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Abstract. We introduce and study a parallel domain decomposition algorithm for
the simulation of blood flow in compliant arteries using a fully-coupled system of
nonlinear partial differential equations consisting of a linear elasticity equation and
the incompressible Navier-Stokes equations with a resistive outflow boundary condi-
tion. The system is discretized with a finite element method on unstructured moving
meshes and solved by a Newton-Krylov algorithm preconditioned with an overlap-
ping restricted additive Schwarz method. The resistive outflow boundary condition
plays an interesting role in the accuracy of the blood flow simulation and we provide a
numerical comparison of its accuracy with the standard pressure type boundary con-
dition. We also discuss the parallel performance of the implicit domain decomposition
method for solving the fully coupled nonlinear system on a supercomputer with a few
hundred processors.
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1 Introduction

Artery diseases, such as the plaque formation, are closely related to flow properties of the
blood and to the interaction between the blood and the artery walls. Different from the
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traditional experimental approach, the computational approach has the ability to sim-
ulate the velocity and pressure fields in a virtual environment, which is important in
predicting the development of the disease and helps the treatment of the diseases [30].
Unfortunately, computer modeling of blood flow in arteries is a challenging problem [31].
In this paper, we develop a parallel fluid-structure interaction algorithm for the simula-
tion of blood flow in compliant arteries using a fully-coupled system of partial differential
equations.

One of the main challenges is the effective coupling of the fluid and the wall de-
formability. Two well-known formulations for the fluid-structure coupling are iterative
and monolithic. In iterative approaches, the fluid, solid equations are solved sequentially,
update each other’s boundary conditions, until some desired tolerance is reached [17,26].
This enables the use of existing well-established fluid and structure solvers. However,
difficulties in the form of lack of convergence have been addressed in a number of situ-
ations [24, 28]. In monolithic approaches, the fluid, solid and mesh movement equations
are solved simultaneously in fully-coupled fashion, where the coupling conditions en-
forced strongly as part of the system [3–6, 19, 23]. The fully-coupled approach shows to
be more robust. Many of the convergence problems encountered within the iterative ap-
proach can be avoided with the monolithic approach [4]. Of course, there is a price to pay
in this approach, solving the fully-coupled system is more computationally expensive. In
this paper, we use the monolithic approach within the ALE framework.

In the blood flow simulation, the size and complexity of the circulation precludes a
computational representation for the complete circuit in human body. Numerical models
must invariably be truncated and divided into the upstream domain (modeled domain)
and the downstream domain. And appropriate outflow boundary condition must be
specified for the modeled domain. The downstream domain includes a vast quantities
of smaller arteries, arterioles, capillaries, venules and veins returning blood to the heart.
As a consequence, solutions to the governing equations of blood flow in the modeled
domain depend closely on the outflow boundary conditions imposed to represent the in-
fluence from the downstream vascular system. By ignoring the effect of the downstream
circulation, these boundary conditions may result in inaccurate predictions of velocity
and pressure fields. In [16, 32, 33], a suggested solution is to use a reduced dimensional
model to represent the downstream vessels and provide boundary conditions for the
higher dimensional upstream model, where high-resolution information is needed.

In [4], Barker and Cai successfully developed a scalable parallel method for fluid-
structure interaction problem. However, their model only use zero-traction as outlet
boundary conditions. The blood pressure is not computed accurately from reports [33]
and reference therein. For this reason, this paper describes the extension of Barker’s pa-
per to the following two aspects.

• In this paper, a more physically realistic outflow boundary condition is considered,
namely the resistance of the flow. Where we assume the pressure P is a constant over the
upstream outlets, the relation P=QR, representing the resistance to the flow of the down-
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stream domain [18,25], is implicitly prescribed on the outflow boundary as the boundary
condition, where Q=

∫

Γout
u·nds represents the flow rate at the outflow boundary and R

is the measured resistance. And we demonstrate its accuracy of the prediction of velocity
and pressure fields by comparisons to the one using the zero-traction outflow boundary
condition.

• The other goal of this paper is to understand the impact of the decomposition of
the integral condition on the convergence and the scalability of the Schwarz precondi-
tioned linear Jacobian solver. In the Newton-Krylov-Schwarz method, an inexact New-
ton method with line search is used as a nonlinear solver and within a Newton step, the
linear Jacobian system is solved by GMRES preconditioned by an overlapping additive
Schwarz preconditioner. With the traction boundary condition, the Jacobian matrix is
uniformly sparse and the variables have local dependency, i.e., each variable is related
through the function only to the neighboring variables. However, in the case of the re-
sistive boundary condition, the Jacobian matrix has a dense block corresponding to the
variables on the outlet boundaries due to the integral nature of the resistive boundary
condition. As far as we know, the class of overlapping Schwarz methods had been suc-
cessfully employed to the first kind of boundary condition [3, 7, 21], but as for the resis-
tance boundary condition, the decomposition of the global domain into subdomains will
break the integral connection between the variables on the outflow boundary, making the
convergence and performance of this preconditioner interesting to discuss with.

We should also mention that we will only consider a 2D model in this paper. Al-
though not completely physically realistic for blood flow simulations, this simplified 2D
problem maintains all the mathematical aspect of the fully coupled fluid-structure inter-
action problem and also the ability to reproduce the important physical aspects of blood
flow in complaint arteries.

The rest of the paper is organized as follows. In Section 2, we analyze the formulation
of the fluid-structure interaction problem, including the strong and weak forms and the
discretization of the problem, both in space and time. Then, in Section 3, we present
the Newton-Krylov-Schwarz method with overlapping additive Schwarz preconditioner
that we use to solve the nonlinear fully-coupled system. In Section 4, we demonstrate our
algorithm on some artery models and report the parallel performance of our algorithm.

