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Abstract. The governing equations for heat transfer and fluid flow are often formu-
lated in a general form for the simplification of discretization and programming, which
has achieved great success in thermal science and engineering. Based on the analysis
of the popular general form of governing equations, we found that energy conserva-
tion cannot be guaranteed when specific heat capacity is not constant, which may lead
to unreliable results. A new concept of generalized density is put forward, based on
which a new general form of governing equations is proposed to guarantee energy
conservation. A number of calculation examples have been employed to verify valida-
tion and feasibility.

AMS subject classifications: 76M12, 80A20, 68U20

Key words: SIMPLE algorithm, general form of governing equations, conservation, generalized
variable, fluid-solid coupling.

1 Introduction

A general expression for governing equations is widely used in numerical simulations of
heat transfer and fluid flow, in which different variables, diffusion coefficients and source
terms are written in a form of a generalized variable, a generalized diffusion coefficient
and a generalized source term, respectively. There are obvious advantages by utilizing
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this general form, such as unified form of discretization and programming for all the gov-
erning equations, remarkable improvement on programming efficiency, enhancement of
the versatility of the program as well. The popular general governing equation is written
below:

∂(ρφ)

∂t
+div (ρUφ)=div

(

Γφ
∗gradφ

)

+Sφ
∗ (1.1)

which is a classical method widely used in many textbooks [1–8], where φ is a general
variable to represent variables such as u, v, w and T, and Γφ

∗ is a generalized diffusion
coefficient corresponding to the variable φ. The first and second term on the left side of
Eq. (1.1) are respectively the unsteady term and the convective term, while the first term
on the right side is a generalized diffusion term, and the second term Sφ

∗ is a generalized
source term representing the summation of those terms in the governing equations except
the unsteady term, the convective term and the diffusion term. For a two-dimensional
laminar fluid flow and heat transfer in a Cartesian coordinate system, the specific mean-
ings of Γφ

∗ and Sφ
∗ are listed in Table 1 [9, 10].

Table 1: Coefficient and source term of the popular general governing equations.

Equation ρ φ Γφ
∗ Sφ

∗

Continuity equation ρ 1 0 0

Momentum eqn. (x direction) ρ u µ ρ fx−
∂p
∂x

Momentum eqn. (y direction) ρ v µ ρ fy−
∂p
∂y

Energy equation ρ T λ/cp ST/cp

In Table 1, x and y represent abscissa and ordinate, while u and v are the velocity
components in the x- and y- coordinates; fx and fy are the body forces. p, ρ, µ, λ and
cp respectively indicate pressure, density, dynamic viscosity, thermal conductivity and
specific heat capacity. This general expression has been widely applied in numerical heat
transfer to solve a large amount of practical engineering issues. However, by the theo-
retical analysis in this paper, it is found that energy conservation cannot be guaranteed
when specific heat capacity is not a constant, and this non-conservation may lead to un-
reliable results, which indicates there are some limitations of the above general form of
governing equations (Eq. (1.1)). In order to ensure energy conservation, this paper puts
forward a new expression of general governing equations based on theoretical analysis.

2 Analyses of proposed form of governing equations

The conservation law of a physical variable in a finite volume would only be satisfied in
numerical discretization by employing conservative governing equations [4]. According
to the classical heat transfer text books [11, 12], the conservative energy equation can be
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expressed as follows:

∂(ρcpT)

∂t
+

∂(ρcpuT)

∂x
+

∂(ρcpvT)

∂y
=

∂

∂x

(

λ
∂T

∂x

)

+
∂

∂y

(

λ
∂T

∂y

)

+ST. (2.1)

The above equation can be transformed to the following expression:

∂(ρT)

∂t
+

∂(ρuT)

∂x
+

∂(ρvT)

∂y
=

∂

∂x

(

λ

cp

∂T

∂x

)

+
∂

∂y

(

λ

cp

∂T

∂y

)

+
ST

cp

−
1

c2
p

[

ρcpT
∂cp

∂t
+

(

ρcpuT−λ
∂T

∂x

)

∂cp

∂x
+

(

ρcpvT−λ
∂T

∂y

)

∂cp

∂y

]

. (2.2)

It is obvious that Eq. (2.2) is strictly equivalent to Eq. (2.1) so that Eq. (2.2) is also a con-
servative equation. When specific heat capacity cp is a constant, providing ∂cp/∂t = 0,
∂cp/∂x=0 and ∂cp/∂y=0, the above expression can be converted to the form below:

