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Abstract. We consider the design of an effective and reliable adaptive finite element
method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first exam-
ine the two-term regularization technique for the continuous problem recently pro-
posed by Chen, Holst and Xu based on the removal of the singular electrostatic po-
tential inside biomolecules; this technique made possible the development of the first
complete solution and approximation theory for the Poisson-Boltzmann equation, the
first provably convergent discretization and also allowed for the development of a
provably convergent AFEM. However, in practical implementation, this two-term reg-
ularization exhibits numerical instability. Therefore, we examine a variation of this
regularization technique which can be shown to be less susceptible to such instability.
We establish a priori estimates and other basic results for the continuous regularized
problem, as well as for Galerkin finite element approximations. We show that the new
approach produces regularized continuous and discrete problems with the same math-
ematical advantages of the original regularization. We then design an AFEM scheme
for the new regularized problem and show that the resulting AFEM scheme is accu-
rate and reliable, by proving a contraction result for the error. This result, which is
one of the first results of this type for nonlinear elliptic problems, is based on using
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continuous and discrete a priori L∞ estimates. To provide a high-quality geometric
model as input to the AFEM algorithm, we also describe a class of feature-preserving
adaptive mesh generation algorithms designed specifically for constructing meshes of
biomolecular structures, based on the intrinsic local structure tensor of the molecular
surface. All of the algorithms described in the article are implemented in the Finite El-
ement Toolkit (FETK), developed and maintained at UCSD. The stability advantages
of the new regularization scheme are demonstrated with FETK through comparisons
with the original regularization approach for a model problem. The convergence and
accuracy of the overall AFEM algorithm is also illustrated by numerical approximation
of electrostatic solvation energy for an insulin protein.
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1 Introduction

The Poisson-Boltzmann Equation (PBE) has been widely used for modeling the electro-
static interactions of charged bodies in dielectric media, such as molecules, ions and col-
loids and thus is of importance in many areas of sciences and engineering, including
biochemistry, biophysics and medicine. The PBE provides a high fidelity mean-field de-
scription of the electrostatic interactions and ionic distribution of a solvated biomolec-
ular system at the equilibrium state and entails singularities of different orders at the
position of the singular permanent charges and dielectric interface. The popularity of
the PBE model is clearly evidenced by the success of software packages such as APBS,
CHARMM, DelPhi and UHBD. We summarize the mathematical PBE model in some de-
tail in Section 2, referring to the classical texts [36, 48] for more physical discussions.

While tremendous advances have been made in fast numerical solution of the PBE
over the last twenty years (cf. [25, 26, 35] for surveys of some of this work), mathematical
results for the PBE (basic understanding of the solution theory of the PBE, as well as a
basic understanding of approximation theory for PBE numerical methods) were funda-
mentally unsatisfying, due to the following questions about the PBE and its numerical
solution which remained open until 2007:

1. Is the PBE well-posed for the dimensionless potential ũ?

2. What function space does the solution ũ lie in?

3. Can one derive a priori (energy and/or pointwise) estimates for the solution ũ?
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4. Is there an efficient (low-complexity) and reliable (provably convergent under uni-
form mesh refinement) numerical method that produces an approximation uh to
the ũ?

5. Is there a provably convergent adaptive method for the PBE?

That these basic questions were open through 2007 is somewhat remarkable, given the
popularity of this model. However, four key features of the PBE model, namely: (1) the
undetermined electrostatic potential at the boundary of a given system; (2) the singu-
lar fixed charge distribution in biomolecules; (3) the discontinuous dielectric and Debye
constants on the irregular dielectric interface (with a possible second interface represent-
ing an ion exclusion layer); and (4) strong nonlinearity in the case of a strong potential
or heavily charged molecules, place the PBE into a class of semilinear partial differential
equations that are fundamentally difficult to analyze and difficult to solve numerically.
In fact, numerical evidence suggested that the most popular algorithms used for the PBE
were actually non-convergent under mesh refinement, which would put the reliability of
scientific results based on numerical solution of the PBE in doubt.

To address this issue, in 2007 Chen, Holst and Xu [11] used a two-scale decomposi-
tion as a mathematical technique to answer each of the open questions above about the
PBE, building the first available solution theory and approximation theory for the PBE (a
basic existence and uniqueness result using variational arguments had appeared already
in [23]). A splitting-type treatment of the singular charges was not new and is a very natu-
ral physical idea first sketched out in [21] and then also explored numerically in [64]. This
method decomposes the PBE into a Poisson equation with singular charge and uniform
dielectric that determines a singular function us and a regularized Poisson-Boltzmann
equation (RPBE) that determines a smooth correction u, with the sum of the two giv-
ing the dimensionless potential: ũ=us+u. This natural splitting technique was exploited
in [11] to show that: the regularized PBE is well-posed, as is also the full PBE; the solution
ũ can be split into a singular function us (having a simple closed form expression) and a
smooth remainder u which lies in a well-understood function space H1+α with α>0; the
remainder function u is pointwise bounded almost everywhere; a standard finite element
discretization that incorporates the singular function converges and does so at optimal
rate in the limit of uniform mesh refinement; and finally, an implementable adaptive al-
gorithm exists that can be proven mathematically to converge to the exact solution of the
PBE.

While this two-scale decomposition made a number of basic mathematical results
possible in [11], the resulting numerical algorithms (both based on uniform mesh refine-
ment and adaptive mesh refinement) are subject to a hidden instability. This instability
is in fact tied to the two-scale decomposition technique itself (Example 2.1 in Section 2.2
gives a more complete description of this difficulty). While this feature of the splitting has
no impact on the mathematical or convergence results in [11], the practical impact is that
algorithms based on this particular decomposition are not accurate enough to be compet-
itive with other approaches. A slightly modified decomposition scheme was proposed
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by Chern et al. [14] (see also [20]) and was applied together with Cartesian grid-based
interface methods to solve the PBE for simple structure geometries. The new splitting
technique gives rise to a modified form of the regularized PBE with similar structure to
the splitting scheme in [11], but appears to be more stable.

This article is focused on using a similar decomposition variant to remove the insta-
bility present in the formulation appearing in [11], as well as to improve the theoretical
results and algorithm components of the adaptive finite element algorithm described
in [11]. In particular, we adopt a variation of the regularization splitting scheme similar
to [11, 14, 20], involving a 3-term expansion rather than a 2-term expansion. We establish
several basic mathematical results for the 3-term splitting, analogous to those established
in [11] for the original 2-term splitting. This includes a priori L∞ estimates, existence and
uniqueness and discrete estimates for solutions and basic error estimates a general class
of Galerkin methods. We then focus specifically on finite element methods and design an
adaptive finite element method (AFEM) for solving the resulting regularized PBE. Due
to recent progress in the convergence analysis of AFEM for linear and nonlinear equa-
tions [10, 27], we also substantially improve the AFEM convergence result in [11] to one
which guarantees contraction rather than just convergence. We present numerical ex-
amples showing the accuracy, efficiency and stability of this new scheme. To provide
a high-quality geometric model as input to the AFEM algorithm, we will also describe
a class of feature-preserving adaptive mesh generation algorithms designed specifically
for constructing meshes of biomolecular structures, based on the intrinsic local structure
tensor of the molecular surface.

While we focus on (adaptive) finite element methods in this article, the splitting
framework we describe can be incorporated into finite difference, finite volume, spec-
tral, wavelet, finite element, or boundary element methods for the PBE. While the finite
element method has the advantage of exactly representing the molecular surface (when
appropriate mesh generation algorithms are used; see Section 5), advances in finite dif-
ference and finite volume methods include interface discretization methods which sub-
stantially improve solution accuracy at the dielectric discontinuity surface [14, 20, 62, 63];
see also [54] for a similar approach using mortar elements. Boundary element methods
for the (primarily linearized) PBE are also competitive, due to algorithm advances for
molecular surface generation (see [58, 59] and Section 5), due to emergence of fast multi-
pole codes for surface integrals [32–34] and due to new techniques for nonlinearity [8].

The remainder of the paper is organized as follows. In Section 2, we give a brief
derivation of the standard form of the PBE and then examine the two-scale regulariza-
tion in [11]. We then describe a second distinct regularization and illustrate why it is
superior to the original approach as a framework for developing numerical methods.
We then quickly assemble the cast of basic mathematical results needed for the second
regularization, which do not immediately follow from the results established in [11] for
the original regularization. In Section 3, we describe an adaptive finite element method
based on residual-type a posteriori estimates and summarize some basic results we need
later for the development of a corresponding convergence theory. In Section 4, we de-
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velop the first AFEM contraction-type result for a class of semilinear problems that in-
cludes the PBE, substantially improving the AFEM convergence result given in [11]. We
also include a discussion of our mesh generation toolchain in Section 5, which plays a key
role in the success of the overall adaptive numerical method. Numerical experiments are
conducted in Section 6, where stability of the regularization scheme and convergence of
the adaptive algorithm are both explicitly demonstrated numerically, in agreement with
the theoretical results established in the paper. We summarize our results in Section 7.

