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Abstract. In this paper, a new displacement based high-order shear deformation the-
ory is introduced for the static response of functionally graded plate. Unlike any other
theory, the number of unknown functions involved is only four, as against five in case
of other shear deformation theories. The theory presented is variationally consistent,
has strong similarity with classical plate theory in many aspects, does not require shear
correction factor, and gives rise to transverse shear stress variation such that the trans-
verse shear stresses vary parabolically across the thickness satisfying shear stress free
surface conditions. The mechanical properties of the plate are assumed to vary con-
tinuously in the thickness direction by a simple power-law distribution in terms of the
volume fractions of the constituents. Numerical illustrations concerned flexural behav-
ior of FG plates with Metal-Ceramic composition. Parametric studies are performed
for varying ceramic volume fraction, volume fraction profiles, aspect ratios and length
to thickness ratios. The validity of the present theory is investigated by comparing
some of the present results with those of the classical, the first-order and the other
higher-order theories. It can be concluded that the proposed theory is accurate and
simple in solving the static behavior of functionally graded plates.

AMS subject classifications: 74K20

Key words: Functionally graded material, power law index, volume fraction, higher-order shear
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1 Introduction

The concept of functionally graded materials (FGMs) were the first introduced in 1984 by
a group of material scientists in Japan, as ultrahigh temperature resistant materials for air-
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craft, space vehicles and other engineering applications. Functionally graded materials
(FGMs) are new composite materials in which the micro-structural details are spatially
varied through non-uniform distribution of the reinforcement phase. This is achieved by
using reinforcement with different properties, sizes and shapes, as well as by interchang-
ing the role of reinforcement and matrix phase in a continuous manner. The result is a
microstructure that produces continuous or smooth change on thermal and mechanical
properties at the macroscopic or continuum level (Koizumi, 1993 [1]; Hirai and Chen,
1999 [2]). Now, FGMs are developed for general use as structural components in ex-
tremely high temperature environments. Therefore, it is important to study the wave
propagation of functionally graded materials structures in terms of non-destructive eval-
uation and material characterization.

Several studies have been performed to analyze the mechanical or the thermal or the
thermo-mechanical responses of FG plates and shells. A comprehensive review is done
by Tanigawa (1995) [3]. Reddy (2000) [4] has analyzed the static behavior of function-
ally graded rectangular plates based on his third-order shear deformation plate theory.
Cheng and Batra (2000) [5] have related the deflections of a simply supported FG polyg-
onal plate given by the first-order shear deformation theory and third-order shear de-
formation theory to that of an equivalent homogeneous Kirchhoff plate [6]. The static
response of FG plate has been investigated by Zenkour (2006) [7] using a generalized
shear deformation theory. In a recent study, şimşek (2010) [8] has studied the dynamic
deflections and the stresses of an FG simply-supported beam subjected to a moving mass
by using Euler-Bernoulli, Timoshenko and the parabolic shear deformation beam theory.
şimşek (2010) [9] Benchour et al. [10] and Abdelaziz et al. 2010 [11] studied the free vibra-
tion of FG beams having different boundary conditions using the classical, the first-order
and different higher-order shear deformation beam and plate theories. The non-linear
dynamic analysis of a FG beam with pinned-pinned supports due to a moving harmonic
load has been examined by şimşek (2010) [12] using Timoshenko beam theory.

The primary objective of this paper is to present a general formulation for functionally
graded plates (FGP) using a new higher order shear deformation plate theory with only
four unknown functions. The present theory satisfies equilibrium conditions at the top
and bottom faces of the plate without using shear correction factors. The hyperbolic
function in terms of thickness coordinate is used in the displacement field to account
for shear deformation. Governing equations are derived from the principle of minimum
total potential energy. Navier solution is used to obtain the closed-form solutions for
simply supported FG plates. To illustrate the accuracy of the present theory, the obtained
results are compared with three-dimensional elasticity solutions [13] and results of the
first-order and the other higher-order theories (Table 1).

