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Abstract. The Boltzmann equation (BE) for gas flows is a time-dependent nonlinear
differential-integral equation in 6 dimensions. The current simplified practice is to lin-
earize the collision integral in BE by the BGK model using Maxwellian equilibrium
distribution and to approximate the moment integrals by the discrete ordinate method
(DOM) using a finite set of velocity quadrature points. Such simplification reduces
the dimensions from 6 to 3, and leads to a set of linearized discrete BEs. The main
difficulty of the currently used (conventional) numerical procedures occurs when the
mean velocity and the variation of temperature are large that requires an extremely
large number of quadrature points. In this paper, a novel dynamic scheme that re-
quires only a small number of quadrature points is proposed. This is achieved by
a velocity-coordinate transformation consisting of Galilean translation and thermal
normalization so that the transformed velocity space is independent of mean veloc-
ity and temperature. This enables the efficient implementation of Gaussian-Hermite
quadrature. The velocity quadrature points in the new velocity space are fixed while
the correspondent quadrature points in the physical space change from time to time
and from position to position. By this dynamic nature in the physical space, this new
quadrature scheme is termed as the dynamic quadrature scheme (DQS). The DQS was
implemented to the DOM and the lattice Boltzmann method (LBM). These new meth-
ods with DQS are therefore termed as the dynamic discrete ordinate method (DDOM)
and the dynamic lattice Boltzmann method (DLBM), respectively. The new DDOM
and DLBM have been tested and validated with several testing problems. Of the same
accuracy in numerical results, the proposed schemes are much faster than the con-
ventional schemes. Furthermore, the new DLBM have effectively removed the incom-
pressible and isothermal restrictions encountered by the conventional LBM.
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1 Introduction

It has been well established that gas flows can be described by the Boltzmann equation
(BE) derived from statistical mechanics based on kinetic theory of molecules. However,
the Boltzmann equation is a time-dependent nonlinear differential-integral equation in 6
dimensions whose solution is very complicated, difficult and rare. The currently more
simplified approach is to linearize the collision integral in BE by the BGK model with
an equilibrium Maxwellian distribution and to approximate the moment integrals by the
discrete ordinate method (DOM) [1–4] using a finite set of velocity quadrature points.
This reduces the dimensions of BE from 6 to 3, and leads to a finite set of linearized
Boltzmann equations which can be solved numerically.

The discrete ordinate method (DOM), that had been used long to solve Boltzmann
equation for gas flows, was pioneered by Broadwell [1, 2] who employed a very small
set of discrete velocities but was able to produce shocks. With the increase in comput-
ing power of computer in the last two decades, the DOM has attracted great attention
for solving the Boltzmann equation using a large number of discrete velocities. All these
early treatments made use of discretization with quadrature points in the velocity space
to construct a discrete collision mechanism on the each grid node [5, 6]. A quadrature
using fixed velocity points in real physical space to approximate integrals could not
be implemented efficiently for obtaining hydrodynamic moments, particularly for high
Mach number flows. The difficulty stems from the fact that the accurate integration of
Maxwellian distribution depends highly on the temperature and the mean velocity. This
requires the use of large number of quadrature points to maintain the integration accu-
racy when Mach number is high. As a result, huge computational resources are required
to capture the flow characteristics.

In this paper, a dynamic quadrature scheme (DQS) for DOM that requires only small
quadrature points to approximate accurately the moments of velocity distribution func-
tion is proposed. This is achieved through a velocity-coordinate transformation featured
with Galilean translation and thermal normalization. The transformation renders the
normalized Maxwellian equilibrium distribution with directional isotropy and spatial
homogeneity, which enable the accurate and efficient implementation of the Gaussian-
Hermite quadrature. The velocity quadrature points in the transformed velocity space
are fixed while the correspondent velocity quadrature points in the physical space change
from time to time and from position to position. By this dynamic nature in the physical
space, we term this new scheme as the dynamic quadrature scheme (DQS). A discrete
ordinate method (DOM) with the DQS is then termed as the dynamic discrete ordinate
method (DDOM).