2 The Poisson-Boltzmann equation (PBE)

The PBE can be derived in various ways based on the statistical description of a system of
charged particles in electrolytes [36,48]. A well-known derivation starts with the Poisson
equation for the electrostatic potential φ=φ(x) induced by a charge distribution ρ=ρ(x):

−∇·(ǫ∇φ)=
4π

ǫ0
ρ,

where ǫ = ǫ(x) is a spatially varying dielectric constant and ǫ0 is the dielectric permit-
tivity constant of a vacuum. The charge distribution ρ may consist of fixed charges ρ f

and mobile charges ρm. The fixed charge distribution ρ f represents the partially charged
atoms of the molecules immersed in the aqueous solution; the mobile charges ρm models
the charged ions in the solution. With this perspective, the fixed charge distribution ρ f

is independent of the potential φ. The charge distribution ρm of mobile ions, however,
depends on the potential φ following the Gouy-Chapman or Debye-Hückel theories and
can be modeled by a Boltzmann distribution. The two charge distributions then take the
form

ρm =
M

∑
j=1

cjqje
−

qjφ

kT , ρ f =
N

∑
i=1

qiδ(xi), xi ∈Ωm. (2.1)

Here for ρm, M is number of ion species, cj and qj are the bulk concentration and charge

of the jth ion, k is the Boltzmann constant and T is the absolute temperature; and for ρ f ,
there are N charges located at xi in the molecule region Ωm and carrying charge qi, where
δ(xi) is the delta function centered at xi. This gives rise to the full or nonlinear PBE:

−∇·(ǫ∇φ)=
4π

ǫ0

( N

∑
i=1

qiδ(xi)+
M

∑
j=1

cjqje
−

qjφ

kT

)

. (2.2)

A number of variations of the PBE can be derived under appropriate assumptions.
For example, for a symmetric 1:1 ionic solution (two ions species with same but opposite
charge) with M =2, bulk concentration cj = c and charge qj =(−1)jq, for j =1,2, Eq. (2.2)
reduces to:

−∇·(ǫ∇φ)+
4π

ǫ0
2cqsinh

( qφ

kT

)

=
4π

ǫ0

N

∑
i=1

qiδ(xi).
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We now introduce a dimensionless electrostatic potential ũ = qφ/(kT) and the so-called
Debye length lD =

√

ǫ0kT/8πcq2 and define the modified Debye-Huckel parameter to be
κ = 1/lD . After scaling the singular charges we can write the final form of the Poisson-
Boltzmann equation as:

−∇·(ǫ∇ũ)+κ2sinhũ= f , (2.3)

where f =∑
N
i=1ziδ(xi), with zi =4πqqi/(ǫ0kT).

As analyzed in [11], since the singular function f does not belong to H−1(Ω), Eq. (2.3)
does not have a solution in H1, or at least the equation does not have a weak formulation
involving the H1 as the test space. Consequently, standard numerical methods for elliptic
equations are not guaranteed to produce numerical solutions which converge to the exact
solution to the PBE in the limit of mesh refinement and numerical evidence suggests that
in fact standard methods fail to converge. We now discuss two regularization schemes
for the PBE which have not only been the basis for the new solution and approximation
theory results for the PBE appearing in [11], but also provide a robust framework for
constructing provably convergent numerical algorithms.

2.1 A natural regularized formulation

The first scheme is motivated by the physical interpretation of the solution to PBE and de-
composes the solution into two components, based on the distinct solvent region Ωs and
molecular region Ωm in the model. This spatial decomposition of the domain Ω, as well
as the interface Γ between Ωs and Ωm, is depicted in Fig. 1. The component of the solu-
tion, which will have singularities but will be representable in closed-form, is called the
self-energy corresponding to the electrostatic potential. The second component, which
will be much more well-behaved but will not have a closed-form representation, corre-
sponds to the screening of the potential due to high dielectric and mobile ions in the
solution region. This natural decomposition provides a regularization scheme was pro-
posed and explored numerically in [21, 64]. In this scheme, the singular component us of
the electrostatic potential is identified as the solution of the following Poisson equation,
the solution of which can be readily assembled from the Green’s functions (cf. [46]):

−∇·(ǫm∇us)=
N

∑
i=1

ziδ(xi), us :=
N

∑
i=1

zi

ǫm

1

|x−xi|
. (2.4)

Subtracting (2.4) from (2.3) gives the equation for the regular component u:

−∇·(ǫ∇u)+κ2 sinh(u+us)=∇·
(

(ǫ−ǫm)∇us
)

. (2.5)

Since κ vanishes in Ωm and ǫ−ǫm is nonzero only in region Ωs, the right hand side term
∇·((ǫ−ǫm)∇us) belongs to H−1 and a standard H1-weak formulation of (2.5) is well-
defined.

A variational argument can be used to show existence and uniqueness of a weak so-
lution to (2.4) in H1 (see [11] for this argument and also [23] for a similar argument in
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Figure 1: Illustration of the solvent region Ωs, the molecular region Ωm, the interface Γ and the two distinct
dielectric constants ǫs and ǫm in the two regions.

the case of an alternative regularization). A priori L∞ estimates for the solution are estab-
lished in [11], which are critical to the development of a priori error estimates for Galerkin
(e.g., finite element, wavelet and spectral) approximations of the regular component and
are also critical to the convergence results for both uniform and adaptive finite element
methods developed in [11]. This two-scale decomposition framework is at the heart of
the solution theory, approximation theory and convergence results for adaptive finite el-
ement methods for the PBE developed in [11].

2.2 An alternative regularized formulation

Since the singular component represents the Coulomb potential in the low dielectric en-
vironment, it is always much larger than the real potential in Ωs, where the dielectric
constant is high and strong ion screening exists. As a result, the regular component is
also much larger in magnitude than the full potential in Ωs and the decomposition in
Section 2.1 can produce an unstable numerical scheme. More precisely, relatively small
error in the numerical solution of regular component could lead to large relative error in
the full potential, as illustrated in the following example.

Example 2.1. Let Ωm be a unit ball with a unit positive charge at the origin. The dielectric
constants are ǫm =2 and ǫs =80 inside and outside the ball, respectively. Let the modified
ionic strength κ=0. This so-called Born Ion problem admits an analytical solution for the
full potential

ũ(r)=
1

ǫmr
+

( 1

ǫs
− 1

ǫm

)

in Ωm and ũ(r)=
1

ǫsr
in Ωs,

where r=
√

x2+y2+z2. Since the singular component us(r)=1/(ǫmr), it follows that the
regular component

u(r)= ũ(r)−us(r)=
1

ǫsr

(

1− ǫs

ǫm

)

=−39
1

ǫsr
=−39ũ(r).
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We assume that the singular component is computed analytically. Suppose that the nu-
merical solution of u(r) carries a relative error e = 3%|u(r)|, and assume that this is the
only source of numerical error. This implies the relative error of the final full potential is
impacted as

|e|
|u(r)| =3% =⇒ |e|

|ũ(r)| =
0.03|u(r)|
|ũ(r)| =

0.03×39|ũ(r)|
|ũ(r)| =117%.

This suggests relative error of 3% in the numerical solution of u(r) will be amplified by
39 times in the relative error of the full potential ũ(r) when u(r) is added to the analytical
solution us(r).

Example 2.1 indicates that unless the regular component is solved to high accuracy,
the full potential could be of low quality and numerical algorithms based on the decom-
position may fail. A second decomposition scheme we now examine demonstrates more
satisfactory numerical stability. Proposed in [14], this decomposition splits the potential
into three parts in the molecular region only. The first component is the singular compo-
nent us defined by (2.4). The second component uh is the harmonic extension of the trace
of the singular component us on the molecular surface into the interior of the molecule; it
is completely determined by the singular component us and the geometry of the molec-
ular surface through the harmonic equation

−∆uh =0 in Ωm, uh =−us on Γ, (2.6)

where Γ is the interface between Ωm and Ωs. Then we set us+uh =0 in Ωs. By definition
of uh, this extension is continuous across the interface. So the complete decomposition
reads

ũ=u+
ǫ−ǫs

ǫm−ǫs
(us+uh)=

{

us+uh+u, in Ωm,

u, in Ωs.
(2.7)

In this decomposition, the regular component u is defined as an interface problem



























−∇·(ǫ∇u)+κ2 sinhu=0, in Ω,
[

u
]

Γ
=0, on Γ,

[

ǫ
∂u

∂nΓ

]

Γ
= gΓ, on Γ, with gΓ :=ǫm

∂(us+uh)

∂nΓ

∣

∣

∣

Γ
,

u=0, |x|→∞,

(2.8)

where nΓ is the unit out normal of the interface Γ, and [·] denotes the jump of enclosed
quantity on the given interface as [v]Γ = limt→0v(x+tnΓ)−v(x−tnΓ). The second inter-
face condition (2.8) arises from continuity of flux in (2.3). The singular component us is
given by (2.4), whereas computing uh is trivial using finite element or boundary integral
methods. Therefore, we assume us and uh are known in the following discussion and
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are smooth on Γ. Since the singular component us is only applied in the interior of the
molecule region, a discontinuity appears in the remaining component of the potential
on the molecular surface. The harmonic component uh is introduced to compensate for
this discontinuity using harmonic extension, so that the regular component as defined by
Eq. (2.8) is continuous on the molecular surface.

Since no decomposition of the potential occurs in Ωs, error in numerical solutions of u
are not amplified in the full potential. While mathematically equivalent to the decompo-
sition in [11], this alternative three term-based splitting regularization is potentially nu-
merically more favorable than the original decomposition. The implementations of this
scheme using finite difference interface methods [14, 20] have proven that it can signifi-
cantly improve the accuracy of the full potential. Mirroring the general plan taken in [11],
we will use this alternative decomposition as the basis for an analysis of the regularized
problem, for the development of an approximation theory and for the development of a
practical, provably convergent adaptive method.

