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Abstract. We investigate the critical properties of the Ising S=1/2 and S=1 model on
(3,4,6,4) and (34,6) Archimedean lattices. The system is studied through the extensive
Monte Carlo simulations. We calculate the critical temperature as well as the critical
point exponents γ/ν, β/ν, and ν basing on finite size scaling analysis. The calculated
values of the critical temperature for S=1 are kBTC/J=1.590(3), and kBTC/J=2.100(4)
for (3,4,6,4) and (34,6) Archimedean lattices, respectively. The critical exponents β/ν,
γ/ν, and 1/ν, for S=1 are β/ν=0.180(20), γ/ν=1.46(8), and 1/ν=0.83(5), for (3,4,6,4)
and 0.103(8), 1.44(8), and 0.94(5), for (34,6) Archimedean lattices. Obtained results
differ from the Ising S = 1/2 model on (3,4,6,4), (34,6) and square lattice. The eval-
uated effective dimensionality of the system for S = 1 are Deff = 1.82(4), for (3,4,6,4),
and Deff =1.64(5) for (34,6).

PACS: 05.70.Ln, 05.50.+q, 75.40.Mg, 02.70.Lq

Key words: Monte Carlo simulation, Ising model, critical exponents.

1 Introduction

The Ising model [1, 2] has been used during long time as a ”toy model” for diverse ob-
jectives, as to test and to improve new algorithms and methods of high precision for
calculation of critical exponents in Equilibrium Statistical Mechanics using the Monte
Carlo method as Metropolis [3], Swendsen-Wang [4], Wang-Landau [5] algorithms, Sin-
gle histogram [6] and Broad histogram [7] methods. The Ising model was already applied
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decades ago to explain how a school of fish aligns into one direction for swimming [8]
or how workers decide whether or not to go on strike [9]. In the Latané model of So-
cial Impact [10] the Ising model has been used to give a consensus, a fragmentation into
many different opinions, or a leadership effect when a few people change the opinion
of lots of others. To some extent the voter model of Liggett [11] is an Ising-type model:
opinions follow the majority of the neighbourhood, similar to Schelling [12], all these
cited model and others can be found in [13]. Recently, Zaklan et al. [14, 15] developed an
economics model to study the problem of tax evasion dynamics using the Ising model
through Monte-Carlo simulations with the Glauber and heatbath algorithms (that obey
detailed balance-equilibrium) to study the proposed model.

The beauty and the popularity of this model lies in both its simplicity and possible
applications from pure and applied physics, via life sciences to social sciences. In the way
similar to the percolation phenomenon, the Ising model is one of the most convenient
way of numerical investigations of second order phase transitions.

In the simplest case, the Ising model may be used to simulate the system of interacting
spins which are placed at the nodes of graphs or regular lattices. In its basic version only
two values of the spin variable are available, i.e., S =−1/2 and S = +1/2. This is the
classical Ising S = 1/2 model. For a square lattice this model defines the universality
class of phase transitions with analytically known critical exponents which describe the
system behaviour near the critical point. The critical point separates two-ordered and
disordered-phases.

One of possible generalization of the Ising model is to enlarge the set of possible
spin values (like in the Potts model [16, 17]). The Ising S =1 model corresponds to three
possible spin values, i.e., S ∈ {−1,0,+1}, Ising S = 3/2 allows for four spin variables
S∈ {±3/2,±1/2}, etc. The Ising S 6= 1/2 model on various networks and lattices may
form universality classes other than the classical square lattice Ising model.

The spin models for S=1 were extensively studied by several approximate techniques
in two and three dimensions and their phase diagrams are well known [18–24]. The case
S>1 has also been investigated according to several procedures [25–31]. The Ising model
S = 1 on directed Barabási-Albert network was studied by Lima in 2006 [32]. It was
shown, that the system exhibits a first-order phase transition. The result is qualitatively
different from the results for this model on a square lattice, where a second-order phase
transition is observed.

The Archimedean lattices are the vertex transitive graphs that can be embedded in
the plane such that every face is a regular polygon. A polygon is regular if all edges
have the same length and all interior angles are the same. Kepler [33] showed that there
exist exactly 11 such graphs. The lattices are given names according to the sizes (number
of sides of the polygon) of faces incident to a given vertex. The face sizes are listed in
order, starting with a face such that the list is the smallest possible in lexicographical
order. The square lattice thus gets the name (4, 4, 4, 4), abbreviated to (44), triangular (36),
honeycomb (63) and the Kagomé lattice the name (3, 6, 3, 6).