Lattice Boltzmann method (LBM), which had been developed for decades, is also a
popular and powerful numerical tool to solve the Boltzmann equation for gas flows [7–
10]. The LBM also uses discrete velocity set as the DOM used, except that discrete ve-
locities in LBM are specifically assigned to ensure that a particle leaves one lattice node
always resides on another lattice node. Hence the LBM can be regarded as a subset of
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DOM. With the simplicity of algorithm that can reasonably capture the physics of Boltz-
mann equation, the LBM was used widely and indistinguishably to study many classical
fluid problems [11]. It was also used as a favourable platform for designing algorithm
to tackle multi-physics problems. Nevertheless, the currently-used (conventional) LBM
has its limitation in solving the BE. The efficient implementation of LBM requires that
the discrete velocities be isotropic and that the lattice nodes be homogeneous. These re-
quirements restrict the applications of the conventional LBM schemes to incompressible
and isothermal flows. Such restrictions defy the original physics of Boltzmann equation.
In the past decades, considerable efforts have been devoted to the development of ther-
mally enabled LBM [12]. Different kinds of thermal LBM had been proposed, but they
are of less satisfactory due to various deficiencies, such as non-Galilean invariance and
instabilities inherited in the thermal scheme [13]. Much effort has been devoted to the
removal of these incompressible and isothermal restrictions, but of less success.

In this study, by implementing the DQS, a novel dynamic lattice Boltzmann method
(DLBM) that is free of the incompressible and isothermal restrictions is proposed. This
requires the transformation of the six dimensional phase space in both geometry and
velocity. The transformed Boltzmann equation contains additional terms due to local
convection and acceleration. The LBM with the DQS is then named as the dynamic lat-
tice Boltzmann method (DLBM). The transformed Boltzmann equations are then solved
numerically in the new coordinate system with the fixed quadrature points.

To demonstrate and validate the above new schemes, both DDOM and DLBM are
tested with benchmark problems. The DDOM is tested and evaluated with 1-D Sod
problems, 2-D Riemann problems and 2-D backward-step problems, incorporated with
the numerical schemes used in the conventional DOM. The results indicate that the con-
vergence rate of DDOM with the non-dimensional DQS is much faster than that of the
conventional DOM with dimensional quadrature. This is mainly due to the much smaller
number of quadrature points is needed for DDOM than that for DOM. Moreover, the con-
vergence rate of DDOM is insensitive to the mean velocity and temperature. Comparison
of results of DDOM for the 2-D Riemann problem with those of conventional DOM shows
a good agreement. At the same degree of numerical accuracy, it is demonstrated that for
the 2-D problems the DDOM can achieve a speed-up of 20-times faster than conventional
DOM of the same computational efficiency, as a result of the much less quadrature points
needed for DDOM than for conventional DOM, particularly at high Mach number.

Validations of the DLBM have been carried out with a 3-D numerical code for the
benchmark problem of thermal instability of Rayleigh-Benard convection (RBC). The
DLBM numerical solutions for the cases of Rayleigh number at 1800 and 4000 illustrate
the onset of 2-D vortex rolls and 3-D hexagonal cells, respectively. The simulated results
of the RBC flows are in excellent agreement with those predicted from theory, and with
those obtained from the traditional macroscopic NSF equations. Apparently, the new
DLBM has basically removed the incompressible and isothermal restrictions associated
with the conventional LBM. On the DLBM we did not experience the numerical instabil-
ity as encountered on the conventional LBM for thermal flow problem. It is conceived
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that this numerical instability may have been due to the small Mach number expansion
employed in the conventional LBM.

2 Boltzmann equation with BGK collision model for gas flows

The Boltzmann equation (BE), derived from statistical mechanics based on gas kinetic
theory, describes the evolution of the velocity distribution function f (r,c,t) of dilute gases
of identical molecules in the phase space. The equation is a time-dependent nonlinear
differential-integral equation in phase space of 6 dimensions. After the linearization of
its collision integral with the BGK model, the BE is given by

∂ f

∂t
+c· ∂ f

∂r
+F· ∂ f

∂c
=Ω=− 1

τ
( f − f eq), (2.1)

where τ is the molecular collision relaxation time. The equilibrium velocity distribution
f eq(r,c,t) in (2.1) is described by the Maxwell distribution,

f eq(r,c,t)=n
( 1

2πRT

)
3
2
exp

(

− (c−u)2

2RT

)

. (2.2)

In (2.2), n(r,t), u(r,t) and T(r,t) are the macroscopic number density, mean velocity and
temperature of the gas. They can be obtained by taking the first three moments of the
distribution function:

∫

f d3c=
∫

f eqd3c=n, (2.3a)
∫

c f d3c=
∫

c f eqd3c=nu, (2.3b)

1

2

∫

c2 f d3c=
1

2

∫

c2 f eqd3c=
1

2
nu2+ne, (2.3c)

where e is the internal energy per unit volume which is related to the temperature by e=
3RT/2. It is noted that the last equalities in (2.3) are satisfied by f eq(r,c,t) automatically
by definition and become the constraints to the efficiency in the discrete evaluation of the
integrals (2.3).

