equations (5.13) to only four real ones:





Ċ1a =ZaC2aC3cosϕa, Ċb =ZbCbC3cosϕb,

ϕ̇a =−ZaC3

(C2a

C1a
+

C1a

C2a

)
sinϕa+Hray/C2

3,

ϕ̇b =−2ZbC3sinϕb+Hray/C2
3 ,

(5.16)

with Hamiltonian

Hray =−C3

(
ZaC1aC2asinϕa+2ZbC2

b sinϕb

)
(5.17)

in terms of the amplitudes and phases.
Consider the simple case when initially ϕa=ϕb=0. Then Hray =0, phases remain zero

for all times, and the equations of motion reduce to

Ċ1a =ZaC2aC3, Ċ2a =ZaC1aC3, Ċb =ZbCbC3, Ċ3 =−ZaC1aC2a−2ZbC2
b , (5.18)

with two Manley-Rowe constants of motion

I12a =C2
1a−C2

2a, Iab =C2
1a+2C2

b +C2
3, (5.19)

and a new Hamiltonian

Hnew =2Za lnCb+Zb ln
(C2a−C1a

C2a+C1a

)
, (5.20a)

C1a =
√

I12a coshα, C2a =
√

I12a sinhα. (5.20b)

5.2 Star

A cluster of N triads, all connected via one common mode is called N-star cluster. Again,
integrability of N-star depends on the types these connecting modes have in each triad
of a cluster. NR-diagrams for all possible types of 3-stars are shown in Fig. 10. N-star
cluster is the only known to us type of cluster for which an analytical study has been
performed for arbitrary finite number N. The main idea can be briefly formulated as
follows. N-star cluster has 2N+1 degrees of freedom, N+1 Manley-Rowe constants of
motion and one Hamiltonian, that is, we already have N+2 independent first integrals
in involution. To find N−1 additional integrals of motion, one can use construction of
Lax operators, Painlevé analysis and irreducible forms, etc.; terminology used therein is
pump and daughter wave for A- and P-mode correspondingly). The dynamical system,
say for N-star-A, is regarded in the form

Ḃ1j = iλjB3Ḃ2j, Ḃ2j = iλjB3Ḃ1j, Ḃ3 = i
N

∑
j=1

λjB1jB2j. (5.21)
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Figure 10: NR-diagrams for 3-star clusters. From right to left, from up to down: 3-star-A (three A-connections),
3-star-P (three P-connections), 3-star-1A-2P (one P-connection and two P-connections), 3-star-2A-1P (two A-
connections and one P-connection).

Figure 11: Example of Poincaré section for PP-butterfly with Za/Zb =3/4.

Additional conservation laws found this way have necessarily polynomial form. The re-
sults for a generic N-star cluster are as follows: N-star-A (with all A-connections) and
N-star-P (with all P-connections) are integrable for arbitrary initial conditions if λj = 1/2
or 1 or 2, examples of corresponding NR-diagrams shown in the Fig. 10, for N = 3. N-
star cluster with mixed P- and P-connections has no additional polynomial conservation
laws. Complete set of additional polynomial conservation laws for integrable N-star
cluster is omitted here for sake of place, and it can be found in [67]. Example for the case
of AA-butterfly with Za =2Zb reads

4(B1B2B∗
4 B∗

5 +B∗
1 B∗

2 B4B5)(B1B∗
1 +B2B∗

2)−2(B3B∗
1 B∗

2 +B∗
3 B1B2)

2

−
[
(B1B∗

1 +B2B∗
2)

2+4B1B∗
1 B2B∗

2

]
(B4B∗

4 +B5B∗
5).

However, most generic clusters demonstrate chaotic behavior and numerical investiga-
tions are unavoidable. The fact that our systems are Hamiltonian, allows us to perform
numerical simulations based on the Hamiltonian expansion of the corresponding dynam-
ical system and to construct Poincaré sections, example is in shown in the Fig. 11 (chaotic
evolution, simulations performed by F. Leyvraz 2008).
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6 Coupling coefficient

As we have shown above, the integrability of a resonance cluster depends on the magni-
tude of the corresponding coupling coefficients. Expressions for coupling coefficients in
canonical variables has been deduced for various types of wave systems possessing three-
wave resonances: rotational capillary waves [10]; irrotational gravity-capillary waves [47];
drift waves [60], etc. They usually have a nice compact form, for instance, coupling coef-
ficient V3

12 for irrotational gravity-capillary water waves reads

(ω2
2−ω2ω3+ω2

3)

ω1
k1−ω2k2+ω3k3,

where ω = (gk+σk3)1/2 and g and σ are gravity acceleration and surface tension corre-
spondingly. However, transformation of these expressions from the canonical to physical
variables is not an easy task.