In this paper we study the Ising S = 1 model on two Archimedean lattices (AL),
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Figure 1: Topology of (3,4,6,4) (left) and (34,6) (right) AL.

namely on (3,4,6,4) and (34,6). The topologies of (3,4,6,4) and (34,6) AL are presented
in Fig. 1. Critical properties of these lattices were investigated in terms of site percolation
in [34]. Topologies of all eleven existing AL are given there as well. Also the critical tem-
peratures for Ising S=1/2 model [35] and voter model [36] on those AL were estimated
numerically.

Here, with extensive Monte Carlo simulations we show that the Ising S=1 model on
(3,4,6,4) and (34,6) AL exhibits a second-order phase transition with critical exponents
that do not fall into universality class of the square lattice Ising S=1/2 model.

2 Model and simulation

We consider the two-dimensional Ising S = 1 model on (3,4,6,4) and (34,6) AL lattices.
The Hamiltonian of the system can be written as

H=−J
N

∑
〈i,j〉

SiSj, (2.1)

where spin variable Si takes values −1, 0, +1 and decorates every N =6L2 vertex of the
AL. In Eq. (2.1) J is the magnetic exchange coupling parameter and sum runs on nearest
neighbour sites.

The simulations have been performed for different lattice sizes L = 8, 16, 32, 64 and
128. For each system with N =6L2 spins and given temperature T we performed Monte
Carlo simulation in order to evaluate the system magnetization m. The simulations start
with a uniform configuration of spins (Si = +1, but the results are independent on the
initial configuration). It takes 105 Monte Carlo steps (MCS) per spin for reaching the
steady state, and then the time average over the next 105 MCS are estimated. One MCS
is accomplished when all N spins are investigated whether they should flip or not. We
carried out Nrun = 20 to 50 independent simulations for each lattice and for given set of
parameters (N,T). We have employed the heat bath algorithm for the spin dynamics.

We evaluate the average magnetization M, the susceptibility χ, and the magnetic 4-th
order cumulant U:

M(T,L)= 〈|m|〉, (2.2a)
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kBT

J
·χ(T,L)= N(〈m2〉−〈|m|〉2), (2.2b)

U(T,L)=1−
〈m4〉

3〈|m|〉2
, (2.2c)

where m=∑i Si/N and kB is the Boltzmann constant. In the above equations, 〈···〉 stands
for thermodynamic average.

In the infinite-volume limit these quantities (2.2) exhibit singularities at the transition
point TC. In finite systems the singularities are smeared out and scale in the critical region
according to

M= L−
β
ν fM(x), (2.3a)

χ= L− γ
ν fχ(x), (2.3b)

where ν, β and γ are the usual critical exponents, and fi(x) are finite size scaling (FSS)
functions with x = (T−TC)L1/ν being the scaling variable. Therefore, from the size de-
pendence of M and χ one can obtain the exponents β/ν and γ/ν, respectively.

The maximum value of susceptibility also scales as Lγ/ν. Moreover, the value of tem-
perature T∗ for which χ has a maximum, is expected to scale with the system size as

T∗(L)=TC+bL− 1
ν , (2.4)

where the constant b is close to unity [37]. Therefore, the Eq. (2.4) may be used to de-
termine the exponent 1/ν. We have checked also if the calculated exponents satisfy the
hyper-scaling hypothesis

2β

ν
+

γ

ν
= Deff (2.5)

in order to get the effective dimensionality, Deff, for both investigated AL lattices.

3 Results and discussion

The dependence of the magnetization M on the temperature T, obtained from simula-
tions on (3,4,6,4) and (34,6) AL with N=6L2 ranging from 384 to 98304 sites is presented
in Fig. 2. The shape of magnetization curve versus temperature, for a given value of
N, suggests the presents of the second-order transition phase in the system. The phase
transition occurs at the critical value TC of temperature.

In order to estimate the critical temperature TC we calculate the fourth-order Binder
cumulants given by Eq. (2.2c). It is well known that these quantities are independent of
the system size at TC and should intercept there [38].

In Fig. 3 the corresponding behaviour of the susceptibility χ is presented.
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Figure 2: The magnetization M as a function of the temperature T, for L=8,16,32,64, and 128 and for (3,4,6,4)
and (34,6) AL.
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Figure 3: The susceptibility χ versus temperature T, for (3,4,6,4) and (34,6) AL.
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Figure 4: The reduced Binder’s fourth-order cumulant U as a function of the temperature T, for (3,4,6,4) and

(34,6) AL.