2 Formulation of the fluid-structure interaction problem

In the simulation of blood flow in compliant artery, the elastic vessel wall deforms in
response of the blood pulse. The moving artery walls imply a moving fluid domain
in turn. With the emphasize in tight and monolithic coupling for the fluid-structure,
an additional field of solution variable and the governing equations for this field are
introduced for modeling the deformation of the computational mesh in the fluid domain.
As a result, our fluid-structure model couples the three components, the fluid, the elastic
wall structure and the moving mesh. That is, we model the wall structure as linear elastic
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Figure 1: Ωs is the structure domain in the Lagrangian reference configuration; Ω0 =Ω f (0) is the reference

configuration of the fluid domain and Ω f (t) represents the moving fluid domain at time t. The boundary to the
structure domain is divided into a Dirichlet portion Γsd at the inlets and outlets and a Neumann portion Γsn.
Γi and Γo are the inlet and outlet boundaries for the fluid domain. Γw represents the fluid-structure interface.

material in the Lagrangian frame, the fluid as viscous incompressible Newtonian flow in
the arbitrary Lagrangian-Eulerian (ALE) framework [11, 14, 15, 20] and the moving mesh
for the ALE formulation. See Fig. 1 for a schematic and some notations.

Since the fluid domain is moving, the governing equations of the fluid need to be
modified in the ALE framework. In the ALE framework, a mapping At is defined from
the reference configuration Ω f (0) to the moving domain Ω f (t):

At : Ω f (0)→Ω f (t), x(Y,t)=At(Y), ∀Y∈Ω f (0),

where Y is referred to as the ALE coordinate and x as the Eulerian coordinates. And a
generic conservation law defined on a moving domain Ω f (t)

∂u

∂t
+∇x ·F(u)= f

can be written in the ALE form as

∂u

∂t

∣

∣

∣

Y
−ω ·∇xu+∇x ·F(u)= f , in Ω f (t),

where ω=∂At/∂t is the velocity of the moving mesh and Y indicates that the time deriva-
tive is taken with respect to the ALE coordinates.

The fully coupled fluid-structure interaction problem is given by

ρs
∂2xs

∂t2
−∇·σs−β

∂(∆xs)

∂t
+γxs = fs, in Ωs, (2.1a)

xs =0, on Γsd, (2.1b)

∂u f

∂t

∣

∣

∣

Y
+
[

(u f −ωg)·∇
]

u f +
1

ρ f
∇p f =ν f ∆u f +f f , in Ω f (t), (2.1c)
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∇·u f =0, in Ω f (t), (2.1d)

u f = g, on Γi, (2.1e)

p f =RQ=R
∫

Γo

u f ·n f ds, on Γo, (2.1f)

∆x f =0, in Ω0, (2.1g)

x f =0, on Γi∪Γo. (2.1h)

In (2.1a) and (2.1b), xs describes the displacement of solid motion and σs =λs(∇·xs)I+
µs(∇xs+∇xT

s ) is the Cauchy stress tensor. The Lamé parameters λs and µs are character-
ized by λs = νsE/((1+νs)(1−2νs)), µs = E/(2(1+νs)), where E is the Young’s modulus
and νs is the Poisson ratio, ρs is the solid density, β is a visco-elastic damping parame-
ter and the γ term is used to represent a radially symmetric artery in two dimensions [1].
While in (2.1c)-(2.1f), u f and p f represent the fluid velocity and the pressure, respectively.
ρ f is the fluid density, ν f is the kinematic viscosity and ωg = ∂x f /∂t is the velocity of the
moving mesh. In order to describe the moving mesh, the fluid mesh displacements x f

are made to satisfy a harmonic extension of the moving fluid-structure interface by (2.1g)
and (2.1h).

In addition to the above governing equations and boundary conditions, more impor-
tantly, the coupling conditions at the fluid-structure interface need to be specified. In our
fully coupled setting, three coupling conditions must be satisfied at the fluid-structure
interface Γw corresponding to the structure, fluid and moving mesh equations

σs ·ns =−σf ·n f , (2.2a)

u f =
∂xs

∂t
, (2.2b)

x f =xs, (2.2c)

where ns, n f are unit normal vectors for the solid and fluid at the fluid-structure interface

respectively and σs and σf =−p f I+ρ f ν f (∇u f +∇uT
f ) are the Cauchy stress tensors for

the solid and fluid respectively.

We next introduce the weak formulation of the fully coupled fluid-structure interac-
tion problem. Consider the coupling condition (2.2a) and boundary conditions, we define
the variational space of the structure problem as:

X=
{

xs ∈ [H1(Ωs)]
2 : xs =0 on Γsd

}

.

The weak form of the structure problem is stated as follows: Find xs∈X such that ∀φs∈X,

Bs(xs,φs;σf )=Fs(φs), (2.3)
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where

Bs(xs,φs;σf )=ρs
∂2

∂t2

∫

Ωs

xs ·φsdΩ+
∫

Ωs

∇φs : σsdΩ+β
∂

∂t

∫

Ωs

∇φs : xsdΩ

+γ
∫

Ωs

xs ·φsdΩ−
∫

Γw

φs ·(σf ·ns)ds, (2.4)

Fs(φs)=
∫

Ωs

fs ·φsdΩ, (2.5)

where we replace σs ·ns with σf ·ns in (2.4) by virtue of the coupling relation (2.2a) on the
interface Γw.

The variational spaces of the fluid subproblem are time-dependent and the solution
of the structure subproblem provides an essential boundary condition for the fluid sub-
problem by (2.2b). We define the trial solution and weighting function spaces as:

V=
{

u f ∈ [H1(Ω f (t))]
2 : u f = g on Γi, u f =

∂xs

∂t
on Γw

}

,

V0=
{

u f ∈ [H1(Ω f (t))]
2 : u f =0 on Γi∪Γw

}

, P= L2(Ω f (t)).