3 Dynamic discrete ordinate method

3.1 Conventional discrete ordinate method

The analytical solution to the system of Eqs. (2.1)-(2.3) is very rare. Numerical procedure
is a possible way to solve the equation system. Nevertheless, the number of dimension
involved in the distribution function f (r,c,t) prohibits from doing so. Conventionally,
the discrete ordinate method (DOM) circumvents this difficulty by representing f (r,c,t)
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with a set of the discrete distribution functions fi= f (r,ci,t) at a discrete velocity ci, where
i (i=1−N) is the index counting the number of the discrete velocities. The moments in
(2.3) can then be approximated by summation over the index in a quadrature form. As a
result, the equation system (2.1)-(2.3) becomes

∂ fi

∂t
+ci ·

∂ fi

∂r
+F· ∂ fi

∂ci
=− 1

τ
( fi− f

eq
i ), (3.1a)

f
eq
i = f eq(r,ci,t)=n

( 1

2πRT

)
3
2
exp

(

− (ci−u)2

2RT

)

, (3.1b)

with the three moments being written as,

∑
i

Wi fi =n, ∑
i

Wici fi =nu, ∑
i

Wi(ci−u)2 fi =ne, (3.2)

where Wi is the quadrature weighting coefficients of the moment integrals. The values of
Wi can be determined by minimizing the errors incurred in

∑
i

Wi f
eq
i =n, ∑

i

Wici f
eq
i =nu, ∑

i

Wi(ci−u)2 f
eq
i =ne. (3.3)

In the case of the conventional DOM, the Gaussian-Hermite quadrature is commonly
employed because of the Gaussian-like behaviour of f

eq
i . The weighting coefficients Wi

are then determined mathematically from the Gaussian-Hermite polynomials to provide
high accurate results for (3.3). The discrete velocity set of ci is often obtained from the
respective abscissas of this 1-D quadrature by expanding into higher dimensions.

From (3.1b), it is apparent that the errors incurred in (3.3) depend strongly on u and
T, which described the asymmetry and spreading of (3.1b), respectively. For high u (i.e.,
high Mach number) and large variation in T, the set of fixed quadrature velocity ci will
not be representative over the domain of computation. As a result, very large number of
quadrature velocity set will be needed for gas flows at high Mach number. This renders
the conventional DOM very impractical, particularly for 3-D flows.

3.2 Dynamic quadrature scheme

To circumvent the difficulty of high mean velocity (high Mach number) and large varia-
tion in temperature in the flow domain as described above, it is proposed to employ the
following transformation,

C∗=
c−u√

2RT
, (3.4)

which represents basically the composition of a Galilean translation and a thermal nor-
malization of c. In term of C∗, the equilibrium distribution (2.2) becomes

f eq(r,C∗,t)=n
( 1

2πRT

)
3
2
exp

(

−C∗2
)

. (3.5)
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Note that the shape of exponential in (3.5) is independent of u and T. This independence
facilitates the quadrature implementation. The moment integrals (2.3) now can be re-
expressed in quadrature form as below,

1

n

∫

f eq(r,c,t)d3c=π− 3
2

∫

exp
(

−C∗2
)

d3C∗=
N

∑
i

wiFi =1, (3.6a)

1

n
√

2RT

∫

(c−u) f eq(r,c,t)d3c=π− 3
2

∫

C∗exp
(

−C∗2
)

d3C∗=
N

∑
i

wiC
∗
i Fi=1, (3.6b)

1

4nRT

∫

(c−u)2 f eq(r,c,t)d3c=
1

2
π− 3

2

∫

C∗2exp
(

−C∗2
)

d3C∗=
1

2

N

∑
i

wiC
∗2
i Fi=

3

4
, (3.6c)

where Fi = π−3/2. The quadrature points C∗
i and the weightings wi can be determined

mathematically from the Gaussian-Hermite polynomial. In (3.6), a polynomial greater
than 2 degree will result in zero error. The salient feature is that the quadrature points C∗

i

are fixed and independent of the mean velocity and temperature, i.e., independent of the
Mach number of the gas flows.