In Fig. 4, the fourth-order Binder cumulant is shown as a function of the temperature
for several values of L. Taking two largest lattices (for L = 64 and L = 128), we have
TC =1.590(3) and TC =2.100(3), for (3,4,6,4) and (34,6) AL, respectively.



F. W. S. Lima, J. Mostowicz and K. Malarz / Commun. Comput. Phys., 10 (2011), pp. 912-919 917

In order to go further in our analysis we also computed the modulus of the magneti-
zation at the inflection M∗ = M(TC). The estimated exponents β/ν values are 0.180(20)
and 0.103(7), for (3,4,6,4) and (34,6) AL, respectively.

Basing on the dependence lnχ on lnL, we estimated γ/ν=1.46(8) and γ/ν=1.44(8),
for (3,4,6,4) and (34,6) AL, respectively.

To obtain the critical exponent 1/ν, we used the scaling relation (2.4). The calculated
values of the exponents 1/ν are 0.83(5) for (3,4,6,4), and 1/ν=0.94(5) for (34,6). Eq. (2.5)
yields effective dimensionality of the systems Deff=1.82(4) for (3,4,6,4), and Deff=1.64(5)
for (34,6).

H. W. J. Blöte and M. P. Nightingale [39] used finitesize scaling and transfer matrix
techniques to calculate accurately the critical exponents of three- and two-dimensional
Isinglike models for which no exact solution is available and also studying the spin-1
Ising model a two-dimensional. The results for the temperature and magnetic exponents
are very close to the exact results for exactly solvable models which were assumed to be
in the same universality class, but within numerical uncertainties. They also presented an
estimate of the critical point of the spin-1 model, and some preliminary results concerning
universal properties of critical amplitudes.

The above results, indicate that the Ising S =1 model on (3,4,6,4) and (34,6) AL does
not fall in the same universality class as the square lattice Ising model, but also with
numerical uncertainties, for which the critical exponents are known analytically, i.e.,
β = 1/8 = 0.125, γ = 7/4 = 1.75, and ν = 1. The independence of exponents on S is be-
lieved numerically since a few decades [39]. Improving the statistics would reduce the
statistical errors but presumably if our conclusion (violation of universality) is wrong it is
due to systematic errors like system sizes. The violation of universality is surprising, but
other such surprises have been found out long ago. For example, a second-order phase
transition can change to tricritical behavior and then to first-order transition by continu-
ously increasing one real parameter which is not the lattice dimensionality nor the spin
symmetry, as in the Blume-Capel model. We don’t think one should make a hypothesis
now; first one should wait for others to check our results. We have checked numerically,
that Ising S=1/2 model reproduces these critical exponents with reasonable accuracy for
both studied lattices [40]. We improved the value of the critical temperature TC for these
two lattices and S=1/2 as well, with respect to [35].

The results are collected in Table 1.

Table 1: Critical points and critical points exponents for (3,4,6,4) and (34,6) AL. For comparison, the exact
values for the square lattice Ising S=1/2 model are included as well.

S kBTC/J β/ν γ/ν 1/ν Deff

(3,4,6,4) 1 1.590(3) 0.180(20) 1.46(8) 0.83(5) 1.82(4)
(34,6) 1 2.100(3) 0.103(8) 1.44(8) 0.94(5) 1.64(5)
(3,4,6,4) 1/2 2.145(3) 0.123(17) 1.680(74) 1.066(44) 1.926(84)
(34,6) 1/2 2.784(3) 0.113(10) 1.726(8) 1.25(13) 1.952(22)

square (44) 1/2 2/arcsinh(1) 1/8 7/4 1 2
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Except the exponent ν, all critical exponents for S = 1 differ for more than three nu-
merically estimated uncertainties from those given analytically.

Note added in the proof

Very recently A. Codello [41] has found exact values of the Curie temperatures for Ising
S= 1

2 model for all AL. Our estimations of TC agree, within errors, with these exact values.
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[29] F. C. Sá Barreto, O. F. Alcantara Bonfim, Physica A, 172 (1991), 378.
[30] A. Bakchinch, A. Bassir, A. Benyoussef, Physica A, 195 (1993), 188.
[31] J. A. Plascak, D. P. Landau, Phys. Rev. E, 67 (2003), R015103.
[32] F. W. S. Lima, Int. J. Mod. Phys. C, 17 (2006), 1267.
[33] J. Kepler, Harmonices Mundi (Lincii) (1619).
[34] P. N. Suding, R. M. Ziff, Phys. Rev. E, 60 (1999), 275
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