The weak form of the fluid problem reads: Find u f ∈V and p f ∈P such that ∀φ f ∈V0 and
∀ψ f ∈P,

B f

(

{u f ,p f },{φ f ,ψ f };ωg

)

=Ff

(

{φ f ,ψ f }
)

, (2.6)

where

B f

(

{u f , p f },{φ f ,ψ f };ωg

)

=
∫

Ω f (t)

∂u f

∂t

∣

∣

∣

Y
·φ f dΩ+

∫

Ω f (t)

[

(u f −ωg) ·∇
]

u f ·φ f dΩ+ν f

∫

Ω f (t)
∇u f :∇φ f dΩ

−
∫

Ω f (t)
p f (∇·φ f )dΩ+

∫

Ω f (t)
(∇·u f )ψ f dΩ−

∫

Γo

t f ·φ f ds, (2.7)

where t f =−pn f +ν f (∇u f ·n f ) and

Ff

(

{φ f ,ψ f }
)

=
∫

Ω f (t)
f f ·φ f dΩ. (2.8)

The last term in (2.7) representing the contribution of the resistance boundary condition
on the outlet Γo can be modified as:

∫

Γo

t f ·φ f ds=−
∫

Γo

(

R
∫

Γo

u f ·n f ds
)

φ f ·n f ds+ν f

∫

Γo

φ f ·(∇u f )·n f ds (2.9)

thanks to the relation (2.1f).
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We define the variational spaces of the mesh movement as:

Z0=
{

x f ∈ [H1(Ω0)]
2 : x f =0 on Γi∪Γo∪Γw

}

,

Z=
{

x f ∈ [H1(Ω0)]
2 : x f =xs on Γw, x f =0 on Γi∪Γo

}

.

The weak form of the mesh movement problem reads: Find x f ∈Z such that ∀ξ∈Z0

Bm(x f ,ξ)=0, (2.10)

where

Bm(x f ,ξ)=
∫

Ω0

∇ξ :∇x f dΩ. (2.11)

We use an unstructured finite element method to discretize the fully coupled fluid-
structure interaction problem in space, using the LBB-stable mixed Q2-Q1 elements for
the fluid and Q2 elements for the structure. Denote the finite element subspaces Xh, Vh,
Vh,0, Ph, Zh, Zh,0 as the counterparts of their infinite dimensional subspaces. We approxi-
mate the fully coupled fluid-structure interaction problem as: Find xs∈Xh, u f ∈Vh, p f ∈Ph

and x f ∈Zh such that ∀φs∈Xh, ∀φ f ∈Vh,0, ∀ψ f ∈Ph and ∀ξ∈Zh,0,

Bs

(

xs,φs;σf

)

−Fs(φs)+B f

(

{u f ,p f },{φ f ,ψ f};ωg

)

−Ff

(

{φ f ,ψ f }
)

+Bm(x f ,ξ)=0 (2.12)

with the discretized version of coupling conditions (2.2b) and (2.2c). Representing the
traction coupling condition (2.2a), the operator Bs has linear dependency to the fluid
velocity u f and pressure p f as described in the boundary term of (2.3). Since we model
the fluid in the ALE framework, the integration domain Ω f (t) in (2.7) depends implicitly
on the mesh displacement x f and the convection term that appears in (2.7) depends on
both u f and x f . As a consequence, the operator B f depends on x f and u f nonlinearly.

By introducing the structure velocity ẋs as an additional unknown variable, we change
the equation to a first-order system, rewriting Bs as:

Bs

(

{xs, ẋs},{φs,ϕs};σf

)

=ρs
∂

∂t

∫

Ωs

ẋs ·φsdΩ+
∫

Ωs

∇φs : σsdΩ+β
∫

Ωs

∇φs : ẋsdΩ

+γ
∫

Ωs

xs ·φsdΩ−
∫

Γw

φs ·(σf ·ns)ds+
∫

Ωs

( ∂xs

∂t
− ẋs

)

·ϕsdΩ, (2.13)

where ẋs and ϕs are in Xh.

Discretizing in time with the second-order implicit trapezoidal rule to both the fluid
and structure, the fully coupled nonlinear system arrives:

F(yn+1)=L(yn+1)−
∆t

2
B(yn+1)−L(yn)−

∆t

2
B(yn)=0, (2.14)
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where yn =(un
f pn

f xn
f xn

s ẋs
n)T is the solution at the time step tn. And we define

L(yn)=ρs

∫

Ωs

ẋn
s ·φsdΩ+

∫

Ωs

xn
s ·ϕsdΩ+

∫

Ω f (t)
un

f ·φ f dΩ, (2.15a)

B(yn)=−
(

Bs(y
n)+B f (y

n)+Bm(y
n)
)

, (2.15b)

Bs(y
n)=

∫

Ωs

∇φs : σn
s dΩ+β

∫

Ωs

∇φs : ẋn
s dΩ+γ

∫

Ωs

xn
s ·φsdΩ−

∫

Γw

φs ·(σ
n
f ·ns)ds

−
∫

Ωs

ẋn
s ·ϕsdΩ−

∫

Ωs

f n
s ·φsdΩ, (2.15c)

B f (y
n)=

∫

Ω f (t)
[(un

f −ωn
g)·∇]un

f ·φ f dΩ+ν f

∫

Ω f (t)
∇un

f :∇φ f dΩ−
∫

Γo

tn
f ·φ f ds

−
∫

Ω f (t)
pn

f (∇·φ f )dΩ+
∫

Ω f (t)
(∇·un

f )ψ f dΩ−
∫

Ω f (t)
f n

f ·φ f dΩ, (2.15d)

Bm(y
n)=

∫

Ω0

∇ξ :∇xn
f dΩ. (2.15e)

Since our temporal discretization scheme is fully-implicit, in order to obtain the solution
yn+1 for the current time step tn+1 = (n+1)∆t, we need to solve the nonlinear system
(2.14).