A final difficultly in solving the regularized form of the PBE in (2.8) (and other forms
of the PBE) is that the computational domain is all of space. It is standard to truncate
space to a bounded Lipschitz domain Ω by posing some artificial (but highly accurate)
boundary condition on ∂Ω. For simplicity, one chooses Ω to be a ball or cube containing
the molecule region. The solvent region is then defined as Ωs∩Ω, which will also be
denoted by Ωs without the danger of confusion. There are various approaches to the
choosing boundary condition on ∂Ω; using the condition ũ = g is standard, where g can
be obtained from a known analytical solution to some simplification of the linearized PBE
and can be chosen to be a smooth function on the boundary. Far from the molecule region,
such analytical solutions provide a highly accurate boundary condition approximation
for the PBE on the truncated domain. For other possible constructions of g, see [7, 11, 23]
and the references cited therein. Finally, we end up with the regularized PBE (or RPBE)
in a bounded domain Ω, which becomes the focus for the remainder of the paper:















−∇·(ǫ∇u)+κ2 sinh(u)=0, in Ω,
[

u
]

Γ
=0 and

[

ǫ
∂u

∂nΓ

]

Γ

= gΓ, on Γ,

u|∂Ω = g, on ∂Ω.

(2.9)

Our main goals for the remainder of the paper are to:

1. Establish a priori L∞ estimates for (2.9), leading to a standard argument for well-
posedness of the continuous and discrete problems. Most other mathematical re-
sults in the article hinge critically on these a priori estimates.

2. Develop a general approximation theory for (2.9) by establishing a priori error esti-
mates for Galerkin methods, giving convergence of finite element and other meth-
ods.

3. Develop a practical adaptive finite element method for (2.9) and prove that it is
convergent.
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4. Develop practical mesh generation algorithms for the domains arising in (2.9) that
meet the needs of our finite element methods.

We note that there are two distinct interface conditions in (2.9), which appears to give it
an unusual formulation. However, the first interface condition [u]= 0 will be automati-
cally satisfied by standard constructions of C0 finite element spaces. The second interface
condition will be embedded into the weak form of Eq. (2.9) in a natural way, so that in fact
both interface conditions are quite easily and naturally incorporated into finite element
(as well as wavelet and spectral) discretizations. Although fairly complicated schemes
arise when considering the regularization approach with finite difference and finite vol-
ume methods, the interface conditions can be enforced with these discretization as well
(cf. [29, 30, 39, 52]).

2.3 A priori L∞-estimates and well-posedness

A priori L∞ estimates for the solution u to the regularized PBE (2.9) are the critical com-
ponent of the key mathematical results we need to have in place for the development
of a reliable adaptive method, namely: (1) well-posedness of the continuous and dis-
crete regularized problems; (2) a priori error estimates for Galerkin approximations; (3) a
posteriori error estimates for Galerkin approximations; and (4) auxiliary results for estab-
lishing convergence (contraction) of AFEM. The regularized equation (2.9) governing u
derived in Section 2.2 differs significantly from the decomposition used in [11] and as a
consequence we now derive the a priori L∞ estimates.

In what follows, we use standard notation for the Lp(G) spaces, 16 p 6 ∞, with the
norm ‖·‖p,G on any subset G⊂R

d; we use standard notation for Sobolev norms ‖u‖k,p,G=
‖u‖Wk,p(G) where the natural setting here will be p=2 and k=0 or k=1. For any functions

v∈ Lp(G) and w∈ Lq(G) for p,q >1 with p−1+q−1 = 1, we denote the pairing (v,w)G as
(v,w)G :=

∫

G
vwdx. If G = Ω then we also omit it from the norms (or pairing) to simplify

the presentation.
To begin, define an affine subset of H1(Ω) as H1

g(Ω) :={v∈H1(Ω) : v= g on ∂Ω} and

then define Xg :={v∈H1
g(Ω) : ev,e−v∈L∞(Ω)}, with X0 denoting the case when g=0. A

weak formulation of Eq. (2.9) reads: find u∈Xg such that

a(u,v)+(b(u),v)= 〈gΓ ,v〉Γ, ∀v∈H1
0(Ω), (2.10)

where a(u,v) = (ǫ∇u,∇v), (b(u),v) = (κ2sinh(u),v) and 〈gΓ,v〉Γ =
∫

Γ
gΓvds. It is easy to

verify that the bilinear form in (2.10) satisfies:

m‖u‖2
1,2 6 a(u,u), a(u,v)6 M‖u‖1,2‖v‖1,2, ∀u,v∈H1

0(Ω), (2.11)

where 0<m6 M <∞ are constants depending only on the maximal and minimal values
of the dielectric and on the domain. The properties (2.11) imply the norm on H1

0(Ω) is
equivalent to the energy norm |||·||| : H1

0(Ω)→R,

|||u|||2 = a(u,u), m‖u‖2
1,2 6 |||u|||2 6 M‖u‖2

1,2. (2.12)
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To establish a priori L∞ estimates, we further split the solution u to (2.9) into solutions
of two sub-problems. The first sub-problem is a linear elliptic interface problem; esti-
mates on solutions to this problem are then utilized in the analyzing the second sub-
problem, which is a nonlinear elliptic problem without interface conditions. The second
sub-problem is then analyzed using a cut-off function argument that exploits a weak for-
mulation of the maximum principle. More precisely, let u = ul +un, where ul ∈ H1

g(Ω)
satisfies the linear elliptic equation

a(ul ,v)= 〈gΓ,v〉Γ, ∀v∈H1
0(Ω), (2.13)

and un∈X0 satisfies the nonlinear elliptic equation:

a(un,v)+
(

b(ul +un),v
)

=0, ∀v∈H1
0(Ω), (2.14)

where we note that the sum u=ul +un is then the desired solution to the RPBE (2.10). It
is easy to see that the linear part ul is the solution to the interface problem:







−∇·(ǫ∇ul)=0, in Ω,

ul|∂Ω = g and
[

ǫ
∂ul

∂nΓ

]

Γ

= gΓ,

while the nonlinear part un is the solution to the (homogeneous) semilinear equation
{

−∇·(ǫ∇un)+κ2sinh(un+ul)=0, in Ω,

un =0, on ∂Ω.

Existence and uniqueness of ul solving (2.13) follows by standard arguments; further-
more, if the interface Γ to be sufficiently smooth (e.g., Γ is C2), then ul∈L∞(Ω) follows im-
mediately from known regularity results for linear interface problems (cf. [4,9,11,12,43]).
This makes possible a priori L∞ estimates for the nonlinear component and subsequently
the entire regularized solution. To this end, define

α′=argmax
c

(

κ2sinh(c+ sup
x∈Ωs

ul)60
)

, αn =min(α′,0), (2.15a)

β′ =argmin
c

(

κ2sinh(c+ inf
x∈Ωs

ul)>0
)

, βn =max(β′,0). (2.15b)

Lemma 2.1 (A Priori L∞ Estimates). Suppose that the solution ul to (2.13) satisfies ul∈L∞(Ω),
and let un be any weak solution of (2.14). If αn,βn ∈R are as defined in (2.15a)-(2.15b), then

αn 6un 6βn, a.e. in Ω. (2.16)

Proof. The short proof is similar to that in [11, 46], which we include for completeness,
due to its critical role in the results throughout the article. We first define

φ=(un−βn)+ =max(un−βn,0), φ=(un−αn)−=max(αn−un,0).
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Since βn >0 and αn 60, it follows (cf. [46]) that φ,φ∈H1
0(Ω) and can be used as pointwise

non-negative (almost everywhere) test functions. For either φ=φ or φ=−φ, we have

(

ε∇un,∇φ)+(κ2sinh(un+ul),φ
)

=0.

Note φ>0 in Ω and its support set is Y={x∈ Ω̄|un(x)>βn}. On Y , we have

κ2sinh(un+ul)>κ2sinh
(

β′+ inf
x∈Ωs

ul
)

>0.

Similarly, −φ60 in Ω with support Y ={x∈ Ω̄|un(x)6αn}. On Y , we have

κ2sinh(un+ul)6κ2sinh
(

α′+ sup
x∈Ωs

ul
)

60.

Together this implies both

0>
(

ε∇un,∇φ
)

=
(

ε∇(un−βn),∇φ
)

>
(

inf
x∈Ω

ε(x)
)

‖∇φ‖2
2 >0,

0>
(

ε∇un,∇(−φ)
)

2
=

(

ε∇(αn−un),∇φ
)

2
>

(

inf
x∈Ω

ε(x)
)

‖∇φ‖2
2 >0.

Using the Poincaré inequality we have finally 0 6 ‖φ‖1,2 . ‖∇φ‖2 6 0, giving φ = 0, for
either φ=φ or φ=−φ. Thus αn 6un 6βn in Ω.

We have therefore shown that any solution u∈H1(Ω) to the regularized problem (2.10)
must lie in the set

[α,β]1,2 :={u∈H1(Ω) : α6u6β}⊂H1(Ω),

where α,β∈R are

α=αn + inf
x∈Ωs

ul, β= βn + sup
x∈Ωs

ul.