In this study, a new displacement models for an analysis of simply supported FGM
plates are proposed. The plates are made of an isotropic material with material proper-
ties varying in the thickness direction only. Analytical solutions for bending deflections
of FGM plates are obtained. The governing equations are derived from the principle of
minimum total potential energy. Numerical examples are presented to illustrate the ac-



T. Hassaine Daouadji et al. / Adv. Appl. Math. Mech., 5 (2013), pp. 351-364 353

Table 1: Displacement models.

Model Theory Unknown function
CPT Classical Plate Theory [6] 3

ATDSP Analytical Tree Dimensional Solution for Plate (3-D) [13] 5
SSDPT Sinusoidal Shear Deformation Plate Theory (Zenkour) [7] 5
PSDPT Parabolic Shear Deformation Plate Theory (Reddy) [4] 5

NHPSDT New Hyperbolic Shear Deformation Theory (present theory) 4

curacy and efficiency of the present theory by comparing the obtained results with those
computed using various other theories.

2 Problem formulation

Consider a plate of total thickness h and composed of functionally graded material through
the thickness (Fig. 1). It is assumed that the material is isotropic and grading is assumed
to be only through the thickness. The xy plane is taken to be the undeformed mid plane
of the plate with the z axis positive upward from the mid plane.

3

Figure 1: Geometry of rectangular plate composed of FGM.

2.1 Displacement fields and strains

The assumed displacement field is as follows:

u(x,y,z)=u0(x,y)−z
∂wb

∂x
− f (z)

∂ws

∂x
, (2.1a)

v(x,y,z)=v0(x,y)−z
∂wb

∂y
− f (z)

∂ws

∂y
, (2.1b)

w(x,y,z)=wb(x,y)+ws(x,y), (2.1c)

where u0 and v0 are the mid-plane displacements of the plate in the x and y direction,
respectively; wb and ws are the bending and shear components of transverse displace-
ment, respectively, while f (z) represents shape functions (NHPSDT: New Hyperbolic
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Shear Deformation Theory) determining the distribution of the transverse shear strains
and stresses along the thickness and is given as:

f (z)= z−

(

zsech
(πz2

h2

)

−zsech
(π

4

)(

1−
π

2
tanh

(π

4

))

)

. (2.2)

It should be noted that unlike the first-order shear deformation theory, this theory does
not require shear correction factors. The kinematic relations can be obtained as follows:

εx = ε0
x+zkb

x+ f (z)ks
x , εy = ε0

y+zkb
y+ f (z)ks

y , γxy=γ0
xy+zkb

xy+ f (z)ks
xy, (2.3a)

γyz= g(z)γs
yz, γxz= g(z)γs

xz, εz =0, (2.3b)

where

ε0
x =

∂u0

∂x
, kb

x =−
∂2wb

∂x2
, ks

x =−
∂2ws

∂x2
, ε0

y =
∂v0

∂y
, (2.4a)

kb
y =−

∂2wb

∂y2
, ks

y =−
∂2ws

∂y2
, γ0

xy=
∂u0

∂y
+

∂v0

∂x
, kb

xy =−2
∂2wb

∂x∂y
, (2.4b)

ks
xy =−2

∂2ws

∂x∂y
, γs

yz=
∂ws

∂y
, γs

xz=
∂ws

∂x
, g(z)=1− f ′(z) and f ′(z)=

d f (z)

dz
. (2.4c)

2.2 Constitutive relations

In FGM, material property gradation is considered through the thickness and the expres-
sion given below represents the profile for the volume fraction

P(z)=(Pt−Pb)
( z

h
+

1

2

)k

+Pb, (2.5a)

E(z)=(Et−Eb)
( z

h
+

1

2

)k

+Eb, (2.5b)

G(z)=(Gt−Gb)
( z

h
+

1

2

)k

+Gb, (2.5c)

where P denotes a generic material property like modulus, Pt and Pb denotes the property
of the top and bottom faces of the plate respectively, and k is a parameter that dictates ma-
terial variation profile through the thickness. Here, it is assumed that modules E(z) and
G(z) vary according to Eq. (2.5) and ν is assumed to be a constant. The linear constitutive
relations are
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where