3 Parallel Newton-Krylov-Schwarz algorithm

The large size of the nonlinear fully-coupled system (2.14) demands for intensive com-
putational power. A parallel scalable solver becomes a must in our simulation. In this
paper, we employ a Newton-Krylov-Schwarz (NKS) algorithm [7, 21], in which an inex-
act Newton method with backtracking [12, 13] is used as the nonlinear solver. At each
time step, let the initial guess x(0) be given as the solution of the previous time step and
assume x(k) is the current approximation at the kth Newton step. The approximation at
the next Newton step x(k+1) is computed via

Step 1 Solve a preconditioned linear Jacobian system to find the Newton correction s(k), by using a
Krylov subspace method, GMRES [29]

−M−1
k Jks(k)=M−1

k F (x(k)), (3.1)

where Jk is the Jacobian matrix evaluated at x(k) and the left preconditioner M−1
k is the

overlapping additive Schwarz preconditioner, which we are going to discuss in details in this
subsection later.

Step 2 Update the new approximation x(k+1)= x(k)+θ(k)s(k), where θ(k) ∈ (0,1] is the step length
parameter.
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Figure 2: Example partition of the domain into 16 subdomains. The outlet boundary on the right is shared by
two different subdomains.

In Step 1, the accuracy of the solution to the preconditioned Jacobian systems is controlled
by the forcing term ηk,

‖M−1
k (F(x(k))+ Jks(k))‖≤ηk‖M−1

k F(x(k))‖. (3.2)

In Step 2, if the correction s(k) gives adequate progress towards the solution, we keep this
correction by making θ(k)=1. If not, then we obtain a conservative correction by choosing
an appropriate step length θ(k). In this situation, the step length, θ(k)∈ [θmin,θmax]⊂ (0,1)
is chosen to insure

g(x(k)+θ(k)s(k))≤ g(x(k))+αθ(k)∇g(x(k))Ts(k), (3.3)

where g:Rn→R is defined as ‖F‖2
2 and the parameter α is a safeguard to assure sufficient

reduction of g. In practice, a cubic line search technique [10] is employed to determine
the step length θ(k).

To define the restricted additive Schwarz preconditioner M−1
k in (3.1), we first par-

tition the finite element mesh T h = Ωh
f ∪Ωh

s into non-overlapping subdomains Ωh
ℓ
, ℓ=

1,··· ,N. Each one corresponds to a processor of the parallel machine and their union
covers the entire mesh T h. This partition preserves the integrity of the elements, that is,
each subdomain Ωh

ℓ
consists of an integral number of elements. And the partition re-

spects the fully coupled nature of fluid-structure interaction problem, disregarding the
fluid-structure interface in the partition, that is, solid elements and fluid elements can be
grouped into the same subdomain. Then, the subdomains Ωh

ℓ
are extended to overlap-

ping domains Ω
h,δ
ℓ

, where δ represents the size of overlap in terms of layers of elements.
The only criterion of the partition is to minimize the edge cuts, the outlet boundary may
be cut into different subdomains, see Fig. 2. In such a situation, the global connection be-
tween variables on the outlet boundaries, which are established by the resistance bound-
ary condition (2.1f), is destroyed. Now, we define the solution space as:

Sh =
{

(u f ,p f ,x f ,xs, ẋs) : u f ∈Vh, p f ∈Ph, x f ∈Zh, xs ∈Xh, ẋs ∈Xh

}

(3.4)
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and the subdomain solution spaces as:

Sh,δ
ℓ

=































(u f ,p f ,x f ,xs, ẋs) :

u f ∈Vh∩[H
1(Ωh,δ

ℓ
)]2, u f =0 on (∂Ω

h,δ
ℓ
\Γo)∩Ωh

f ;

p f ∈Ph∩H1(Ωh,δ
ℓ
), p f =0 on [∂Ω

h,δ
ℓ
\(Γo∪Γi)]∩Ωh

f ;

x f ∈Zh∩[H
1(Ωh,δ

ℓ
)]2, x f =0 on ∂Ω

h,δ
ℓ
∩Ωh

f ;

xs ∈Xh∩[H
1(Ωh,δ

ℓ
)]2, xs =0 on ∂Ω

h,δ
ℓ
∩Ωh

s ;

ẋs ∈Xh∩[H
1(Ωh,δ

ℓ
)]2, ẋs =0, on ∂Ω

h,δ
ℓ
∩Ωh

s































.

And we present two restriction operators here, one preserves the global connection, while
the other one does not.

• Choice 1, let Rℓ : Sh → Sh,δ
ℓ

be the restriction operator, which returns all degrees of

freedom associated with the subspace Sh,δ
ℓ

, without preserving the global connec-
tion.

• Choice 2, let Rℓ : Sh →Sh,δ
ℓ
∪{u f (x,y) : (x,y)∈Γh

o} be the restriction operator, which

returns all degrees of freedom in Sh,δ
ℓ

as well as the degrees of freedom correspond-
ing to the velocity variables on the outlet boundary Γo. In this way, we manually
extend the subdomains to preserve the global connection.

Using the restriction matrix, we write the one-level restricted additive Schwarz precon-
ditioner [8] as

M−1
k =

N

∑
ℓ=1

(R0
ℓ
)T J−1

ℓ
Rℓ, (3.5)

where Jℓ is the subdomain operator of Jℓ=Rℓ JRT
ℓ

. And R0
ℓ

is a restriction to the degrees
of freedom in the non-overlapping subdomain Ωh

ℓ
.

4 Numerical results

In this section, we study the application of our solver to a two-dimensional model of the
pulmonary artery. We first focus on the impact of different outflow boundary conditions
on the fluid velocity and pressure fields. We then investigate the performance of the
Schwarz type preconditioner with respect to the integral type resistive outflow bound-
ary condition. In the end, we discuss the parallel scalability and robustness of our solver,
especially in the case of resistive outflow boundary condition. Our parallel code is imple-
mented by using the Portable Extensible Toolkit for Scientific computation (PETSc) [2].
Mesh generation and partition are carried out by CUBIT [27] and ParMETIS [22], respec-
tively. All the numerical results are obtained on an IBM BlueGene/L supercomputer at
the National Center for Atmospheric Research with 4096 compute nodes.
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Figure 3: The inlet flow rate from clinical data after polynomial fitting.