∂(ρT)

∂t
+

∂(ρuT)

∂x
+

∂(ρvT)

∂y
=

∂

∂x

(

λ

cp

∂T

∂x

)

+
∂

∂y

(

λ

cp

∂T

∂y

)

+
ST

cp
. (2.3)

In this case, Eq. (2.3) is the same as Eq. (2.2). However, when cp is not constant (i.e. ∂cp/∂t 6=
0, ∂cp/∂x 6=0 and ∂cp/∂y 6=0),

ρcpuT−λ
∂T

∂x
=0, ρcpvT−λ

∂T

∂y
=0 and ρcpT

∂cp

∂t
=0 (2.4)

should be satisfied simultaneously to guarantee the equivalence between Eq. (2.2) and
Eq. (2.3) if Eq. (2.3) is still considered the same as Eq. (2.2) strictly. Obviously, these three
expressions cannot always be met so that Eq. (2.3) is a non-conservative equation and not
strictly equivalent to Eq. (2.2). The lacking term

−
1

c2
p

[

ρcpT
∂cp

∂t
+

(

ρcpuT−λ
∂T

∂x

)

∂cp

∂x
+

(

ρcpvT−λ
∂T

∂y

)

∂cp

∂y

]

(2.5)

can cause the results by Eq. (2.3) are quite different from those by Eq. (2.2), especially for
problems with dramatic varying cp which are often encountered in engineering applica-
tions. For example, the specific heat capacity of heated crude oil during the transporta-
tion or shutdown process may vary dramatically with temperature. Another example is
a fluid-solid coupling problem, which the specific heat capacity jumps suddenly at the
interface of fluid and solid. For these problems, the application of Eq. (2.3) may lead to
inaccurate or distortive results which mean that it is no longer applicable to this kind of
engineering simulations. Therefore, Eq. (2.3) should be used cautiously when cp is not
constant. However, the non-conservative equation (Eq. (2.3)) has been widely used even
if the specific heat capacity is not constant. The survey of all the papers published in
2010 in International Journal of Heat and Mass Transfer reveals that totally 163 papers
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used conservative energy equations, among which 71 papers (about 44%) adopted the
format of Eq. (2.3). This is a big amount, and it is similar for other journals. Therefore,
it is absolutely necessary to study the differences between the two expressions of energy
equation, i.e. Eq. (2.1) (or Eq. (2.2)) and Eq. (2.3).

To deal with these problems, energy conservation at any cp, whether constant or not,
should be ensured. For such a purpose, we propose a new expression below:

∂(ρ∗φ)

∂t
+div (ρ∗Uφ)=div

(

Γφgradφ
)

+Sφ
∗, (2.6)

where ρ∗, Γφ and Sφ
∗ represent respectively generalized density, which is different from

the one used in Eq. (1.1), actual diffusion coefficient and generalized source term. The
three terms are shown in Table 2 for a two-dimensional system.

Table 2: Coefficient and source term of the newly proposed general governing equations.

Equation ρ∗ φ Γφ Sφ
∗

Continuity equation ρ 1 0 0

Momentum eqn. (x direction) ρ u µ ρ fx−
∂p
∂x

Momentum eqn. (y direction) ρ v µ ρ fy−
∂p
∂y

Energy equation ρcp T λ ST

Comparing Eq. (2.6) with Eq. (1.1) and Table 2 with Table 1, we can see that the new
general form has two advantages: energy conservation is ensured and Γφ is always the
actual diffusion coefficient. Based on the new form, two computational examples are
presented to analyze the difference between these two kinds of general forms of govern-
ing equations on the following aspects: 1) mixed convection, 2) fluid-solid coupling heat
transfer.

3 Computational results and discussion

Based on SIMPLE algorithm with staggered grid, QUICK scheme and central difference
scheme are employed in discretization of convective term and diffusion term, respec-
tively. Non-uniform grid of 80×80 is used for mixed convection while uniform grid of
80×80 is adopted for fluid-solid coupling problem. Before the comparison study, we
have validated our numerical code by test calculations for lid-driven and square cavity
natural convection problems and good agreements have been obtained between our solu-
tions and benchmark solutions [13–15]. We also validated our numerical code very well
through other works using mixed convection problems [16–18]. Thus, our numerical pro-
cedure is reliable. In all the calculations below, the numerical results are independent of
meshes. For quantitative comparison of the two general expressions of governing equa-
tions, a relative deviation E of the Nusselt number is defined as E= |Nu−Nu∗|/Nu∗×
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100%, where Nu and Nu∗ represent Nusselt number obtained by Eq. (1.1) and Eq. (2.6),
respectively. In order to observe the differences between the two general governing equa-
tions when cp is not a constant, the flow media with temperature-varying behavior and
space-jumping behavior of cp are chosen for the two problems in Sections 3.1 and 3.2
respectively.