Q11=
E(z)

1−ν2
, Q12=νQ11, Q44=Q55=Q66=

E(z)

2(1+ν)
. (2.7)

2.3 Governing equations

The governing equations of equilibrium can be derived by using the principle of virtual
displacements. The principle of virtual work in the present case yields

∫ h/2

−h/2

∫

Ω

[

σxδεx+σyδεy+τxyδγxy+τyzδγyz+τxzδγxz

]

dΩdz−
∫

Ω

qδwdΩ=0, (2.8)

where Ω is the top surface and q is the applied transverse load.
Substituting Eqs. (2.3) and (2.6) into Eq. (2.8) and integrating through the thickness of

the plate, Eq. (2.8) can be rewritten as

∫

Ω

[

Nxδε0
x+Nyδε0

y+Nxyδε0
xy+Mb

xδkb
x+Mb

yδkb
y+Mb

xyδkb
xy+Ms

xδks
x

+Ms
yδks

y+Ms
xyδks

xy+Ss
yzδγs

yz+Ss
xzδγs

xz

]

dΩ−
∫

Ω

qδwdΩ=0, (2.9)

where







Nx Ny Nxy

Mb
x Mb

y Mb
xy

Ms
x Ms

y Ms
xy







=
∫ h/2

−h/2

(

σx,σy,τxy

)







1
z

f (z)







dz, (2.10a)

(

Ss
xz,Ss

yz

)

=
∫ h/2

−h/2

(

τxz,τyz

)

g(z)dz. (2.10b)

The governing equations of equilibrium can be derived from Eq. (2.9) by integrating the
displacement gradients by parts and setting the coefficients δu0, δv0, δwb and δws zero
separately. Thus one can obtain the equilibrium equations associated with the present
shear deformation theory,

δu :
∂Nx

∂x
+

∂Nxy

∂y
=0, (2.11a)

δv :
∂Nxy

∂x
+

∂Ny

∂y
=0, (2.11b)

δwb :
∂2Mb

x

∂x2
+2

∂2Mb
xy

∂x∂y
+

∂2Mb
y

∂y2
+q=0, (2.11c)

δws :
∂2Ms

x

∂x2
+2

∂2Ms
xy

∂x∂y
+

∂2Ms
y

∂y2
+

∂Ss
xz

∂x
+

∂Ss
yz

∂y
+q=0. (2.11d)
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Using Eq. (2.6) in Eq. (2.10), the stress resultants of a plate made up of three layers can be
related to the total strains by







N

Mb

Ms







=





A B Bs

A D Ds

Bs Ds Hs











ε

kb

ks







, S=Asγ, (2.12)

where

N=
{

Nx,Ny,Nxy

}t
, Mb=

{

Mb
x,Mb

y,Mb
xy

}t
, Ms=

{

Ms
x,Ms

y,Ms
xy

}t
, (2.13a)

ε=
{

ε0
x,ε0

y,γ0
xy

}t
, kb =

{

kb
x,kb

y,kb
xy

}t
, ks =

{

ks
x,ks

y,ks
xy

}t
, (2.13b)

A=





A11 A12 0
A12 A22 0
0 0 A66



, B=





B11 B12 0
B12 B22 0
0 0 B66



, D=





D11 D12 0
D12 D22 0

0 0 D66



, (2.13c)

Bs=





Bs
11 Bs

12 0
Bs

12 Bs
22 0

0 0 Bs
66



, Ds=





Ds
11 Ds

12 0
Ds

12 Ds
22 0

0 0 Ds
66



, Hs=





Hs
11 Hs

12 0
Hs

12 Hs
22 0

0 0 Hs
66



, (2.13d)

S=
{

Ss
xz,Ss

yz

}t
, γ=

{

γxz,γyz

}t
, As=

[

As
44 0

0 As
55

]