4.1 Impact of different types of boundary conditions

In this test, we consider pulsatile flow in a straight compliant vessel with a prescribed in-
let flow rate and different boundary conditions. The length and diameter of the artery are
20cm and 2cm, respectively. And the thickness of the artery wall is 0.2cm. For the inlet,
we prescribe a pulsatile periodic flow wave, with a period T of 0.6s, mapped to a uniform
velocity profile. The inlet flow rate is given in Fig. 3†. For the outlet, either zero-traction
or resistance boundary condition is considered. The Young’s modulus of the artery wall
is 6.0×105g/(cms2). Poisson ratio is 0.48 and the wall density is 1.2g/cm3. The blood
is modeled as a Newtonian flow, with a density of 1.0g/cm3 and kinematic viscosity of
0.035cm2/s. The tests shown in this case are run on 256 processors and numerical solu-
tions are obtained using a grid with 58369 elements and 1.01 million degrees of freedom
with a time step of 1ms, for a total of 3 cardiac cycle. As for the initial condition, it is
important that the fluid-structure interaction system starts from a equilibrium state [16].
Instead of prescribing zero initial for all variables, we obtain the initial condition as fol-
lows:

1. The velocity of the wall is initially set to zero.

2. A steady FSI problem is solved, using the same inlet and outlet boundary condi-
tions as in the time-dependent problem. The velocity u f ,0, the pressure p f ,0, the
fluid mesh displacement x f ,0, the solid displacement xs,0 fields are obtained and
then used as the initial conditions.

Fig. 4 depicts the results obtained with the resistance and zero-traction outflow bound-
ary conditions. For the resistance boundary condition, the wall displacement plot follows
the shape of the wall pressure plot, as one can see in the top right figure. Meaning that the

†The data is provided by Z. Su, K. Hunter and R. Shandas of University of Colorado, School of Medicine.
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Figure 4: Flow waves, pressure at inlet and outlet, wall pressure and wall displacement of the artery model,
obtained using resistance and zero-traction outlet boundary conditions. Top figures represent the inlet and outlet
flow rate, inlet and outlet pressure and wall displacement and pressure (from left to right) by using resistance
boundary condition, while the bottom figures represent the results by using the zero-traction outflow boundary
condition.

artery walls dilate as the magnitude of pressure increases and contract as the magnitude
of pressure decreases. The pressure pulse alters the flow distribution over the cardiac cy-
cle, e.g., the outlet flow rate damps compared to the inlet flow rate at peak systole, while
the outlet flow rate is larger than the inlet flow rate at diastole state. For the zero-traction
boundary condition, both the flow wave and pressure are dramatically different from
the resistance case. Unrealistic peak and negative flow are observed at the outlet. And
the pressure in the zero-traction case fails to represent the physiologic pressure pulse,
resulting in unrealistic amplitude and oscillatory pattern.

Fig. 5 displays the computed streamlines for the resistance boundary condition at
two different phases, the peak systole and the mid-diastole (t= 5T/6). We can see the
deformation of artery walls in response to the pulse of the flow. At the peak systole
phase, the artery walls dilate so that the flow at the outlet damps. While at the mid-
diastole phase, the flow is slower, the artery walls shrink and more flow is leaving than
entering. We also observe that at the mid-diastole stage, some vortices are generated near
the inlet boundary and the direction of the flow is reversed near the artery wall. Fig. 6
shows the computed streamlines for the zero traction boundary condition at the same
phases. Compared to the resistance case, the flow pattern behaves differently and the
wall deformation is smaller. At the mid-diastole phase, reserve flow is observed near
the outlet boundary. Fig. 7 and Fig. 8 depict the computed pressure distribution at these
two selected phases by using resistance outflow boundary condition and zero-traction
outflow boundary condition, respectively.
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Figure 5: Streamlines at the peak systole and mid-diastole phases using the resistance outflow boundary con-
dition. The artery walls are colored by the magnitude of the displacement and fluid streamlines are colored by
the velocity in the X direction. The top figure represents the peak systole phase, the bottom figure for the
mid-diastole phase.

Figure 6: Streamlines at the peak systole and mid-diastole phases using the zero-traction outflow boundary
condition. The artery walls are colored by the magnitude of the displacement and fluid streamlines are colored
by the velocity in the X direction. The top figure represents the peak systole phase, the bottom figure for the
mid-diastole phase.

So far, we have discussed the impact of the resistance outflow boundary condition
and the zero-traction outflow boundary condition to the simulation of blood flow in com-
plaint arteries. The resistance boundary condition is shown to be an improvement over
the zero-traction outflow boundary condition.
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Figure 7: Pressure distribution at the peak systole and mid-diastole phases using the resistance outflow boundary
condition. The artery walls are colored by the magnitude of the displacement. The top figure represents the
peak systole phase, the bottom figure for the mid-diastole phase.

Figure 8: Pressure distribution at the peak systole and mid-diastole phases using the zero-traction outflow
boundary condition. The artery walls are colored by the magnitude of the displacement. The top figure
represents the peak systole phase, the bottom figure for the mid-diastole phase.

4.2 Scalability and performance

In this subsection, we study the performance and parallel scalability of our solver by
using the same geometry and material properties as described before. In all the following
tests, unless otherwise specified, we choose the time step ∆t = 1ms. The accuracy of
the preconditioned Jacobian system is controlled by the stopping condition ηk = 10−4.
The stopping criterion for the Newton iterations is when the residual of the nonlinear
system is decreased by a factor of 10−6. For all the performance and scalability results, we
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Table 1: Comparison of the performance of our solver with two different restriction operators, using the resistance
outflow boundary condition. The exact definition of Choice 1 and Choice 2 can be found in Section 3. np

refers to the number of processors. The tests are carried on a fixed grid with 2.01×106 degrees of freedom and
overlap δ=4.