In numerical evaluation, the hydrodynamic moments (3.2) can be computed by the
following expression:

n=∑
i

Jwi f (r,ci,t), nu=∑
i

Jwici f (r,ci,t), (3.7a)

ne=
1

2 ∑
i

Jwi(ci−u)2 f (r,ci,t), (3.7b)

where J is the Jacobian and

ci = aC∗
i +u

with fixed C∗
i . Here, a=

√
2RT is the characteristic velocity of sound propagation. For gas

flows of small Knudson number, the error encountered in (3.7) is in the order of Knud-
son number as inferred from the Chapman-Enskog expansion. From ci = aC∗

i +u, the
quadrature points ci will change from time-to-time and location-to-location in the phys-
ical space with fixed C∗

i , and hence this scheme is termed as the Dynamic Quadrature
Scheme (DQS). The discrete ordinate method with the DQS is then termed as the Dy-
namic Discrete Ordinate Method (DDOM). We noted that an expression similar to (3.4)
had also been used by Albright et al. [14] and Smith et al. [15] to replace the random
sample procedure for the reduction of the high numerical noise encountered in DSMC.

4 Dynamic lattice Boltzmann method

The LBM is a subset of DOM. It is the special case of DOM where the discrete velocities
are specifically designed to ensure that particle leaves one node will end at other nodes.
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In LBM, the fixed discrete velocity set is applied over the entire computation domain dis-
regarding the orientation. Therefore it can only be applied efficiently to the velocity dis-
tributions which are isotropic and homogeneous. In currently-used (conventional) LBM,
a set of fixed discrete velocity ci is usually adapted. To ensure the Gaussian symmetry
with respect to ci, f eq is conventionally expanded into power series under a small Mach
number assumption and the series is truncated at certain order as needed. The trunca-
tion leads to errors which become significant when the Mach number increases. Also,
the inhomogeneous problem incurred from the variations of u and T over the compu-
tation domain remains. For these reasons, the conventional LBM scheme has only been
demonstrated to perform well-behaved for incompressible and isothermal flows, which
defy the original physics of Boltzmann equation. Much effort has been devoted to the
conventional LBM in the past decades to remove these incompressible and isothermal
restrictions, but of less success. From the discussion in the last section, it appears that C∗

i

will be a better discrete velocity set for an LBM operation, since C∗
i is independent of u

and T and there is no need of power series expansion of f eq. To this end, we transformed
the Boltzmann equation through the following coordinate transformation,

dr∗=
dr

aτ0
, C∗=

c−u

a
, dt∗=

dt

τ0
, (4.1)

where τ0 is a constant reference time. The Boltzmann equation in the new transformed
coordinates (r∗,C∗,t∗) now becomes

∂ f ∗

∂t∗
+(C∗+u∗)· ∂ f ∗

∂r∗
+F∗ · ∂ f ∗

∂C∗ −
τ0

a

Da

Dt
C∗ · ∂ f ∗

∂C∗ −
τ0

a

Du

Dt
· ∂ f ∗

∂C∗ =Ω∗, (4.2)

where D/Dt= ∂/∂t+c·(∂/∂r) is the Lagrangian derivative in the physical space, f ∗ =
f /n0, u∗=u/a, F∗=Fτ0/a and Ω∗=Ωτ0/n0. Eq. (4.2) shows that the transformation leads
to three additional terms associated with the convection due to u and the accelerations
due to u and a, as compared to (2.1). The transformed equilibrium distribution is

f ∗eq=n∗(πa2)−
3
2 exp

(

−C∗2
)

, (4.3)

where n∗=n/n0. The moment integrals and constraints of the moments with respect to
f eq then become

a3

n∗

∫

f ∗d3C∗=
a3

n∗

∫

f ∗eqd3C∗=1, (4.4a)

a3

n∗

∫

C∗ f ∗d3C∗=
a3

n∗

∫

C∗ f ∗eqd3C∗=0, (4.4b)

a3

2n∗

∫

C∗2 f ∗d3C∗=
a3

2n∗

∫

C∗2 f ∗eqd3C∗=
3

4
. (4.4c)

Eqs. (4.2)-(4.4) can be solved with LBM in the transformed coordinates by considering
the convection and acceleration terms as source terms. The equivalence between (3.6)
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and (4.4) implies that no error may incur if a Gaussian-Hermite quadrature higher than
2 degree is employed to (4.4). As for DDOM, we call this new LBM with dynamic ci in
physical space as Dynamic Lattice Boltzmann Method (DLBM).