, (2.13e)

where Aij, Bij, etc., are the plate stiffness, defined by







A11 B11 D11 Bs
11 Ds

11 Hs
11

A12 B12 D12 Bs
12 Ds

12 Hs
12

A66 B66 D66 Bs
66 Ds

66 Hs
66







=
∫ h/2

−h/2
Q11

(

1,z,z2, f (z),z f (z), f 2(z)
)











1
ν

1−ν

2











dz, (2.14a)

and

(A22,B22,D22,Bs
22,Ds

22,Hs
22)=(A11,B11,D11,Bs

11,Ds
11,Hs

11), (2.14b)

As
44=As

55=
∫ hn

hn−1

Q44[g(z)]
2dz. (2.14c)

Substituting from Eq. (2.12) into Eq. (2.11), we obtain the following equation,

A11d11u0+A66d22u0+(A12+A66)d12v0−B11d111wb−(B12+2B66)d122wb

−(Bs
12+2Bs

66)d122ws−Bs
11d111ws=0, (2.15a)

A22d22v0+A66d11v0+(A12+A66)d12u0−B22d222wb−(B12+2B66)d112wb

−(Bs
12+2Bs

66)d112ws−Bs
22d222ws=0, (2.15b)
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B11d111u0+(B12+2B66)d122u0+(B12+2B66)d112v0+B22d222v0−D11d1111wb

−2(D12+2D66)d1122wb−D22d2222wb−Ds
11d1111ws

−2(Ds
12+2Ds

66)d1122ws−Ds
22d2222ws =q, (2.15c)

Bs
11d111u0+(Bs

12+2Bs
66)d122u0+(Bs

12+2Bs
66)d112v0+Bs

22d222v0−Ds
11d1111wb

−2(Ds
12+2Ds

66)d1122wb−Ds
22d2222wb−Hs

11d1111ws

−2(Hs
12+2Hs

66)d1122ws−Hs
22d2222ws+As

55d11ws+As
44d22ws=q. (2.15d)

Where dij, dijl and dijlm are the following differential operators:

dij =
∂2

∂xi∂xj
, dijl =

∂3

∂xi∂xj∂xl
, dijlm =

∂4

∂xi∂xj∂xl∂xm
, di =

∂

∂xi
, (i, j,l,m=1,2). (2.16)

2.4 Exact solution for a simply-supported FGM plate

Rectangular plates are generally classified in accordance with the type of support used.
We are here concerned with the exact solution of Eqs. (2.15a)-(2.15d) for a simply sup-
ported FG plate. The following boundary conditions are imposed at the side edges:

v0=wb =ws=
∂ws

∂y
=Nx =Mb

x =Ms
x =0 at x=−a/2, a/2, (2.17a)

u0=wb =ws=
∂ws

∂x
=Ny=Mb

y=Ms
y=0 at y=−b/2, b/2. (2.17b)

To solve this problem, Navier assumed that the transverse mechanical and temperature
loads, q in the form of a double trigonometric series as

q=q0sin(λx)sin(µy), (2.18)

where λ=π/a, µ=π/b and q0 represents the intensity of the load at the plate center.

Following the Navier solution procedure, we assume the following solution form for
u0, v0, wb and ws that satisfies the boundary conditions,















u0

v0

wb

ws















=















Ucos(λx)sin(µy)
Vsin(λx)cos(µy)

Wb sin(λx)sin(µy)
Ws sin(λx)sin(µy)















, (2.19)

where U, V, Wb and Ws are arbitrary parameters to be determined subjected to the con-
dition that the solution in Eq. (2.19) satisfies governing Eqs. (2.15). One obtains the fol-
lowing operator equation,