Choice 1 Choice 2
np Newton GMRES time (s) Newton GMRES time (s)
64 3.1 49.9 316.24 3.0 48.2 304.52
128 3.0 54.7 156.53 3.0 53.6 162.39
256 3.0 90.8 108.50 3.0 88.5 112.84
512 3.0 162.1 54.961 3.0 158.8 54.58

Table 2: Comparison of the performance of our solver with the zero-traction and resistance outflow boundary
conditions. The tests are carried on a fixed grid with 2.01×106 degrees of freedom and overlap δ=4.

Zero-traction Resistance
np Newton GMRES time Newton GMRES time (s)
64 3.0 49.5 300.61 3.1 49.9 316.24

128 3.0 54.3 152.53 3.0 54.7 156.53
256 3.0 87.9 100.52 3.0 90.8 108.50
512 3.0 159.4 54.10 3.0 162.1 54.96

proceed 10 time steps and then report the average compute time and the average number
of Newton iterations per time step and the average GMRES iterations per Newton step.

We first compare the performance of the restricted additive Schwarz (RAS) precon-
ditioner with two different choices of restriction presented in Section 3 by using the re-

sistance outflow boundary condition. Choice 1 represents the restriction to Sh,δ
ℓ

, while
Choice 2 represents the restriction which includes all velocity variables on the outlet
boundary. As one can see from the results in Table 1, both choices handle the resistance
outflow boundary condition well, guarantee the convergence and perform in a similar
way. As the number of processors (np) increases, the number of GMRES iterations per
Newton step increases and the compute time per time step decreases. Choice 2 uses fewer
linear iterations compared to Choice 1, because it preserves the global connection struc-
ture at the outlet. However, in terms of compute time, it is hard to see the advantage. In
the case of Choice 2, more communication is required, resulting in a larger total compute
time. As a result, Choice 1 is our preferred restriction because it is easier to implement
and also maintains a respectable convergence rate.

To further illustrate the performance of the restricted additive Schwarz precondi-
tioner with the resistance outflow boundary condition, we compare its performance (us-
ing Choice 1 restriction) to the case when the zero-traction boundary condition is used.
In the case of zero-traction boundary condition, the Jacobian matrix is uniformly sparse
and the variables have only local dependency. In theory and practices, the performance
of RAS with the zero-traction boundary condition has been successfully demonstrated.
In Table 2, we observe that RAS handles the resistance boundary condition well. In terms
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of linear iterations and the compute time, it shows that RAS has a similar performance
with these two different types of outflow boundary conditions. As illustrated in the two
tests, we show that RAS is a suitable choice to handle the resistance boundary condition,
although the domain decomposition breaks up the connection of this integral boundary
condition.

For the following tests, we study the scalability and robustness of our solver by using
the resistance outflow boundary condition and restriction of Choice 1. In Fig. 9, we show
the speedup over the number of processors for different grid sizes. Indeed, our algorithm
shows satisfactory scalability for a range of problem sizes and with up to 512 processors.
An issue of the one-level additive Schwarz method is that the preconditioning becomes
weaker as the number of subdomains increases. As we can see in Fig. 10, the number
of GMRES iterations per time step increases as the number of processors increases and
the computing time per time step also increases. To improve the scalability, multi-level
methods with coarse grids are needed.

For the overlapping additive Schwarz preconditioner, the overlap parameter δ is sig-
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Table 3: The effect of various choices of the overlap parameter δ on different grid sizes and numbers of
processors. A large overlap helps to reduce the number of linear iterations, but costs more communication time.
The optimal choice of δ in each case is highlighted with a∗.

unknowns np overlap δ Newton GMRES time (s)

1.01×106 64 2 3.0 33.5 153.88∗

1.01×106 64 4 3.0 22.3 160.27
1.01×106 64 6 3.0 17.9 166.81
1.01×106 64 8 3.0 15.7 193.38

1.01×106 128 2 3.0 44.6 64.02∗

1.01×106 128 4 3.0 30.5 70.23
1.01×106 128 6 3.0 24.6 79.27
1.01×106 128 8 3.0 21.8 90.99

1.01×106 256 2 3.0 65.7 33.24∗

1.01×106 256 4 3.0 42.1 46.33
1.01×106 256 6 3.0 33.4 42.80
1.01×106 256 8 3.0 29.5 49.03

2.01×106 128 2 3.0 95.3 159.22
2.01×106 128 4 3.0 54.7 156.53∗

2.01×106 128 6 3.0 42.6 184.81
2.01×106 128 8 3.0 34.8 264.50

2.01×106 256 2 3.1 153.5 89.75∗

2.01×106 256 4 3.0 90.7 108.77
2.01×106 256 6 3.0 57.9 113.67
2.01×106 256 8 3.0 46.2 107.89

2.01×106 512 2 3.4 292.6 64.29
2.01×106 512 4 3.0 162.8 54.96∗

2.01×106 512 6 3.0 114.8 57.97
2.01×106 512 8 3.1 69.8 79.04

3.99×106 256 2 3.0 122.5 198.65
3.99×106 256 4 3.0 69.0 188.95∗

3.99×106 256 6 3.0 53.8 201.79
3.99×106 256 8 3.0 45.9 224.53

3.99×106 512 2 3.0 269.1 120.40
3.99×106 512 4 3.0 131.8 128.94
3.99×106 512 6 3.0 89.3 111.43∗

3.99×106 512 8 3.0 67.3 127.36

nificant to the convergence of the linear solver. Large δ corresponds to a better precondi-
tioner and fewer linear iterations. However, large δ also costs more communications. It
is always a trade off to choose the parameter δ, as we show in Table 3.

Since the temporal discretization in our solver is fully implicit, our solver is robust
with respect to different time step sizes, see Table 4.