Since this ensures u∈L∞(Ω), which subsequently ensures eu∈L2(Ω), we can replace the
set Xg with the following function space as the set to search for solutions to the RPBE:

V ={u∈ [α,β]1,2 : u= g on ∂Ω}⊂Xg ⊂H1(Ω).

Our weak formulation of the RPBE now reads:

Find u∈V such that a(u,v)+(b(u),v)= 〈gΓ ,v〉Γ, ∀v∈H1
0(Ω). (2.17)

Note that in general V is not a subspace of H1(Ω) since it is not a linear space, due
to the inhomogeneous boundary condition requirement. However, as remarked above,
standard results for linear interface problems imply existence, uniqueness and a priori
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L∞ bounds for ul solving (2.13), leaving only the Eq. (2.14) for the remainder un. There-
fore, (2.17) is mathematically equivalent to

Find un∈U such that a(un,v)+(b(un +ul),v)=0, ∀v∈H1
0 (Ω), (2.18)

where

U ={u∈H1
0(Ω) : u−6u6u+}⊂H1

0(Ω),

with u−=αn and u+=βn from Lemma 2.1. We now have a formulation (2.18) that involves
looking for a solution in a well-defined subspace U of the (ordered) Banach space X =
H1

0(Ω) and are now prepared to establish existence (and uniqueness) of the solution. The
argument we use below differs significantly from that used in [11, 23] for the original
regularization.

Theorem 2.1 (Existence and Uniqueness of Solutions to RPBE). Let the solution ul to (2.13)
satisfy ul ∈ L∞(Ω). Then there exists a unique weak solution un ∈U to (2.18) and subsequently
there exists a unique weak solution u∈V to the RPBE (2.17).

Proof. We follow the approach in [11, 23]. We begin by defining J : U⊂H1
0(Ω)→R:

J(u)=
∫

Ω

ε

2
|∇u|2+κ2cosh(u+ul) dx.

It is straight-forward to show that if u is the solution of the optimization problem

J(u)= inf
v∈U

J(v)6 J(v), ∀v∈U, (2.19)

then u is the solution of (2.18). We assemble some quick facts about H1
0(Ω), U⊂H1

0(Ω)
and J:

1. H1
0(Ω) is a reflexive Banach space.

2. U is nonempty, convex and topologically closed as a subset of H1
0(Ω).

3. J is convex on U: J(λu+(1−λ)v)6λJ(u)+(1−λ)J(v), ∀u,v∈U, λ∈ (0,1).

By standard results in the calculus of variations (cf. [46]), we have existence of a solution
to (2.19) and hence to (2.18) and (2.17), if we can establish two additional properties of J:

4. J is lower semi-continuous on U: J(u)6 liminf j→∞ J(uj), ∀uj→u∈U.

5. J is coercive on U: J(u)>C0‖u‖2
1,2−C1, ∀u∈U.

That J is lower semi-continuous (and in fact, has the stronger property of weak lower
semi-continuity), holds since J is both convex and Gateaux-differentiable on U (cf. [46]
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for this and similar results). That J is coercive follows from coshx > 0 and the Poincaré
inequality

J(u)=
∫

Ω

ε

2
|∇u|2+κ2cosh(u+ul)dx> inf

x∈Ω

ε(x)

2
|u|21,2

> inf
x∈Ω

ε(x)

2

(1

2
|u|21,2+

1

2ρ2
‖u‖2

2

)

>C0‖u‖2
1,2,

with C0=(infx∈Ω ε(x))·min{1/4,1/(4ρ2)}, where ρ>0 is the Poincaré constant. It remains
to show u is unique. Assume there are two solutions u1 and u2. Subtracting (2.18) for each
gives a(u1−u2,v)+(b(u1+ul)−b(u2+ul),v)=0, ∀v∈H1

0(Ω). Now take v=u1−u2; mono-
tonicity of the nonlinearity defining b ensures that (b(u1+ul)−b(u2+ul),u1−u2)>0, giv-
ing 0> a(u1−u2,u1−u2)>2C0‖u1−u2‖1,2 >0, where C0 is as above. This can only hold if
u1 =u2.

In summary, there exists a unique solution u∈V⊂H1(Ω) to the RPBE problem (2.17),
with compatible barriers u− and u+∈L∞ satisfying

−∞<u−6u6u+ <∞, a.e. in Ω.

Moreover, these pointwise bounds combined with a Taylor expansion give that for any
u,w∈V and any v∈H1

0(Ω), the nonlinearity satisfies a Lipschitz condition:

(b(u)−b(w),v)6K‖u−w‖2‖v‖2, (2.20)

where K=supχ∈[u−,u+]‖κ2 cosh(χ)‖∞<∞ is a constant depending only on the domain, the
ionic strength of the solvent (embedded in the constant κ) and other physical parameters.

3 Finite element methods (FEM)

In this section, we consider (mainly adaptive) finite element methods for the regularized
problem (2.9). For simplicity, we assume Ω be a bounded polygon domain and we tri-
angulate Ω with a shape regular conforming mesh Th. Here h=hmax represents the mesh
size which is the maximum diameter of elements in Th. We further assume that

Assumption 3.1. The discrete interface Γh approximates the original interface Γ to the second
order, i.e., d(Γ,Γh)6 ch2.

The mesh generator discussed in Section 5 provides a practical tool for generating
meshes with this type of approximation quality for the interface. Given such a triangula-
tion Th, we construct the linear finite element space

V(Th) :={v∈H1(Ω) : v|τ ∈P1(τ), ∀τ∈Th}.
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Since we may choose g to be a smooth function on ∂Ω, the Trace Theorem (cf. [1, 46])
ensures there exists a fixed function uD ∈ H1(Ω) such that uD = g on ∂Ω in the trace
sense. Let H1

D(Ω):=H1
0(Ω)+uD be the affine space with the specified boundary condition

and VD(Th) := V(Th)∩H1
D(Ω) be the finite element affine space of H1

D(Ω). In particular,
we denote V0(Th) := V(Th)∩H1

0(Ω). For simplicity, we assume the boundary condition
g can be represented by uD exactly. In practical implementation, we will construct an
interpolant of uD having sufficient approximation quality such that using the interpolant
in place of uD will not impact the order of accuracy of the algorithm we build below for
approximating the solution u to the regularized problem (2.9). A Galerkin finite element
approximation of (2.10) takes the form: find uh∈VD(Th) such that

a(uh,v)+(b(uh),v)= 〈gΓ,v〉, ∀v∈V0(Th). (3.1)

The primary concerns for this type of approximation technique are the following four
mathematical questions regarding the Galerkin approximation uh:

1. Does uh satisfy discrete a priori bounds in L∞ and other norms, so that the nonlin-
earity can be controlled for error analysis?

2. Does uh satisfy quasi-optimal priori error estimates, so that the finite element method
will converge under uniform mesh refinement?

3. Can one ensure AFEM (non-uniform mesh refinement) convergence limk→∞ uk =u,
where uk is the Galerkin approximation of u at step k of AFEM?

4. Can one produce uh at each step of the (uniform or adaptive) refinement algo-
rithm using algorithms which have optimal (linear) or nearly optimal space and
time complexity?

The first two questions were answered affirmatively in [11] for the first regularized for-
mulation. We give only a brief outline below as to how the arguments for answering
the first two questions can be modified to establish the analogous results for the sec-
ond regularized formulation here. The third question was partially answered in [11] for
the first regularization, but we give an improved, more complete answer to this ques-
tion below and in Section 4, which is one of the main contributions of the paper. Re-
garding the fourth question, due to the discontinuities in the dielectric and the modified
Debye-Huckel parameter, one must take care to solve the resulting nonlinear algebraic
systems using robust inexact global Newton methods, combined with modern algebraic
multilevel-based fast linear solvers in order to produce an overall numerical solution
algorithm which is reliable and has low-complexity. We do not consider this question
further here; see [2, 3, 23, 26] for a complete discussion in the specific case of the PBE.

3.1 Discrete L∞ estimates and quasi-optimal a priori error estimates

For completeness, we quickly answer the first two questions by stating a result, giving
only a very brief outline of how the result is established for the new regularization, based
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on modifying the analogous arguments in [11]. We then focus entirely on the new AFEM
contraction results which require a more complete discussion. To state the theorem, the
following assumption is needed.

Assumption 3.2. For any two adjacent nodes i and j, assume that

aij =(ǫ∇φi,∇φj)6− c

h2 ∑
eij⊂τ

|τ|, with c>0,

where eij is the edge associated with these nodes, φi and φj are the basis functions corresponding
to nodes i, j respectively and |τ| is the volume of τ∈T .

Theorem 3.1. If Assumption 3.2 holds and h is sufficiently small, the solution to (3.1) satisfies:

‖uh‖∞ 6C,

where C is independent of h. Moreover, the quasi-optimal a priori error estimate holds:

‖u−uh‖1,2 . inf
v∈VD(Th)

‖u−v‖1,2.

Proof. The proofs of both inequalities are similar to the proofs of the corresponding re-
sults in [11], with adjustment to handle the new stabilized splitting. The second result
hinges critically on the Lipschitz property (2.20), which in turn relies on the first result
together with the continuous L∞ estimates established in Lemma 2.1.