[C]{∆}={P}, (2.20)
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where {∆}={U,V,Wb ,Ws}
t

and [C] is the symmetric matrix given by

[C]=









a11 a12 a13 a14

a12 a22 a23 a24

a13 a23 a33 a34

a14 a24 a34 a44









, (2.21)

in which

a11=A11λ2+A66µ2, a12 =λµ(A12+A66), (2.22a)

a13=−λ[B11λ2+(B12+2B66)µ
2], a14 =−λ[Bs

11λ2+(Bs
12+2Bs

66)µ
2], (2.22b)

a22=A66λ2+A22µ2, a23 =−µ[(B12+2B66)λ
2+B22µ2], (2.22c)

a24=−µ[(Bs
12+2Bs

66)λ
2+Bs

22µ2], (2.22d)

a33=D11λ4+2(D12+2D66)λ
2µ2+D22µ4, (2.22e)

a34=Ds
11λ4+2(Ds

12+2Ds
66)λ

2µ2+Ds
22µ4, (2.22f)

a44=Hs
11λ4+2(Hs

11+2Hs
66)λ

2µ2+Hs
22µ4+As

55λ2+As
44µ2. (2.22g)

3 Numerical results and discussions

The study has been focused on the static behavior of functionally graded plate based on
the present new higher order shear deformation model. Here some representative results
of the Navier solution obtained for a simply supported rectangular plate are presented.

A functionally graded material consisting of Aluminum-Alumina is considered. The
following material properties are used in computing the numerical values (Bouazza
al. [14]).

• Metal (Aluminium, Al): EM =70GPa, ν=0.3.

• Ceramic (Alumina, Al2O3): EC =380GPa, ν=0.3.

Now, a functionally graded material consisting of aluminum and alumina is con-
sidered. Young’s modulus for aluminum is 70GPa while for alumina is 380GPa. Note
that, Poisson’s ratio is selected constant for both and equal to 0.3. The various non-
dimensional parameters used are

w̄=
10h3Ec

a4q0
w
( a

2
,
b

2

)

, ūx =
100h3Ec

a4q0
ux

( a

2
,
b

2
,−

h

4

)

, ūy=
100h3Ec

a4q0
uy

( a

2
,
b

2
,−

h

6

)

, (3.1a)

σ̄x =
h

aq0
σx

( a

2
,
b

2
,
h

2

)

, σ̄y =
h

aq0
σy

( a

2
,
b

2
,
h

3

)

, (3.1b)

τ̄xy=
h

aq0
τxy

(

0,0,−
h

3

)

, τ̄yz=
h

aq0
τyz

( a

2
,0,

h

6

)

, τ̄xz=
h

aq0
τxz

(

0,
b

2
,0
)

. (3.1c)
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It is clear that the deflection increases as the side-to-thickness ratio decreases. The
same results were obtained in most literatures. In addition, the correlation between the
present new higher order shear deformation theory and different higher-order and first-
order shear deformation theories is established by the author in his recent papers. It is
found that this theory predicts the deflections and stresses more accurately when com-
pared to the first and third-order theories.

For the sake of completeness, results of the present theory are compared with those
obtained using a new Navier-type three-dimensionally exact solution for small deflec-
tions in bending of linear elastic isotropic homogeneous rectangular plates. The center
deflection w and the distribution across the plate thickness of in-plane longitudinal stress
σx and longitudinal tangential stress τxy are compared with the results of the 3-D solution
and are shown in Tables 2 and 3. The present solution is realized for a quadratic plate,
with the following fixed data: a=1, b=1, Em =Ec=E=1, q0=1, ν=0.3 and three values

Table 2: Center deflections of isotropic homogenous plates (k=0, Em =Ec=E=1 and a/b=1).

h/a CPT 3D SSDPT NHPSDT Reddy

z=0 Present theory

0.01 44360.9 44384.7 44383.84 44383.86 44383.87

0.03 1643.00 1650.94 1650.646 1650.652 1650.657
0.1 44.3609 46.7443 46.6548 46.65655 46.65836

Table 3: Distribution of stresses across the thickness of isotropic homogenous plates (Em =Ec=E=1, a/b=1
and k=0).

h/a z σx(a/2,b/2,z) τxy(0,0,−z)