There are two important physical parameters in describing the properties of the elas-
tic artery walls, the Young’s modulus E and the Poisson ratio ν. The Young’s modulus
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Table 4: Performance for various time step sizes ∆t.

unknowns np ∆t (s) Newton GMRES time (s)

1.01×106 256 1.0×10−3 3.0 42.1 46.39
1.01×106 256 2.5×10−3 3.5 55.5 57.36
1.01×106 256 5.0×10−3 4.3 56.0 69.79

2.01×106 512 1.0×10−3 3.0 162.1 54.82
2.01×106 512 2.5×10−3 4.0 262.5 92.63
2.01×106 512 5.0×10−3 4.8 322.7 127.70

Table 5: Performance for various values of Young’s modulus Es.

unknowns np Es (g/(cms2)) Newton GMRES time (s)

1.01×106 128 6.0×105 3.0 30.5 70.23
1.01×106 128 1.4×106 3.0 39.0 72.54
1.01×106 128 6.0×106 3.0 59.4 77.07

1.01×106 256 6.0×105 3.0 42.1 46.33
1.01×106 256 1.4×106 3.0 53.9 47.24
1.01×106 256 6.0×106 3.0 88.0 52.14

2.01×106 256 6.0×105 3.0 90.7 108.77
2.01×106 256 1.4×106 3.0 122.5 117.77
2.01×106 256 6.0×106 3.9 302.7 224.75

2.01×106 512 6.0×105 3.0 162.1 54.96
2.01×106 512 1.4×106 3.1 225.9 66.69
2.01×106 512 6.0×106 4.0 452.9 130.21

Table 6: Performance for various values of the Poisson ratio ν. Increasing the Poisson ratio has only moderate
effect to our solver.

unknowns np ν Newton GMRES time (s)

1.01×106 128 0.40 3.0 28.0 69.86
1.01×106 128 0.45 3.0 29.0 70.55
1.01×106 128 0.48 3.0 29.6 70.09

2.01×106 256 0.40 3.0 65.5 101.91
2.01×106 256 0.45 3.0 72.2 104.70
2.01×106 256 0.48 3.0 88.6 108.27

3.99×106 512 0.40 3.0 110.1 123.13
3.99×106 512 0.45 3.0 117.3 125.05
3.99×106 512 0.48 3.0 129.5 128.26

is related to the stiffness of the elastic structure, while the Poisson ratio is a parameter
representing the incompressibility of the structure. Generally speaking, stiffer structure
(higher Young’s modulus) and greater Poisson Ratio (the incompressible limit is 0.5) in-
creases the difficulty of the simulation. Our solver shows robustness to both parameters,
see Table 5 and Table 6.
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Table 7: Performance for various Reynolds numbers. The tests are run on a fixed grid with 2.01×106 degrees
of freedom and 256 processors.

Re inlet velocity (cm/s) viscosity (g/(cm·s)) Newton GMRES time (s)
143 5.0 0.035 3.7 83.0 136.15
286 10.0 0.035 3.9 82.2 138.27
429 15.0 0.035 4.0 80.6 140.77
500 5.0 0.01 3.6 75.7 129.62
1000 10.0 0.01 3.9 76.0 136.88
1500 15.0 0.01 3.9 74.0 135.72

Table 8: Performance for different combinations of fluid density ρ f and solid density ρs. Dynamic viscosity µ f

is kept as 3.5×10−3g/(cm·s). The tests are run on a fixed grid with 2.01×106 degrees of freedom and 256
processors.

ρ f (g/cm3) ρs (g/cm3) Newton GMRES time (s)

0.1 1.0 3.6 296.9 204.60
1.0 1.0 3.0 92.0 109.77
10.0 1.0 3.5 55.9 116.36

100.0 1.0 3.9 51.1 131.34
1.0 0.01 3.1 128.8 122.62
1.0 0.1 3.1 121.4 120.87
1.0 10.0 3.0 61.4 101.59
1.0 100.0 3.0 73.1 104.88

In our model, the blood is modeled as a Newtonian viscous fluid. The Reynolds
number is determined by Re = (ρ f V̄D)/µ f , where V̄ is the characteristic velocity, D is
the characteristic velocity and µ f is the dynamic viscosity. Shown in Table 7, our algo-
rithm performs well for various Reynolds numbers and is not so sensitive to the dynamic
viscosity µ f and the characteristic velocity V̄.

In the iterative coupling approach for fluid-structure interaction problems, the added
mass effect sometimes is a serious issue; i.e., the convergence becomes more difficult to
achieve if the density of the fluid and the structure are close to each other [9]. As one
can see in Table 8, our fully coupled approach has good convergence regardless of the
density of fluid and structure.

5 Conclusions

In this paper, we studied and implemented a parallel domain decomposition algorithm
for simulating blood flows in complaint arteries with the resistive outflow boundary con-
dition and showed by a large number of numerical experiments that the resistive outflow
boundary condition is an improvement over the zero-traction outflow boundary condi-
tion. We also discussed the performance of the overlapping additive Schwarz precon-
ditioner to the integral type resistive boundary condition. In addition, our algorithm is
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shown to be scalable on a large scale supercomputer and robust with respect to several
important physical and numerical parameters.

Acknowledgments

Special thanks to Andrew Barker for his previous work on this project and to Zhenbi Su,
Kendall Hunter and Robin Shandas for helpful discussions and acquiring clinical data
for our model.

References

[1] S. Badia, A. Quaini and A. Quarteroni, Splitting methods based on algebraic factorization
for fluid-structure interaction, SIAM J. Sci. Comput., 30 (2008), 1778–1805.

[2] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes,
B. F. Smith and H. Zhang, PETSc users manual, Technical report, Argonne National Labora-
tory, 2010.

[3] A. T. Barker, Monolithic Fluid-Structure Interaction Algorithms for Parallel Computing with
Application to Blood Flow, PhD thesis, University of Colorado at Boulder, 2009.