5 Simplified DLBM for gas flows

The numerical procedure for the DLBM is a complicated procedure since it requires the
Galilean translation in the c space and the local coordinate stretching in both the c and
r spaces. For thermal problems where the temperature variation is not so large, it is
possible to simplify the procedure by employing Galilean translation only. This can be
achieved by using a constant reference sound speed a0=

√
2RT0 where T0 is the reference

temperature. Eq. (4.2) is then reduced to

∂ f ∗

∂t∗
+(C∗+u∗)· ∂ f ∗

∂r∗
+F∗ · ∂ f ∗

∂C∗ −
Du∗

Dt∗
· ∂ f ∗

∂C∗ =Ω∗. (5.1)

Eq. (5.1) is the same as the equation of change given in the book by Chapman and Cowl-
ing [16], who focused on the mean velocity transports to establish the NSF equations
through the Chapman-Enskog expansion. Here we focus on the peculiar velocity, and
consider the streaming process in the C∗ velocity space for the LBM simulation.

It is noted that this simplified DLBM is readily suitable for dealing with the problems
of thermal flows with moderate temperature change and Mach number. When the phys-
ical particle velocity is not altered for more than 0.3a0, the results are satisfactory (the
detailed results are to be reported in a later paper). If higher temperature variation is
required, a larger discrete velocity set can always be employed to improve the accuracy
by capturing temperature variations. But this kind of velocity set needs velocities and
coefficients of different quadrature that will lose the salient features of Gaussian-Hermite
quadrature, as the Gaussian-Hermite quadrature is only applicable up to 3 degree per
dimension for LBM, i.e., D2Q9 for 2 dimensional flows or D3Q27 for a 3 dimensional
flows.

6 Numerical results and validation

The DDOM has been validated for 1-D Sod problem, 2-D Riemann problem, and
backward-step problem, and the DLBM has been validated for the thermal instability
of Raleigh-Benard convection (RBC). The specifications of the physical problem and the
results from the DDOM and DLBM simulations are discussed in the following subsec-
tions.

6.1 DDOM: One-dimensional Sod problem

There are different problems of one-dimensional Riemann shock tubes, depending on the
initial conditions of the density, pressure and velocity. Here we use the Sod problem [18]
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                DOM                            DDOM 

Figure 1: Density profiles of Sod test. The solid line is the exact solution.

as the bench mark for testing the one-dimensional DDOM against the conventional DOM.
For the Sod problem, the velocity initially is zero, but with differences in density and
pressure. For the present Sod test, the initial condition is:

(ρ,u,p)=

{

(1.0,0.0,1.0), x≤0.5,

(0.125,0.0,0.1), x>0.5.
(6.1)

For this test, 400 grid points and ∆t/∆x=0.376 are used. Here, the 1-D DDOM simulation
gives the results of Euler limit for inviscid flows.

Fig. 1 shows the results of density profiles at times t= 0.188 for the Sod problem. In
Fig. 1, the dot lines represent the exact solutions. The small deviation of the numerical re-
sults from the exact solutions is typical for the current numerical scheme with numerical
diffusivity. Although both DOM and DDOM provide the results agreeable to the exact so-
lution, the computational efficiencies of the two are quite different. The DDOM is about 5
times faster than the DOM. This speed-up is basically in-line with the quadrature points
needed for the simulations to reach the same accuracy. For the DDOM only 3 quadrature
points are needed, while the number of quadrature points needed for conventional DOM
is 18.

6.2 DDOM: Two-dimensional Riemann problem

The 2-D Riemann problem is defined in the x-y domain (0,1)×(0,1), which is divided
by two lines x= 0.5 and y= 0.5 into four quadrants. The subscripts ll, lr, ul, and ur are
used to denote lower-left, lower-right, upper-left and upper-right quadrants respectively.
The initial data consists of a single constant state in each of the four quadrants. The
configuration 8 of the 2-D Riemann problem is selected in this study as the benchmark
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DOM DDOM

Figure 2: Density contour at t=0.25 for the configuration 8 of the 2D Riemann problem.Figure 2: Density contour at t=0.25 for the configuration 8 of the 2D Riemann problem.

problem. The values of V=(p,ρ,u,v) in the four quadrants as the initial conditions are:

{

Vul =(1.0,1.0,0.6259,0.1), Vur =(0.4,0.5197,0.1,0.1),

Vll =(1.0,0.8,0.1,0.1), Vlr =(1.0,1.0,0.1,0.6259).
(6.2)

For this test, the grid mesh is set at 400×400 with ∆t/∆x= 0.25. Again, the simulation
results represent those of Euler limit of inviscid flows.