3D SSDPT NHPSDT Reddy 3D SSDPT NHPSDT Reddy

Present Present

0.005 2873.3 2873.39 2873.422 2873.41 1949.6 1949.36 1949.086 1949.06

0.004 2298.6 2298.57 2298.597 2298.593 1559.2 1559.04 1558.854 1558.84

0.01 0.003 1723.9 1723.84 1723.861 1723.865 1169.1 1168.99 1168.883 1168.89

0.002 1149.2 1149.18 1149.197 1149.205 779.3 779.18 779.127 779.151

0.001 574.6 574.58 574.585 574.591 389.6 389.55 389.523 389.541

0.000 0.000 0.000 0.00000 0.000 0.000 0.000 0.000 0.000

0.015 319.4 319.445 319.445 319.437 217.11 217.156 217.082 217.058

0.012 255.41 255.415 255.416 255.413 173.26 173.282 173.255 173.244

0.03 0.009 191.49 191.472 191.475 191.48 129.75 129.682 129.686 129.698

0.006 127.63 127.603 127.607 127.615 86.41 86.313 86.330 86.354

0.003 63.8 63.788 63.790 63.796 43.18 43.72 43.126 43.143

0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000

0.05 28.89 28.9307 28.928 28.92 19.92 20.0476 20.021 20.003

0.04 22.998 23.0055 23.004 23.000 15.606 15.6459 15.638 15.629

0.10 0.03 17.182 17.166 17.167 17.171 11.558 11.4859 11.494 11.504

0.02 11.423 11.3994 11.402 11.410 7.642 7.5315 7.546 7.565

0.01 5.702 5.6858 5.687 5.693 3.803 3.7265 3.7369 3.751

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 4: Effects of volume fraction exponent and loading on the dimensionless stresses and displacements of a
FGM square plate (a/h=10).

k Theory w σx σy τyz τxz τxy

0 NHPSDT–Present 0.4665 2.8928 1.9104 0.4424 0.5072 1.2851

ceramic SSDPT 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850

Reddy 0.4665 2.8920 1.9106 0.4411 0.4963 1.2855

NHPSDT–Present 0.9421 4.2607 2.2569 0.54404 0.50721 1.1573

1 SSDPT 0.9287 4.4745 2.1692 0.5446 0.5114 1.1143

Reddy 0.94214 4.25982 2.25693 0.54246 0.49630 1.15725

NHPSDT–Present 1.2228 4.8890 2.1663 0.5719 0.4651 1.0448

2 SSDPT 1.1940 5.2296 2.0338 0.5734 0.4700 0.9907

Reddy 1.22275 4.88814 2.16630 0.56859 0.45384 1.04486

NHPSDT–Present 1.3533 5.2064 1.9922 0.56078 0.4316 1.0632

3 SSDPT 1.3200 5.6108 1.8593 0.5629 0.4367 1.0047

Reddy 1.3530 5.20552 1.99218 0.55573 0.41981 1.06319

NHPSDT–Present 1.4653 5.7074 1.7143 0.50075 0.4128 1.1016

5 SSDPT 1.4356 6.1504 1.6104 0.5031 0.4177 1.0451

Reddy 1.46467 5.70653 1.71444 0.49495 0.40039 1.10162

NHPSDT–Present 1.6057 6.9547 1.3346 0.4215 0.4512 1.1118

10 SSDPT 1.5876 7.3689 1.2820 0.4227 0.4552 1.0694

Reddy 1.60541 6.95396 1.33495 0.41802 0.43915 1.1119

NHPSDT–Present 2.5327 2.8928 1.9104 0.4424 0.5072 1.2851

∞ SSDPT 2.5327 2.8932 1.9103 0.4429 0.5114 1.2850

métal Reddy 2.5328 2.8920 1.9106 0.4411 0.4963 1.2855

for the plate thickness: h = 0.01, h = 0.03 and h = 0.1. It is to be noted that the present
results compare very well with the 3-D solution. All deflections again compare well with
the 3-D solution, and show good convergence with the average 3-D solution.