[4] A. T. Barker and X.-C. Cai, Scalable parallel methods for monolithic coupling in fluid-
structure interaction with application to blood flow modeling, J. Comput. Phys., 229 (2010),
642–659.

[5] Y. Bazilevs, V. Calo, Y. Zhang and T. Hughes, Isogeometric fluid-structure interaction analy-
sis with applications to arterial blood flow, Comput. Mech., 38 (2006), 310–322.

[6] Y. Bazilevs, V. Calo, T. Hughes and Y. Zhang, Isogeometric fluid-structure interaction: the-
ory, algorithms and computations, Comput. Mech., 43 (2008), 3–37.

[7] X.-C. Cai, W. D. Gropp, D. E. Keyes, R. G. Melvin and D. P. Young, Parallel Newton-Krylov-
Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19 (1998),
246–265.

[8] X.-C. Cai and M. Sarkis, A restricted additive Schwarz preconditioner for general sparse
linear systems, SIAM J. Sci. Comput., 21 (1999), 792–797.

[9] P. Causin, J. F. Gerbeau and F. Nobile, Added-mass effect in the design of partitioned algo-
rithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194 (2005), 4506–
4527.

[10] J. E. Dennis Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Society for Industrial and Applied Mathematics, Philadelphia, 1996.

[11] J. Donea, S. Giuliani and J. P. Halleux, An arbitrary Lagrangian-Eulerian finite element
method for transient dynamic fluid-structure interactions, Comput. Methods Appl. Mech.
Eng., 33 (1982), 689–723.

[12] S. C. Eisenstat and H. F. Walker, Globally convergent inexact Newton method, SIAM J. Op-
tim., 4 (1994), 393–422.

[13] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method,
SIAM J. Sci. Comput., 17 (1996), 16–32.

[14] C. Farhat and P. Geuzaine, Design and analysis of robust ALE time-integrators for the solu-
tion of unsteady flow problems on moving grids, Comput. Methods Appl. Mech. Eng., 193
(2004), 4073–4095.



Y. Wu and X.-C. Cai / Commun. Comput. Phys., 11 (2012), pp. 1279-1299 1299

[15] C. Farhat, P. Geuzaine and C. Grandmont, The discrete geometric conservation law and the
nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J.
Comput. Phys., 174 (2001), 669–694.

[16] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen, T. J. R. Hughes and C. A. Taylor, A cou-
pled momentum method for modeling blood flow in three-dimensional deformable arteries,
Comput. Methods Appl. Mech. Eng., 195 (2006), 5685–5706.

[17] L. Formaggia, J. F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D
Navier-Stokes equations for flow problems in compliant vessels, Comput. Methods Appl.
Mech. Eng., 191 (2001), 561–582.

[18] Y. C. Fung, Biomechanics: Circulation, 2nd edition, Springer-Verlag, New York, 1997.
[19] M. Heil, An efficient solver for the fully coupled solution of large-displacement fluid-

structure interaction problems, Comput. Methods Appl. Mech. Eng., 193 (2004), 1–23.
[20] T. J. R. Hughes, W. K. Liu and T. K. Zimmermann, Lagrangian-Eulerian finite element for-

mulation for incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 29 (1981),
329–349.

[21] F.-N. Hwang and X.-C. Cai, A parallel nonlinear additive Schwarz preconditioned inexact
Newton algorithm for incompressible Navier-Stokes equations, J. Comput. Phys., 204 (2005),
666–691.

[22] G. Karypis, R. Aggarwal, K. Schloegel, V. Kumar and S. Shekhar, METIS/ParMETIS web
page, University of Minnesota, 2010, http://glaros.dtc.umn.edu/gkhome/views/metis.

[23] P. Le Tallec and J. Mouro, Fluid structure interaction with large structural displacements,
Comput. Methods Appl. Mech. Eng., 190 (2001), 3039–3067.

[24] C. Michler, E. H. van Brummelen, S. J. Hulshoff and R. de Borst, The relevance of conserva-
tion for stability and accuracy of numerical methods for fluid-structure interaction, Comput.
Methods Appl. Mech. Eng., 192 (2003), 4195–4215.

[25] W. W. Nichols and M. F. O’Rourke, McDonald’s Blood Flow in Arteries: Theoretical, Exper-
imental and Clinical Principles, Oxford University Press, New York, 1998.

[26] F. Nobile, Numerical Approximation of Fluid-Structure Interaction Problems with Applica-
tion to Haemodynamics, PhD thesis, Ecole Polytechnique Federade Lausanne, 2001.

[27] S. J. Owen and J. F. Shepherd, CUBIT project web page, Sandia National Laboratories, 2010,
http://cubit.sandia.gov/.

[28] S. Piperno and C. Farhat, Partitioned procedures for the transient solution of coupled aeroe-
lastic problems-part II: energy transfer analysis and three-dimensional applications, Com-
put. Methods Appl. Mech. Eng., 190 (2001), 3147–3170.

[29] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsysmetric linear system, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869.

[30] C. A. Taylor and M. T. Draney, Experimental and computational methods in cardiovascular
fluid mechanics, Ann. Rev. Fluid Mech., 36 (2004), 197–231.

[31] C. A. Taylor and J. D. Humphrey, Open problems in computational vascular biomechanics:
hemodynamics and arterial wall mechanics, Comput. Methods Appl. Mech. Eng., 198 (2009),
3514–3523.

[32] I. E. Vignon and C. A. Taylor, Outflow boundary conditions for one-dimensional finite ele-
ment modeling of blood flow and pressure waves in arteries, Wave Motion, 39 (2004), 361–
374.

[33] I. E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen and C. A. Taylor, Outflow boundary con-
ditions for three-dimensional finite element modeling of blood flow and pressure in arteries,
Comput. Methods Appl. Mech. Eng., 195 (2006), 3776–3796.