Fig. 2 shows the contour of density at t = 0.25. It is seen that the density profiles
and contour are well resolved both by DOM and DDOM. In order to obtain the results
converging to the same degree of accuracy, 16 quadrature abscissas per each dimension
are required for DOM, while only 2 quadrature abscissas are needed by DDOM. These
demonstrate that DDOM provide much faster convergence rate than the conventional
DOM. An efficiency of 20-times faster in computational time by DDOM than by conven-
tional DOM can be achieved for this 2-D Riemann problem. Again, this is mainly due
to the much less quadrature points are needed for DDOM than for DOM. Much higher
efficiency in computational time can be expected for 3-D problems. Moreover, the con-
vergence rate of DDOM scheme is insensitive to the mean velocity and temperature since
the quadrature velocities for the DDOM is dimensionless.

6.3 DDOM: Two-dimensional backward-step problem

The backward step is constructed from a square and a rectangular region ranging from
(0,1)×(0,1). The regions are separated by the step corner at x = 0.5 and y = 0.5. We
will use the subscripts l and r to denote left and right regions respectively. The initial
conditions for V=(p,ρ,u,v) are:

{

Vl =(2.4583,1.862,0.8216,0),

Vr =(1,1,0,0).
(6.3)
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   DOM                                                         DDOM 

Figure 3:  Density contours of 2-D backward step problem at Mach number 1.5 when Figure 3: Density contours of 2-D backward step problem at Mach number 1.5 when t=0.75.

The contour map of density at t = 0.75 solved on a 320×320 mesh with ∆t/∆x = 0.2 is
shown in Fig. 3. Again, we found both DDOM and DOM schemes can yield the results
in good agreement. For the same degree of accuracy, the number of quadrature points
required for DOM is 18×18, while only 3×3 is needed for DDOM. We found the speed-up
ratio is 15 for this test.

6.4 DLBM: Thermal instability of Rayleigh-Benard convection

In the implementation of a 3-D numerical code to validate DLBM, we choose a D3Q27
lattice for the discretization of the phase space. The Gaussian-Hermite quadrature with
the weighting coefficients determined from Gaussian-Hermite polynomial is adapted.
The streaming and collision procedures in the DLBM are similar to those of conventional
LBM. The acceleration and convection terms in Eq. (5.1) are discretized using central
difference method. A Strange splitting algorithm is used to achieve a second-order La-
grangian streaming. The boundary conditions on the wall are typical diffused reflec-
tion as in some conventional LBM. The details of the numerical procedure can be found
in [18–20].

Rayleigh-Benard convection (RBC) flows describe a viscous fluid at rest between two
horizontal plates z= 0 and z= d. There is a typical temperature difference ∆T between
two plates with the lower plate at higher temperature, and the direction of gravity is to-
wards negative z-direction. Due to the local thermal expansion effect, the lower fluid has
less density and tends to buoy upwards, and the top heavier fluid tends to sink. This
system is unstable when ∆T reaches a certain critical value. This type of flow instability
is characterized by the non-dimensional parameter, Rayleigh number Ra, which is de-
fined by Ra=βgd3∆T/να, where β is the volumetric thermal expansion coefficient, g the
gravitational acceleration, d the separation between the two plates, ∆T the temperature
difference, ν the kinematic viscosity, and α the thermal diffusivity. The critical Rayleigh
number Rac varies for different regimes. At lower Rac the significant flow phenomenon is
the 2 dimensional convective rolls. Through non-linear stability analysis, it can be found
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 Figure 4: Schematic of computation domain: The origin of the coordinates is located at the center of the
domain. The bottom wall is heated at constant temperature and the gravity is directed to the negative z
direction. The four vertical sides are set as two periodic pairs.

that the critical Rayleigh number Rac is about 1708 [21], with the critical wave number
k∗c =πd/w being around 3.117 where w is the wave length.

Fig. 4 shows the schematic of the computation domain with the coordinate system
used in the present numerical simulation of the RBC flows. In Fig. 4, the origin is located
at the center of the domain. Hence, z=0 is the mid-plane and z=±d/2 represent the top
and bottom surfaces. Asymmetric boundary conditions at the top and bottom surfaces
are set in the simulation. The heated bottom is at a fixed constant temperature Tbottom and
the cooled top plate is under a relaxation condition to the desired ambient temperature,
corresponding to a constant overall heat flux losing to the environment from the top
surface. The four vertical boundaries are two pairs of periodic boundaries which are set
consistently along each axis. Different mesh sizes are chosen for each problem.

Initially the velocity in the entire domain is zero and the fluid temperature equals to
the cooled ambient temperature. For the simulation of the unstable flows of 2-D convec-
tive rolls, both horizontal walls are of no-slip boundary. For the 3-D RBC simulations, the
cool top surface is a slip boundary and the hot bottom surface is a no-slip plate.