On the other hand, the application of multi-scale methods yields expressions for the
coupling coefficients directly in physical variables. For instance, coupling coefficients
of the system of three resonantly interacting atmospheric planetary waves, with ω ∼
m/[n(n+1)], have the form [35]

Z[n2(n2+1)−n3(n3+1)][n1(n1+1)]−1, (6.1a)

Z[n3(n3+1)−n1(n1+1)][n2(n2+1)]−1, (6.1b)

Z[n2(n2+1)−n1(n1+1)][n3(n3+1)]−1, (6.1c)

with

Z=
∫ π

2

− π
2

[
m2P(2) d

dϕ
P(1)−m1P(1) d

dϕ
P(2)

] d

dϕ
P(3)dϕ. (6.2)

Here two spherical space variables are the latitude ϕ, −π/2≤ϕ≤π/2, and the longitude

λ, 0≤λ≤2π, and the notation P(j) is used for P
m j
nj

(sinϕ) which is the associated Legendre
function of degree nj and order mj.

The multi-scale method is quite straightforward and can be programmed in some
symbolical language [35]. However, only numerical magnitudes of the coupling coef-
ficients have been computed for selected solutions of the resonance conditions, not an
explicit algebraic formulas. The problem is due to some ”bags” in Mathematica in com-
puting integrals of the form

∫ 2π

0
sin(mx)sin(nx)dx, with m,n∈N, (6.3)

more discussion can be found in [35].
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7 Summary

In this review we presented analytical methods and available results for studying res-
onance clustering in discrete and mesoscopic wave turbulent regimes. Some resonance
clusters can generate regular patterns (elements of integrability in the terminology of
F. Calogero) in k-space. The clusters can also demonstrate chaotic behavior depending
on the form its NR-diagram, ratios of coupling coefficients and in some cases-on the ini-
tial conditions. Both type of cluster-with integrable and chaotic dynamics-do appear in
real physical systems, e.g., [32,33] and [9] (atmospheric planetary and rotational capillary
waves correspondingly).

In particular, the novel model of the intra-seasonal oscillations (climate variability on
an intra-seasonal scale of about 10-100 days) in the Earth’s atmosphere has been devel-
oped in [32], based on the corresponding resonance clustering. A detailed analysis of
the classical approach to the problem can be found in [15]. However, it does not explain
many known features of the intra-seasonal oscillations (IOs): e.g., the reason for their ap-
pearance in the Northern Hemisphere is supposed to be topography, no reason is given
for IOs in the Southern Hemisphere, there is no known way to predict the appearance
of IOs, etc. The resonance clustering in the form of four isolated resonant triads gives
a natural explanation of IOs in both the Northern and the Southern Hemispheres, inde-
pendently (in the leading order) of Earth’s topography. It naturally has the periods of
desired order, and allows one to interpret the main observable features of IOs as an in-
trinsic atmospheric phenomenon, related to a system of resonantly interacting triads of
planetary waves.

To describe resonance clustering in a specific wave system one has to proceed as
follows: 1) write out the resonance conditions, compute their solutions and construct
corresponding set of NR-diagrams; 2) write out explicitly the set of dynamical systems,
interaction coefficient and known conservation laws, according to the clustering. Corre-
sponding software (written in Mathematica, Java, SQL and C++) is described in [28, 35],
some of the programs are available for free download for on-line computations, an elec-
tronic supplement for the last book.

The study of the dynamical systems can be performed afterwards using analyti-
cal and/or numerical methods. While performing sensible numerical simulations with
dynamical system describing a resonance cluster, one of the most tedious and time-
consuming parts of the corresponding simulations is the choice of initial conditions. A
special procedure has been worked out (F. Leyvraz, 2008) that guarantees a uniform dis-
tribution of initial conditions according to Liouville measure, and assures as well that all
conservation laws have the same value on each Poincaré section (example of computa-
tions in shown in Fig. 11). However, to trace effects due to the dynamical phases one has
to amplitude-phase representations.

Last but not least. As it was mentioned before, the importance of resonance clus-
ters is due to the fact that in a system possessing resonances, all non-resonant terms can
be eliminated by suitable change of variables. It implies that the energies of interacting
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modes are bounded. However, in some physical systems non-resonant terms can be of
importance while they might provide unbounded solutions. This phenomenon is called
explosive instability and has been discovered in plasma physics in 1960s-1970s. Con-
ditions for this phenomenon to occur are known, both in 3- and 4-wave systems. This
subject is outside the scope of present paper, its detailed exposition (state of art 1986)
can be found e.g., in [57]; contemporary results on the explosive instability are briefly
outlined in [28], 117–122.
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