3.2 Adaptive finite element methods (AFEM)

Adaptive Finite Element Methods (AFEM) build approximation spaces adaptively; this
is done in an effort to use nonlinear approximation so as to meet a target quality using
spaces having (close to) minimal dimension. AFEM algorithms are based on an iteration
of the form:

SOLVE→ESTIMATE→MARK→REFINE,

which attempts to equi-distribute error over simplices using subdivision driven by a pos-
teriori error estimates. Given an initial triangulation T0 and a parameter θ ∈ (0,1], our
particular AFEM generates a sequence of nested conforming triangulations Th, h > 0,
driven by some local error indicator η(uh,τ), which gives rise to a global error indicator
η(uh,Th). Schematically, the adaptive algorithm consists of a loop of the following main
steps:

1. uh := SOLVE(Th).

2. {η(uh ,τ)}τ∈Th
:= ESTIMATE(uh,Th).

3. Mh :=MARK({η(uh,τ)}τ∈Th
,Th,θ).

4. T∗ :=REFINE(Th,Mh,ℓ).
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In practice, a stopping criteria is placed in Step 2 to terminate the loop.

We will handle each of the four steps as follows:

1. SOLVE: We use standard inexact Newton + multilevel to produce U∈VD(T ) on triangulation
T (cf. [24]). To simplify the analysis here, we assume that the discrete solution U is calculated
exactly (no round-off error). Given a triangulation T , this defines the procedure:

U :=SOLVE(T ).

2. ESTIMATE: Given a triangulation T and a function U∈VD(T ), we compute the elementwise
residual error indicator:

{η(U,τ)}τ∈T :=ESTIMATE(U,T ).

3. MARK: We use the standard ”Dörfler marking”: Given θ∈ (0,1], we construct a marked subset
of elements

M :=MARK({η(U,τ)}τ∈T ,T ,θ)⊆T ,

such that:

η(U,M)>θη(U,T ). (3.2)

The residual-type error indicator η(U,M) over sub-partition M⊆T will be defined precisely in
Section 3.3.

4. REFINE: We use standard non-degenerate bisection-to-conformity methods with known com-
plexity bounds on conformity preservation (cf. [47]). In particular, given a triangulation T and
marked subset M⊆T and an integer ℓ>1, we produce

T∗ :=REFINE(T ,M,ℓ),

a conforming refinement of T with each simplex in M refined at least ℓ times.

3.3 Residual a posteriori estimates

To make precise the residual-type indicator, we first introduce some standard notation
for the relevant mathematical quantities and then employ and establish some of its prop-
erties.

T0 = Initial conforming simplex triangulation of Ω⊂R
d.

Th =Conforming refinement of TH at the previous step of AFEM.

hτ =The diameter of simplex τ∈T .

nF =The normal vector to face F of τ∈T .

ωτ =
⋃

{

τ̃∈T |τ
⋂

τ̃ 6=∅, where τ∈T
}

.

ωF =
⋃

{

τ̃∈T |F
⋂

τ̃ 6=∅, where F is a face of τ∈T
}

.
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We can now define the following error indicators:

η2(uh,τ) :=h2
τ‖b(uh)‖2

2,τ +
1

2 ∑
F⊂∂τ

hF‖nF ·[ǫ∇uh ]‖2
2,F + ∑

F⊂∂τ∩Γh

hF‖gΓ‖2
2,F, (3.3a)

osc2(uh,τ) :=h4
τ‖∇uh‖2

2,τ + ∑
F⊂∂τ∩Γh

hF‖gΓ− ḡΓ‖2
2,F, (3.3b)

where ḡΓ is the piecewise average on each face F⊂Γh. For any subset S⊂T , the cumula-
tive indicators are defined as:

η2(uh,S) := ∑
τ∈S

η2(uh,τ), osc2(uh,S) := ∑
τ∈S

osc2(uh,τ).

From these definitions follows the monotonicity properties:

η(v,T∗)6η(v,T ), ∀v∈VD(T ), (3.4a)

osc(v,T∗)6osc(v,T ), ∀v∈VD(T ), (3.4b)

for any refinement T∗ of T . We have then the following global upper bound from [24,50];
the lower-bound is also standard and can be found in e.g., [50].

Lemma 3.1 (Upper and lower bounds). Let u and uh be the solutions to (2.10) and (3.1),
respectively. If the mesh conditions in Assumptions 3.1 and 3.2 hold, then there exists constants
C1 and C2, depending only on T0 and the ellipticity constant, such that the following global upper
and lower bounds hold:

|||u−uh|||2 6C1η2(uh,Th), (3.5a)

C2η2(uh,τ)6 |||u−uh |||2ωτ
+osc2(uh,ωτ), (3.5b)

where |||v|||2ωτ
=

∫

ωτ
ǫ|∇v|2dx.

Proof. Similar to [11, Theorem 7.1], the proof follows the idea of [50] by noticing

‖b(uh)−b(uh)‖2,τ 6‖κ2(sinh(uh)−sinh(uh))‖2,τ

6 sup
χ∈[u−,u+]

‖κ2 cosh(χ)‖∞,τ‖uh−uh‖2,τ

6C(κ,u−,u+)hτ‖∇uh‖2,τ ,

where we have used Theorem 3.1. The remaining proof is the same as [11, Theorem
7.1].

Note for the convergence analysis here, we do not need the lower bound (3.5b).
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4 Convergence of AFEM

We now develop a convergence analysis of the AFEM iteration by showing contraction.
We must establish two additional key auxiliary results first: an indicator reduction result
and a quasi-orthogonality result, which generalize two analogous results for the linear
case in [10] to a class of nonlinear problems that includes the Poisson-Boltzmann equa-
tion.

4.1 An indicator reduction lemma

Here we establish a nonlinear generalization of the indicator reduction result from [10,
Corollary 4.4]. First we prove a local perturbation result for the nonlinear equation
(cf. [10, Proposition 4.3]). We then establish an indicator reduction result.

Let us first introduce a type of nonlinear PDE-specific indicator:

η2(D,τ) :=‖ǫ‖2
∞,ωτ

+h2
τ sup

χ∈[u−,u+]

‖κ2 cosh(χ)‖2
∞,τ.

For any subset S⊂T , let η(D,S) :=maxτ∈S{η(D,τ)}. By the definition, it is obvious that
η(D,T ) is monotone decreasing, i.e.,

η(D,T∗)6η(D,T ) (4.1)

for any refinement T∗ of T .
We now establish (see also [27]) a nonlinear generalization of the local perturbation

result appearing as in [10, Proposition 4.3]. This is the key result in generalizing the
contraction results in [10, Proposition 4.3] to the semilinear case.

Lemma 4.1 (Nonlinear Local Perturbation). Let T be a conforming partition satisfies Assump-
tions 3.1 and 3.2. For all τ∈T and for any pair of discrete functions v,w∈ [u−,u+]∩VD(T ), it
holds that

η(v,τ)6η(w,τ)+Λ̄1η(D,τ)‖v−w‖1,2,ωτ , (4.2)

where Λ̄1>0 depends only on the shape-regularity of T0, and the maximal values that b can obtain
on the L∞-interval [u−,u+].

Proof. By the definition (3.3a) of η, we have

η(v,τ).η(w,τ)+hτ‖b(v)−b(w)‖2,τ +
1

2 ∑
F⊂∂τ

h
1
2
F‖nF ·[ǫ∇(v−w)]‖2,F .

Notice that

‖b(v)−b(w)‖2,τ =‖κ2(sinh(v)−sinh(w))‖2,τ 6
(

sup
χ∈[u−,u+]

‖κ2 cosh(χ)‖∞,τ

)

‖v−w‖2,τ .
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On the other hand, we also have

‖nF ·[ǫ∇(v−w)]‖2,F 6‖ǫ‖∞,ωτ h
− 1

2
τ ‖∇v−∇w‖2,ωτ .

Therefore, we get the desired estimate for η.

Based on Lemma 4.1, we have the following main estimator reduction (see also [27]),
which generalizes the linear case appearing in [10, Corollary 4.4].

Lemma 4.2 (Nonlinear Estimator Reduction). Let T be a partition which satisfies the mesh
conditions in Assumptions 3.1 and 3.2 and let the parameters θ ∈ (0,1] and ℓ> 1 be given. Let
M=MARK({η(v,τ)}τ∈T ,T ,θ) and let T∗ =REFINE(T ,M,ℓ). If Λ1 =(d+1)Λ̄2

1/ℓ with Λ̄1

from Lemma 4.1 and λ=1−2−(ℓ/d)>0, then for all v∈[u− ,u+]∩VD(T ), v∗∈[u−,u+]∩VD(T∗),
and any δ>0, it holds that

η2(v∗,T∗)6 (1+δ)
[

η2(v,T )−λη2(v,M)
]

+(1+δ−1)Λ1η2(D,T0)|||v∗−v|||2.

Proof. We follow the proof in [10, Corollary 4.4] closely. We first apply Lemma 4.1 with v
and v∗ taken to be in VD(T∗). This gives

η(v∗,τ∗)
2 6 (1+δ)η(v,τ∗)+(1+δ−1)Λ̄2

1η(D,τ∗)‖v∗−v‖1,2,ωτ∗ , ∀τ∗∈T∗,

after applying Young’s inequality with δ>0. We now sum over the elements τ∗∈T∗, using
the fact that for shape regular partitions there is a small finite number of elements in the
overlaps of the patches ωτ∗ . This gives

η(v∗,T∗)2 6 (1+δ)η(v,T∗)+(1+δ−1)Λ2
1η(D,T∗)|||v∗−v|||,

where we have also used the equivalence (2.12).
Now let v∈ [u− ,u+]∩VD(T ), a short argument from the proof of Corollary 4.4 in [10]

gives

η2(v,T∗)6η2(v,T \M)+2−(ℓ/d)η2(v,M)=η2(v,T )−λη2(v,M). (4.3)

Finally, the monotonicity properties η(D,T∗) 6 η(D,T0), combined with (4.3) yields the
result.