The connection between the NSF equation and Boltzmann equation can be established
with the analysis based on the Chapman-Enskog expansion [16]. The NSF equation,
when given an appropriate equation of state, can be reformulated into the equations
with Boussinesq approximation, which is the set of equations often employed for study-
ing natural convection problem. Since the equation of state is already embedded in the
definitions of dynamic pressure and temperature of gases, the Boltzmann equation is its
original form for solving the natural convection problem for gases. It is noted that Boussi-
nesq approximation and fluid physical property modelling, which are usually used in
macroscopic simulation of the RBC flows, are not required in our DLBM simulation.

For the simulation of the RBC flows with the convection rolls perpendicular to the x-z
plane, a relatively short dimension in the y-direction is adapted and the periodic bound-
ary in the lateral y-direction is enforced. The domain size is 137×7×23. The grid size
∆x employed for the DLBM is 0.02. A temperature difference of ∆T = 0.2 is established
between the top and bottom plates. Initially at t= 0, the fluid in the domain is stagnant
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Figure 5: The simulation of 2-dimensional convective rolls using the 3-D DLBM code. The view is on the x-z
plane. A periodic boundary condition is applied along the y direction.

and the gravitational acceleration g is 0.01 towards negative z direction. Fig. 5 shows
the colour-contoured distributions of (a) the mean velocity u, (b) the velocity magnitude
|u|, (c) the number density n and (d) the temperature in term of e, as predicted by the
3-D DLBM code. For the present case, the Rayleigh number is Ra= 1600, and the wave
number obtained from the present simulation is approximately 3.1, which is close to the
theoretical value. From Figs. 5(a) and (b), it is seen that the maximum velocities of down-
flow and up-flow at z= 0 are asymmetric. The velocity magnitude of up-flow is higher
than that of the down-flow. As a result, the centers of vortex circulation are shifted to-
ward the down-flow regions. Hence, the down-flow regions become narrower than the
up-flow regions. Apparently, this asymmetry is the consequence of the buoyancy force
which is aligned with the temperature gradient in the negative gravitational direction.
The gas fluids in the up-flow regions are accelerated by the buoyancy force while those
in the down-flow regions are decelerated. This is also in conformal to the gas density
distribution represented by n as shown in Fig. 5(c), where the minimal density region is
in-line with the up-flow region. Fig. 5(c) also shows the occurrence of density stratifica-
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tion with high density near the bottom wall. This density stratification may be the con-
sequence of the gravitational potential. The temperature distribution given in Fig. 5(d)
shows basically a constant thermal gradient in the z-direction, hardly of seeing a periodic
temperature perturbation.

To simulate the 3-D RBC flow structure, the computational domain is set as 103×103×
23 for the case of hexagonal cell and 123×123×23 for the case of convective rolls. The
simulation parameters are similar to those of the 2-D RBC case, except that ∆x is changed
to 0.04, and that the gravitational force is doubled to 0.02. The top boundary is applied
with a slip flow boundary condition, and the temperature is maintained at a mean value
of a simple relaxation in time. The flow field is allowed to evolve for 105 time steps until
the resultant flow evolves very slowly at a change in mean velocity less then 10−4 of the
nominal value. Two Rayleigh numbers at Ra= 1800 and 4000 were used in the present
3-D DLBM simulation.

The results of the simulated RBC flows are shown in Fig. 6, for the case of Ra=4000
when the periodic hexagonal cells occur (Figs. 6(a1)-(a3)) and for the case of Ra= 1800
when the convective vortex rolls occur (Figs. 6(b1)-(b3)). Figs. 6(a1) and (b1) show the
distributions of mean speed at the top surface (z= d/2) where the boundary condition
is set to be slippery. The motion of gas flows in the red region is in parallel to the x-y
top plane, and that in the blue regions in normal to the plane. Hence, in Fig. 6(a1), the
gas flows move upward from the external region of the hexagons, pass over the red-band
strip and then move downward into the central inner region of the hexagons. For the vor-
tex rolls shown in Fig. 6(b1), the gas flows move upward from one blue strip, pass over
the red strip and then move downward at the next blue region. As being inferred from
the asymmetry of the up and down motions in the convective rolls as described above,
the wider blue strip represents the up-flow region while the narrower blue strip repre-
sents the down-flow region. The occurrence of the oblique convective rolls as shown in
Fig. 6(b1) is common when the ranges of computation domain in the x and y directions
are of the same order. Figs. 6(a2) and (b2) of the temperature distributions indicate that
the up-flow regions are wider and hotter than the down-flow regions. On the horizontal
x-y plane at z=0, the gas flows have almost no horizontal motions on the plane, i.e., only
the z-component of the velocity w survives. The distributions of the w velocity compo-
nent for the gas flows with hexagon cells and convective rolls are shown in Figs. 6(a3)
and (b3), respectively. Clearly, in Fig. 6(a3) the up-flow regions are shown by the red
positive w region external to the hexagon cells, and in Fig. 6(b3) by the red strips of the
convective rolls.