In Table 4, the effect of volume fraction exponent on the dimensionless stresses and
displacements of a FGM square plate (a/h=10) is given. This table shows comparison be-
tween results for plates subjected to uniform or sinusoidal distributed loads, respectively.
As it is well known, the uniform load distribution always over predicts the displacements
and stresses magnitude. As the plate becomes more and more metallic, the difference in-
creases for deflection w and in-plane longitudinal stress σx, while it decreases for in-plane
normal stress σy. It is important to observe that the stresses for a fully ceramic plate are
the same as that for a fully metal plate. This is because the plate for these two cases is
fully homogeneous and the stresses do not depend on the modulus of elasticity. Results
in Table 4 should serve as benchmark results for future comparisons.

Tables 5 and 6 compares the deflections and stresses of different types of the FGM
square plate (a/b = 1, k= 0) and FGM rectangular plate (b= 3a, k= 2). The deflections
decrease as the aspect ratio a/b increases and this irrespective of the type of the FGM
plate. All theories (SSDPT, PSDPT and NHPSDT) give the same axial stress σx and σy for
a fully ceramic plate (k=0). In general, the axial stress increases with the volume fraction
exponent k. The transverse shear stress for a FGM plate subjected to a distributed load.
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Table 5: Comparison of normalized displacements and stresses of a FGM square plate (a/b=1), k=0.

a/h Theory w σx σy τyz τxz τxy

NHPSDT–Present 0.5866 1.1979 0.7536 0.4307 0.4937 0.4908
4 SSDPT 0.5865 1.1988 0.7534 0.4307 0.4973 0.4906

Reddy 0.5868 1.1959 0.7541 0.4304 0.4842 0.4913

NHPSDT–Present 0.4665 2.8928 1.9104 0.4424 0.5072 1.2851
10 SSDPT 0.4665 2.8932 1.9103 0.4429 0.5114 1.2850

Reddy 0.4666 2.8920 1.9106 0.4411 0.4963 1.2855

NHPSDT–Present 0.4438 28.7342 19.1543 0.4466 0.5119 12.9884
100 SSDPT 0.4438 28.7342 19.1543 0.4472 0.5164 13.0125

Reddy 0.4438 28.7341 19.1543 0.4448 0.5004 12.9885

Table 6: Comparison of normalized displacements and stresses of a FGM rectangular plate (b=3a) and k=2.

a/h Theory w σx σy τyz τxz τxy

NHPSDT–Present 4.0569 5.2804 0.6644 0.6084 0.6699 0.5900
4 SSDPT 3.99 5.3144 0.6810 0.6096 0.6796 0.5646

Reddy 4.0529 5.2759 0.6652 0.6058 0.6545 0.5898

NHPSDT–Present 3.5543 12.9252 1.6938 0.61959 0.6841 1.4898

10 SSDPT 3.5235 12.9374 1.7292 0.6211 0.6910 1.4500
Reddy 3.5537 12.9234 1.6941 0.6155 0.6672 1.4898

NHPSDT–Present 3.4824 25.7712 3.3971 0.6214 0.6878 2.9844

20 SSDPT 3.4567 25.7748 3.4662 0.6232 0.6947 2.9126
Reddy 3.48225 25.7703 3.3972 0.6171 0.6704 2.9844

NHPSDT–Present 3.4593 128.728 17.0009 0.6220 0.6894 14.9303

100 SSDPT 3.4353 128.713 17.3437 0.6238 0.6963 14.584
Reddy 3.45937 128.7283 17.0009 0.6177 0.67176 14.9303

The results show that the transverse shear stresses may be indistinguishable. As the
volume fraction exponent increases for FGM plates, the shear stress will increase and the
fully ceramic plates give the smallest shear stresses.

Figs. 2 and 3 show the variation of the center deflection with the aspect and side-
to-thickness ratios, respectively. The deflection is maximum for the metallic plate and
minimum for the ceramic plate. The difference increases as the aspect ratio increases
while it may be unchanged with the increase of side-to-thickness ratio. One of the main
inferences from the analysis is that the response of FGM plates is intermediate to that of
the ceramic and metal homogeneous plates (see also Table 4). It is to be noted that, in the
case of thermal or combined loads and under certain conditions, the above response is
not intermediate.