4.2 Quasi-orthogonality for nonlinear problems

Following [27], we now establish a quasi-orthogonality result that represents the last tech-
nical result needed to generalize the convergence framework from [10] to the nonlinear
case.

Lemma 4.3 (Quasi-orthogonality). Let u be the exact solution to Eq. (2.10) and uh be the
solution to (3.1) on a partition Th which satisfies the conditions in Assumptions 3.1 and 3.2.
Assume that there exist a σh >0 with σh →0 as h→0, such that

‖u−uh‖2 6σh‖∇u−∇uh‖2. (4.4)
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Then there exists a constant C∗>0, such that for sufficiently small h, we have

|||u−uh |||2 6Λh|||u−uH |||2−|||uh−uH|||2, (4.5)

where Λh =(1−C∗σhK)−1 >0 with K =supχ∈[u−,u+]‖κ2 cosh(χ)‖∞.

Proof. We compute the energy norm:

|||u−uH |||2 =a(u−uH ,u−uH)= a(u−uh+uh−uH,u−uh+uh−uH)

=|||u−uh |||2+|||uh−uH|||2+2a(u−uh,uh−uH).

By the definition of u and uh, we have

a(u−uh,vh)+
(

b(u)−b(uh),vh

)

=0, ∀vh ∈V0(Th).

In particular, this holds for vh =uh−uH. By this relation, we obtain

|||u−uH |||2 = |||u−uh |||2 +|||uh−uH|||2+2
(

κ2(sinh(u)−sinh(uh)),uh−uH

)

.

Therefore, by Young’s inequality and the assumption (4.4) we have

|2(b(u)−b(uh),uh−uH)|62 sup
χ∈[u−,u+]

‖κ2 cosh(χ)‖∞‖u−uh‖2‖uh−uH‖2

6δ‖u−uh‖2
2+

K2

δ
‖uh−uH‖2

2

6δC(ǫ)σ2
h |||u−uh|||2 +

K2

δm
|||uh−uH|||2,

for δ>0 to be chosen later and m the coercivity constant. For σh sufficient small, we have

(1−δC(ǫ)σ2
h )|||u−uh |||2 6 |||u−uH |||2−

(

1− K2

δm

)

|||uh−uH|||2.

Define now the constant C∗=C(ǫ)/
√

m and take δ=K/(
√

C(ǫ)
√

mσh). We assume σh is
sufficiently small so that δC(ǫ)σ2

h =C∗σhK<1. This gives (4.5) with Λh=(1−C∗σhK)−1.

We note (4.4) can be established by ”Nitsche trick” under regularity assumptions
(cf. [37]).

4.3 The main convergence result for AFEM

To establish this result, we will follow [27] and use a combination of the frameworks
in [10, 38] rather than from [11]. This is because these frameworks are the first to han-
dle dependence of the oscillation on the discrete solution itself. The quasi-orthogonality
result is explicit in [38], but somewhat hidden in [11]. The framework in [10] uses only or-
thogonality rather than quasi-orthogonality, but has a number of improvements over [38]
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and [11] in several respects, including a one-pass algorithm using only the residual indi-
cator.

The previous sections focused on establishing some supporting results involving a
nesting of three spaces XH ⊂Xh ⊂X, where these were abstract spaces in some cases, or
specific finite element subspaces of H1. In what follows, we now consider the asymptotic
sequence of finite element spaces produced by the AFEM algorithm and will use the
results of the previous sections with the subscript h in uh and other quantities replaced by
an integer k representing the current subspace generated at step k of AFEM. To simplify
the presentation further, we also denote

ek = |||u−uk |||, Ek = |||uk−uk+1|||,
ηk =η(uk,Tk), ηk(Mk)=η(uk,Mk), η0(D)=η0(D,T0),

where D represents the set of problem coefficients and nonlinearity. We also denote
Vk := VD(Tk) for simplicity. The supporting results we need have been established in
Section 4.1 and Section 4.2.

Theorem 4.1 (Contraction). Let {Tk,Vk,uk}k>0 be the sequence of finite element meshes, spaces
and solutions, respectively, produced by AFEM(θ,ℓ) with marking parameter θ∈ (0,1] and bisec-
tion level ℓ> 1. Let Tk satisfy the conditions in Assumptions 3.1 and 3.2 and h0 be sufficiently
fine so that Lemma 4.3 holds for {Tk,Vk,uk}k>0. Then, there exist constants γ>0 and α∈ (0,1),
depending only on θ, ℓ and the shape-regularity of the initial triangulation T0, such that

|||u−uk+1|||2 +γη2
k+1 6α2

(

|||u−uk|||2 +γη2
k

)

.

Proof. We combine the frameworks in [10, 38] using the quasi-orthogonality result in
Lemma 4.3 rather than the approach in [11] for nonlinearities. Our notation follows
closely [10]. The proof requires the following tools:

1. Dörfler marking property given in Eq. (3.2).

2. The global upper-bound in Lemma 3.1.

3. Estimator reduction Lemma 4.2.

4. Quasi-orthogonality Lemma 4.3.

In addition, some results above used indicator monotonicity properties (3.4a)-(3.4b) and
monotonicity of data ηk(D). Starting with the quasi-orthogonality result in Lemma 4.3
we have

e2
k+1 6Λk+1e2

k−E2
k ,

which gives
e2

k+1+γη2
k+1 6Λk+1e2

k−E2
k +γη2

k+1.

Employing now Lemma 4.2 for some δ>0 to be specified later we have

e2
k+1+γη2

k+1 6Λk+1e2
k−E2

k +(1+δ)γ[η2
k −λη2

k (Mk)]+(1+δ−1)γΛ1η2
0(D)E2

k ,
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where λ∈(0,1) as defined in Lemma 4.2. Take now δ>0 sufficiently small so that we can
ensure γ<1 by setting:

0<γ=γ(δ)=
δ

(1+δ)Λ1η2
0(D)

<1. (4.6)

Using (4.6) in the last term leads to

e2
k+1+γη2

k+1 6Λk+1e2
k +(1+δ)γη2

k −(1+δ)λγη2
k (Mk).

We now use the marking strategy in Eq. (3.2) to give

e2
k+1+γη2

k+1 6Λk+1e2
k +(1+δ)γη2

k −(1+δ)λγθ2η2
k . (4.7)

To allow for simultaneous reduction of the error and indicator, we follow [10] and split
the last term into two parts using an arbitrary β∈ (0,1):

e2
k+1+γη2

k+1 6Λk+1e2
k +(1+δ)γη2

k −β(1+δ)λγθ2η2
k −(1−β)(1+δ)λγθ2η2

k .

We now the first and third terms using the upper bound from Eq. (3.5a) and the expres-
sion for γ in (4.6) and combine the second and fourth terms as well, giving:

e2
k+1+γη2

k+1 6
(

Λk+1−
βδλθ2

C1Λ1η2
0(D)

)

e2
k +(1+δ)(1−(1−β)λθ2)η2

k .

This can be written in the form

e2
k+1+γη2

k+1 6α2
1(δ,β)e2

k +γα2
2(δ,β)η2

k ,

where

α2
1(δ,β)=Λh−δ

[ βλθ2

C1Λ1η2
0(D)

]

, α2
2(δ,β)=(1+δ)(1−(1−β)λθ2).

By Lemma 4.3, we have Λk+1 =(1−C∗σk+1K)−1 with σk+1 :=σhk+1
, so that

α2
1(δ,β)=

1

1−C∗σk+1K
−δ

[ βλθ2

C1Λ1η2
0(D)

]

.

By the assumptions in Lemma 4.3, we can take the initial mesh so that σk+1>0 is as small
as we desire, or that Λk+1 is as close to one as we desire. Therefore, we can simultaneously
pick σk+1 >0 and δ>0 sufficiently small so that α2

1 <1. Either this choice of δ>0 ensures
α2

2 <1 as well, or we further reduce δ so that:

α2 =max
{

α2
1,α2

2

}

<1.

This completes the proof.
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5 Feature-preserving mesh generation for biomolecules

Mesh generation from a molecule is one of the important components in finite element
modeling of a biomolecular system. There are two primary ways of constructing molec-
ular surfaces: one is based on the ”hard sphere” model [41] and the other is based on
the level set of a ”soft” Gaussian function [22]. In the first model, a molecule is treated
as a collection of ”hard” spheres with different radii, from which three types of surfaces
can be extracted: van der Waals surface, solvent accessible surface and solvent excluded sur-
face [15,22,28,41]. The molecular surface can be represented analytically by a list of seam-
less spherical patches [15,49] and triangular meshes can be generated using such tools as
MSMS [42]. In contrast, the ”soft” model treats each atom as a Gaussian-like smoothly
decaying scalar function in R

3 [6, 17, 22]. The molecular surfaces are then approximated
by appropriate level sets (or iso-surfaces) of the total of the Gaussian functions [6,17]. Be-
cause of its generality, robustness and capability of producing smooth surfaces, we will
utilize the ”soft” model (or level set method) in our molecular mesh generation.