From the above results, it is clearly that the new DLBM is capable to accurately simu-
late the behaviours of the thermal instability of Rayleigh-Benard convection (RBC) using
the DQS with D3Q27. To our knowledge to date, such simulation of RBC in 3-D has never
been achieved by a conventional LBM using a simple Boltzmann equation. The success
of the DLBM in simulating the RBC is attributed to the use of DQS that, with the proper
coordinate transformation, has basically removed the incompressible and isothermal re-
strictions encountered by the conventional LBM.
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external to the hexagon cells, and in Figure 6b3 by the red strips of the convective rolls.    
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Figure 6: The simulation results of 3-D Rayleigh-Benard convection. The hexagonal cells (a1)-(a3) occur at
Ra=4000, and the convective rolls (b1)-(b3) occur at Ra=1800.

7 Conclusions

In this paper, a dynamics quadrature scheme (DQS) is proposed to evaluate the mo-
ment integrals very accurately in the formulation of Boltzmann equation for gas flows.
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This is accomplished by the transformation of the physical velocity-space into a non-
dimensional velocity-space through a Galilean translation and a thermal normalization.
With such transformation, the shape of Maxwellian equilibrium distribution is fixed and
symmetry. Therefore, the first three moments of the equilibrium distribution can be cal-
culated exactly with zero errors using 3 quadrature points in each dimension, i.e., using
D1Q3, D2Q9, and D3Q27 for the discrete velocities. The salient feature of the DQS is its
independence of the mean velocity and temperature. With the dynamic nature of quadra-
ture velocities in physical space, the Dynamic Discrete Ordinate Methods (DDOM) and
the Dynamic Lattice Boltzmann Method (DLBM) are formulated, designed and simu-
lated.

The DDOM was validated with the benchmark of 1-D Sod problem, 2-D Riemann
problem and 2-D backward-step problem. Comparison of the DDOM solutions with
those of conventional DOM shows excellent agreements. At the same degree of numeri-
cal accuracy, the efficiency in computational time at a factor of 20-times faster by DDOM
than by conventional DOM has been achieved for the 2-D simulation. This speed-up
is mainly due to the much less quadrature points needed for DDOM than for the con-
ventional DOM, i.e., only 3 points is needed for DDOM while 18 points is required for
conventional DOM. As the number of quadrature points for DDOM is insensitive to the
mean velocity and temperature, it is anticipated that the speed-up will be much faster at
higher Mach number. By this nature that only small number of fixed quadrature points is
needed for DDOM, it is conceived that the DDOM has basically circumvented the diffi-
culties of large quadrature points faced by the conventional DOM. It is anticipated that a
speed gain of more than 100 times as compared to the conventional DOM simulations can
be achieved for 3-D DDOM simulations. This DDOM has been evaluated in details [22]
and extended to viscous flow problem [23].

The DLBM have been validated by the thermal instability problem of Rayleigh-
Benard convection (RBC). Without the macroscopic modelling such as Boussinesq ap-
proximation, the 3-D DLBM simulations based on Boltzmann formulation have predicted
the RBC flows that evolve naturally to patterns of 2-D vortex rolls at Ra=1800 and of 3-D
hexagonal cells at Ra = 4000. The results from DLBM are in excellent agreement with
the experimental results from open literatures. To our knowledge, this prediction of 3-D
RBC flows has never been achieved by the conventional LBM using a simple Boltzmann
equation. The success of the DLBM in predicting RBC may be attributed to the imple-
mentation of DQS, which is insensitive to mean velocity and temperature variation. The
use of DQS also leads to the isotropic behaviour of Maxwellian distribution in the trans-
formed velocity-space, which is consistent with the spirit of a lattice method. Because
no small Mach number expansion is required and the velocity is normalized with the
thermal velocity in the DLBM, it is conceived that the new DLBM has basically removed
the incompressible and isothermal restrictions encountered by the conventional LBM.
As an important note, the new DLBM has basically retained the physics of gas flows in
accordance to the original formulation of Boltzmann equation.
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