Figs. 4-5 depict the through-the-thickness distributions of the shear stresses τyz and
τxz the inplane the longitudinal tangential stress τxy in the FGM plate under the uniform
load. The volume fraction exponent of the FGM plate is taken as k=2 in these figures. Dis-
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Figure 2: Dimensionless center deflection as func-
tion of the aspect ratio (a/b) of an FGM plate.
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Figure 3: Dimensionless center deflection as a
function of the side-to-thickness ratio (a/h) of an
FGM plate.
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Figure 4: Variation of longitudinal tangential
stress (τxy) through-the thickness of an FGM
plate.
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Figure 5: Variation of transversal shear stress (τyz)
through-the thickness of an FGM plate.

tinction between the curves in Figs. 5 and 6 is obvious. As strain gradients increase, the
in homogeneities play a greater role in stress distribution calculations. The through-the-
thickness distributions of the shear stresses τyz and τxz are not parabolic and the stresses
increase as the aspect ratio decreases. It is to be noted that the maximum value occurs at
z∼=0.2, not at the plate center as in the homogeneous case.

As exhibited in Figs. 7 and 8, the in-plane longitudinal and normal stresses, σx and σy,
are compressive throughout the plate up to z∼= 0.155 and then they become tensile. The
maximum compressive stresses occur at a point on the bottom surface and the maximum
tensile stresses occur, of course, at a point on the top surface of the FGM plate. However,
the tensile and compressive values of the longitudinal tangential stress, τxy (cf. Fig. 4),
are maximum at a point on the bottom and top surfaces of the FGM plate, respectively.
It is clear that the minimum value of zero for all in-plane stresses σx, σy and τxy occurs at
z∼=0.153 and this irrespective of the aspect and side-to-thickness ratios.
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Figure 6: Variation of transversal shear stress (τxz)
through-the thickness of an FGM plate.
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Figure 7: Variation of in-plane longitudinal stress
(σx) through-the thickness of an FGM plate.

15

-0,5 -0,4 -0,3 -0,2 -0,1 0,0 0,1 0,2 0,3 0,4 0,5

-2

-1

0

1

2

3

4

5

6

y

z/h

 a/b=1

 a/b=2

 a/b=3

      a/h=10

      k=2

Figure 8: Variation of in-plane normal stress (σy)
through-the thickness of an FGM plate.
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Figure 9: The effect of anisotropy on the dimen-
sionless maximum deflection of an FGM plate.

Finally, the exact maximum deflections of simply supported FGM square plate are
compared in Fig. 9 for various ratios of module, Em/Ec (for a given thickness, a/h=10).
This means that the deflections are computed for plates with different ceramic-metal mix-
tures. It is clear that the deflections decrease smoothly as the volume fraction exponent
decreases and as the ratio of metal-to-ceramic modules increases.

4 Conclusions

In this study, a new higher order shear deformation model is proposed to analyze the
static behavior of functionally graded plates. Unlike any other theory, the theory pre-
sented give rise to only four governing equations resulting in considerably lower com-
putational effort when compared with the other higher-order theories reported in the lit-
erature having more number of governing equations. Bending and stress analysis under
transverse load were analyzed, and results were compared with previous other shear de-
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formation theories. The developed theories give parabolic distribution of the transverse
shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate
without using shear correction factors. The accuracy and efficiency of the present theories
has been demonstrated for static behavior of functionally graded plates. All comparison
studies demonstrated that the deflections and stresses obtained using the present new
higher order shear deformation theories (with four unknowns) and other higher shear
deformation theories such as PSDPT and SSDPT (with five unknowns) are almost identi-
cal. The extension of the present theory is also envisaged for general boundary conditions
and plates of a more general shape. In conclusion, it can be said that the proposed theory
NHPSDT is accurate and simple in solving the static behaviors of FGM plates.
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