We now briefly outline the algorithms of constructing triangular and tetrahedral
meshes from a molecule that is given by a list of centers and radii for atoms (e.g., PQR
files [16] or PDB files with radii defined by users [5]). More details can be found in our
earlier work [58]. Fig. 2 shows the pipeline of our mesh generation toolchain. Note that
our tool can also take as input an arbitrary 3D scalar volume or a triangulated surface
mesh that has very low quality.

Atom Coordinates

3D Volumes

Initial Surface Meshes

Quality Improvement

Tetra Generation

Mesh Coarsening

Input

Input

Input

OR

OR

Output

Figure 2: Illustration of our mesh generation toolchain. The inputs can be a list of atoms (with centers and
radii), a 3D scalar volume, or a user-defined surface mesh. The latter two can be thought of as subroutines of
the first one.

5.1 Molecular surface generation

In our mesh generation toolchain, a molecular surface mesh is defined by a level set of
the Gaussian kernel function computed from a list of atoms (represented by centers ci

and radii ri) in a molecule as follows [6, 22, 60]:

F(x)=
N

∑
i=1

e
Bi

( ‖x−ci‖2

r2
i

−1
)

, (5.1)
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where the negative parameter Bi is called the blobbyness that controls the spread of char-
acteristic function of each atom. The blobbyness is treated in our work as a constant pa-
rameter (denoted by B0) for all atoms. Our experiments on a number of molecules show
that the blobbyness at −0.5 produces a good approximation for molecular simulations.

Given the volumetric function F(x), the surface (triangular) mesh is constructed using
the marching cube method [31]. Fig. 3(a) shows an example of the isosurface extracted
using this method. From this example, we can see that: (a) the isosurfacing technique
can extract very smooth surfaces, but (b) many triangles are extremely ”sharp”, which
can cause poor approximation quality in finite element analysis. In addition, meshes
generated by isosurfacing techniques are often too dense. Therefore, improving mesh
quality yet keeping the number of mesh elements small are two important issues that we
will address in this section.

Figure 3: Illustration of the surface generation and post-processing. (a) A 3D volume is first generated using
the Gaussian blurring approach (Eq. (5.1)) from the molecule (PDB: 1CID). Shown here is part of the surface
triangulation by the marching cube method. (b) The surface mesh after two iterations of mesh quality improve-
ments. (c) After coarsening, the mesh size becomes about seven times smaller than the original one. The mesh
is also smoothed by the normal-based technique.

5.2 Surface mesh improvement and decimation

Surface mesh post-processing includes quality improvement and mesh coarsening (deci-
mation). The mesh quality can be improved by a combination of three major techniques:
inserting or deleting vertices, swapping edges or faces and moving the vertices without
changing the mesh topology [19]. The last one is the main strategy we use to improve
the mesh quality in our toolchain. For a surface mesh, however, moving the vertices
may change the shape of the surface. Therefore, when we move the vertices, important
features (e.g., sharp boundaries, concavities, holes, etc.) on the original surface should
be preserved as much as possible. To characterize the important features on the surface
mesh, we compute so-called local structure tensor [18, 53, 57] as follows:

T(v)=
M′

∑
i=1
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where (n
(i)
x ,n

(i)
y ,n

(i)
z ) is the normal vector of the ith neighbor of a vertex v and M′ is the total

number of neighbors. The normal vector of a vertex is defined by the weighted average
of the normals of all its incident triangles. The local structure tensor basically captures
the principal axes of a set of vectors in space. Let the eigenvalues of T(v) be λ1,λ2,λ3

and λ1 ≥λ2 ≥λ3. Then the local structure tensor can capture the following features: (a)
Spheres and saddles: λ1≈λ2≈λ3 >0; (b) Ridges and valleys: λ1≈λ2≫λ3≈0; (c) Planes:
λ1≫λ2≈λ3≈0.

The quality of a mesh can be improved by maximizing the minimal angles. The angle-
based method developed by Zhou and coauthors [61] utilizes this idea by moving a ver-
tex (denoted by x) towards the bisectors of the angles formed by adjacent vertices on the
surrounding polygon. This method works quite well for 2D planar meshes and has been
extended in [55] for improving quadrilateral mesh quality as well. However, vertices on
a surface mesh can move with three degrees of freedom. If only the angle criterion is con-
sidered, the surface mesh may become bumpy and some molecular features may disap-
pear. In other words, while the mesh quality is being improved, the geometric features on
a surface mesh should be preserved as much as possible. To this end, we take advantage
of the local structure tensor by mapping the new position x̄ generated by the angle-based
method to each of the eigenvectors of the tensor calculated at the original position x and
scaling the mapped vectors with the corresponding eigenvalues. Let e1,e2,e3 denote the
eigenvectors and λ1,λ2,λ3 be the corresponding eigenvalues of the local structure tensor
valued at x. The modified vertex x̂ is calculated as follows:

x̂=x+
3

∑
k=1

1

1+λk

(

(x̄−x)·ek

)

ek. (5.3)

The use of eigenvalues as a weighted term in the above equation is essential to pre-
serve the features (with high curvatures) and to keep the improved surface mesh as close
as possible to the original mesh by encouraging the vertices to move along the eigen-
direction with small eigenvalues (or in other words, with low curvatures). Fig. 3(b) shows
the surface mesh after quality improvement, compared to the original mesh as shown in
Fig. 3(a). Before quality improvement, the minimal and maximal angles are 0.02◦ and
179.10◦ respectively. These angles become 14.11◦ and 135.65◦ after the improvement (two
iterations).

The surface meshes extracted by isocontouring techniques (e.g., the marching cube
method) often contain a large number of elements and are nearly uniform everywhere.
To reduce the computational cost, adaptive meshes are usually preferred where fine
meshes only occur in regions of interest. The idea of mesh coarsening in our pipeline
is straightforward − delete a node and its associated edges and then re-triangulate the
surrounding polygon. The local structure tensor is again used as a way to quantify
the features. Let x denote the node being considered for deletion and the neighboring
nodes be vi,i = 1,··· ,M, where M is the total number of the neighbors. The maximal
length of the incident edges at x is denoted by L(x) = maxM

i=1{d(x,vi)} where d(·,·) is
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the Euclidean distance. Apparently L(x) indicates the sparseness of the mesh at x. Let
λ1(x),λ2(x),λ3(x) be the eigenvalues of the local structure tensor calculated at x, satisfy-
ing λ1(x)≥λ2(x)≥λ3(x). Then the node x is deleted if and only if the following condition
holds:

L(x)α
(λ2(x)

λ1(x)

)β
<T0, (5.4)

where α and β are chosen to balance between the sparseness and the curvature of the
mesh. In our experiments, they both are set as 1.0 by default. The threshold T0 is user-
defined and also dependent on the values of α and β. When α and β are fixed, larger T0

will cause more nodes to be deleted. For the example in Fig. 3(c), the coarsened mesh
consists of 8,846 nodes and 17,688 triangles, about seven times smaller than the mesh as
shown in Fig. 3(b).

Mesh coarsening can greatly reduce the mesh size to a user-specified order. However,
the nodes on the ”holes” are often not co-planar; hence the re-triangulation of the ”holes”
often results in a bumpy surface mesh. The bumpiness can be reduced or removed by
smoothing the surface meshes. We employ the idea of anisotropic vector diffusion [40,56]
and apply it to the normal vectors of the surface mesh being considered. This normal-
based approach turns out to preserve sharp features and prevent volume shrinkages [13]
better than the traditional vertex-based approach. Fig. 3(c) shows the result after the
mesh coarsening and normal-based mesh smoothing.

5.3 Tetrahedral mesh generation

Once the surface triangulation is generated with good quality, Tetgen [44, 45] can pro-
duce tetrahedral meshes with user-controlled quality. Besides the triangulated surface,
our toolchain will have three other outputs for a given molecule: the interior tetrahedral
mesh, the exterior tetrahedral mesh and both meshes together. For the interior tetrahe-
dral mesh, we force all atoms to be on the mesh nodes. The exterior tetrahedral mesh is
generated between the surface mesh and a bounding sphere whose radius is set as about
40 times larger than the size of the molecule being considered. Fig. 4 demonstrates an
example of mesh generation on the mouse Acetylcholinesterase (mAChE) monomer.

6 Numerical examples

Two numerical examples with increasingly complexity of molecular surface are pre-
sented to show the stability of the decomposition scheme and the convergence of the
adaptive algorithm. In both examples, the Laplace equation for harmonic component is
solved with finite element method. The gradient of the harmonic component is then com-
puted and supplied for calculating the interface conditions of the regularized Poisson-
Boltzmann equation. It is also possible to directly compute the harmonic component and
its gradient from the solution representation for the Poisson equation of the harmonic
component via surface integrals on the molecular surface.
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(a) (b) (c) (d)

Figure 4: Illustration of biomolecular mesh generation. (a) The PDB structure of the mouse Acetylcholinesterase
(mAChE) monomer. (b) The surface mesh generated by our approach. The active site is highlighted in yellow.
(c) A closer look at the mesh near the active site. (d) The tetrahedral mesh between the molecular surface and
the bounding sphere (not shown).

Example 6.1. The first numerical example is devoted to the comparison of two decompo-
sition schemes discussed in Section 2. We use the model problem in Example 2.1 because
it admits an analytical solution for comparison. The computational domain is chosen to
be a sphere with radius r = 5Å. Fig. 5 plots the computed regular potential component
and the full potential from the first decomposition scheme as well as their relative errors
with respect to the analytical solutions, respectively. Chart B shows that the finite ele-
ment solution of this regular component has an relative error below 3% over the entire
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Figure 5: Solution of the Poisson-Boltzmann equation via the first decomposition scheme. (A): Computed
regular component ur of the electrostatic potential (blue) versus the analytical solution (red). (B): Relative error
in percentage of computed regular component ur of electrostatic potential. (C): Computed full electrostatic
potential (blue) versus the analytical solution (red). (D): Relative error in percentage of the computed full
electrostatic potential.
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Figure 6: Solution of the Poisson-Boltzmann equation via the second decomposition scheme. (A): Computed
regular component ur of the electrostatic potential (blue) versus the analytical solution (red). (B): Computed

regular component ur plus the harmonic component uh of the electrostatic potential (blue) versus the analytical
solution (red). (C): Relative error in percentage of the computed regular component of the electrostatic potential
on an initial mesh. (D): Relative error in percentage of the computed regular component of the electrostatic
potential; globally refined mesh. (E): Relative error in percentage of the computed regular component of the
electrostatic potential; mesh locally refined on molecular surface and the boundary.

domain. Because of the large magnitude of this regular potential, the absolute error is
considerably large, see Chart A and in particular Chart C, where the analytical singular
component is added to get the full potential. The amplification of the relative error as
analyzed in Section 2 is seen from a comparison of Chart B and Chart D. This confirms
that the first decomposition scheme is numerically unstable.

The numerical solutions via the second decomposition scheme demonstrate the desir-
able numerical stability, as shown in Fig. 6. The regular potential ur in Chart A is solved
with the same mesh for Fig. 5 and shows a very good agreement with the analytical solu-
tion. The relative error is well below 1.5% over the entire domain and is well below 0.1%
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in the interior of the molecule. Compared to Fig. 5, it is seen that the magnitude of the
regular component of the stable decomposition is much smaller. Because the harmonic
and regular components are both solved numerically, it is worthwhile to examine the
summation of these two numerical solutions and compare the total with the exact solu-
tion; this is plotted in Chat B. The discontinuity indicates that the decomposition is only
applied inside the biomolecule and that the harmonic component is much larger than the
regular component. This further suggests that the overall relative numerical error inside
the biomolecule will be larger than that in the solvent region. Interesting enough, most
intermolecular electrostatic interactions are occurred through the solvent and thus the
stable decomposition can still provide the electrostatic potential of high fidelity for de-
scribing these interactions. We then refine this mesh globally by bisecting all the edges;
the relative error is reduced 0.5% in most of the domain except in the vicinity of the di-
electric interface where the error does not show a noticeable decrease, see Chart D. This
is because the middle point of an edge on the interface maybe not located on the interface
and therefore violates the assumption on the discretization of the molecular surface, thus
the approximations to the interface and to the interface conditions are not improved with
this globally refinement. To satisfy this assumption we apply this global refinement first
and then move the middles points of all the interface edges back to the interface. This
new refinement approach successfully scales down the numerical error near the interface,
see Chart E.

Both two decomposition schemes give rise to an elliptic interface problem, whose
solution is of C0 only and can be appreciated from Chart A of Figs. 5 and 6.

Example 6.2. This second numerical experiment is conducted on an insulin protein [51]
(PDB ID: 1RWE). This protein has two polypeptide chains, one has 21 amino acid residues
and the other has 30 residues and has 1578 atoms in total. Because there is no analytical
solution available for accuracy assessment we solve the Poisson-Boltzmann equation on
four progressively refined meshes and use the solution on the finest mesh as the refer-
ence to measure the accuracy of other three solutions. In Table 1 we show the computed
electrostatic solvation energy (∆Gele) and the corresponding relative error in the solution
(e∆Gele

) for each solution. This energy is defined as

∆Gele =
1

2

∫

Ω
(ρsol−ρvac)ρ f dx,

Table 1: The electrostatic solvation energy ∆Gele and the corresponding relative error e∆Gele
for progressively

refined meshes, confirming convergence of the discretization technique based on the new regularization.

level of mesh # of tetrahedra # of nodes # of nodes on Γ ∆Gele e∆Gele

1 280928 45119 7681 -1476.9 0.0757
2 340410 54685 10257 -1403.6 0.0224
3 474011 76036 14982 -1380.3 0.0054
4 626221 100393 19816 -1372.9 -
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Figure 7: Left: The electrostatic potential mapped on the molecular surface of the insulin protein. Right: The
surface mesh of insulin protein in the finite element model.

where ρsol is the electrostatic potential of the solvated molecule while ρvac is the potential
for the molecule in vacuum, where the dielectric constant is assumed to the same as the
interior of the molecule. It turns out that ρvac is essentially the singular component inside
molecule and thus the solvation energy can be directly computed as

∆Gele =
1

2

∫

Ω
(ρh+ρr)ρ f dx.

Assume that the solution on the finest mesh is convergent, we computed the relation
error in the solution energy for three coarser meshes. The diminishing of this relative
error confirms the convergence of the numerical method for computing electrostatics of
realistic biomolecules.

7 Summary

In this article, we considered the design of an effective and reliable adaptive finite ele-
ment method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). In Section 2,
we began with a very brief derivation of the standard form of the Poisson-Boltzmann
equation. We examined the two-scale regularization technique described in [11] and
briefly reviewed the solution theory (a priori estimates and other basic results) devel-
oped in [11] based on this regularization. We then described a second distinct regular-
ization and explained why it is superior to the original approach as a framework for
developing numerical methods. We then quickly assembled the cast of basic mathemat-
ical results needed for the second regularization. In Section 3, we described in detail an
adaptive finite element method based on residual-type a posteriori estimates and summa-
rized some basic results we needed later for the development of a corresponding con-
vergence theory. We presented this new convergence analysis in Section 4, giving the
first AFEM contraction-type result for a class of semilinear problems that includes the
Poisson-Boltzmann equation.
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We gave a detailed discussion of our mesh generation toolchain in Section 5, including
algorithms designed specifically for Poisson-Boltzmann applications. These algorithms
produce a high-quality, high-resolution geometric model (surface and volume meshes)
satisfying the assumptions needed for our AFEM algorithm. These algorithms are feature-
preserving and adaptive, designed specifically for constructing meshes of biomolecular
structures, based on the intrinsic local structure tensor of the molecular surface. Numer-
ical experiments were given in Section 6; all of the AFEM and meshing algorithms de-
scribed in the article were implemented in the Finite Element Toolkit (FETK), developed
and maintained at UCSD. The stability advantages of the new regularization scheme
were demonstrated with FETK through comparisons with the original regularization ap-
proach for a model problem. Convergence and accuracy of the AFEM algorithm was also
illustrated numerically by approximating the solvation energy for a protein, in agreement
with theoretical results established earlier in the paper.

In this article, we have examined an alternative regularization which must be used in
place of the original regularization proposed in [11], due to an inherent instability built
into the original regularization. We showed that an analogous solution and approxima-
tion theory framework can be put into in place for the new regularization, providing
a firm foundation for the development of a large class of numerical methods for the
Poisson-Boltzmann equation, including methods based on finite difference, finite vol-
ume, spectral, wavelet and finite element methods. Each of these methods can be shown
to be convergent for the regularized problem, since it was shown in this article to allow
for a standard H1 weak formulation with standard solution and test spaces. Our primary
focus in this article then became the development of an AFEM scheme for the new regu-
larized problem, based on residual-type a posteriori error indicators, a fairly standard and
easy to implement marking strategy (Dörfler marking) and well-understood simplex bi-
section algorithms. We showed that the resulting AFEM scheme is reliable, by proving
a contraction result for the error, which established convergence of the AFEM algorithm
to the solution of the continuous problem. The AFEM contraction result, which is one of
the first results of this type for nonlinear elliptic problems, follows from the global upper
boundedness of the estimator, its reduction and from a quasi-orthogonality result that
relies on the a priori L∞ estimates we derived. This new AFEM convergence framework
is distinct from the analysis of nonlinear PBE with the previous regularization approach
from [11], is more general and can be applied to other semi-linear elliptic equations [27].
The contraction result creates the possibility of establishing optimality of the AFEM al-
gorithm in both computational and storage complexity.

We note that for computational chemists and physicists who rely on numerical solu-
tion of the Poisson-Boltzmann equation, discretizations based on the stable splitting as
described in the current paper are the only reliable numerical techniques under mesh
refinement for the Poisson-Boltzmann equation that we are aware of (both provably con-
vergent and stable to roundoff error). While one must take care with evaluation of the
singular function us, since this generally involves pairwise interactions between charges
and mesh points, the alternative to using these types of splitting discretizations is to lose
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reliability in the quality of the numerical solution. While we focused on (adaptive) finite
element methods in this article, we emphasize that the splitting framework can be eas-
ily incorporated into one’s favored (finite difference, finite volume, spectral, wavelet, or
finite element) numerical method that is currently being employed for the PBE.
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