3.1 Numerical results of mixed convection

The numerical example of a mixed convection in a closed square cavity with the side
length L = 0.025m is shown in Fig. 1. The bottom and top temperatures are 50◦C and
−10◦C, respectively. Both the left and the right walls are adiabatic. Non-slip boundary
condition is employed for all walls. The lid velocity is 0.2m/s. Physical properties of the
fluid are: ρ= 1000kg/m3, µ= 5.0×10−3Pa·s, λ= 0.5W/(m·◦C), β= 1.0×10−4K−1 (corre-
late with Grashof number, see details in Nomenclature), cp=0.0011T4−0.09T3+0.09T2+
111T+1993(J/kg·◦C). The variation of cp with temperature is shown in Fig. 2. According
to these properties, Reynolds number Re and Grashof number Gr can be calculated as
1000 and 36750 respectively. The results obtained from Eq. (2.6) are compared with those
from Eq. (1.1) to explain the necessity of Eq. (2.6), and then the computational speeds of
these two methods are compared to test the grid sensitivity.

Figure 1: Computational domain of mixed convection. Figure 2: Specific heat capacity vs. temperature.

The temperature field and corresponding specific heat capacity distribution obtained
by employing Eq. (2.6) are shown in Fig. 3. It is apparent to see that, from Fig. 3(a), cp has
large variation in the temperature range −10◦C∼50◦C (from about 1300 to about 3750 in
Fig. 2). Larger cp mainly appears in the lower corners while in most of the region cp has
smaller values. When we use Eq. (1.1) in the calculation, cp needs to be assumed as a
constant, which deviates the real situation greatly, making Eq. (1.1) can hardly capture
the accurate features of the real field. To quantitatively show this, we did calculations by
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Figure 3: Field results obtained by Eq. (2.6).

using Eq. (1.1) with five commonly used average formulations of cp, i.e.,

1. arithmetic mean of the values at the extreme temperatures, c1=(cpTh
+cpTc

)/2;

2. evaluated the expression of cp by arithmetic mean temperature of the extreme ones,
c2= cp((Th+Tc)/2);

3. weighted average, c3=
∫ Th

Tc
cpdT/

∫ Th

Tc
dT;

4. evaluated by the mean fluid temperature, c4= cp(
∫ L

0

∫ L
0 Tdxdy/

∫ L
0

∫ L
0 dxdy);

5. area weighted average, c5=
∫ L

0

∫ L
0 cpdxdy/

∫ L
0

∫ L
0 dxdy.

Fig. 4(a) compares Nusselt numbers obtained by Eq. (1.1) with that by Eq. (2.6) using
the above five average methods. It can be seen that Nusselt numbers along the horizon-
tal wall predicted by the five average cp deviate from the correct one (Nu obtained by
Eq. (2.6)) apparently. Analyzing the relative deviations caused by these five methods in
details, as shown in Fig. 4(b), we can clearly find that the overall relative deviations be-
tween Eq. (1.1) and Eq. (2.6) are very large with the maximum deviation on the right side
(24.5%) at X=0.95 for c5 and the maximum deviation on the left side (16.6%) at X=0.13
for c2 (X= x/L). The maximum deviations for all the five average formulations appear
in the regions X = 0∼ 0.2 and X= 0.8∼ 1.0. This is because the real cp is much larger in
these regions (Fig. 3(b)) and average cp has larger difference from the real values. In a
word, the application of Eq. (1.1) cannot obtain accurate enough results, no matter which
average cp is assumed. Moreover, these differences will not be changed with increasing
grid numbers since the results are all grid independent. Therefore, the differences be-
tween Eq. (2.6) and Eq. (1.1) are due to the different expressions of themselves, but not
grid numbers as well as the functional forms of cp.
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(a) Nusselt number (b) Relative deviation

Figure 4: Comparison of Nusselt number and relative deviation of mixed convection at grid number 80×80.

Another important issue is to compare the computational speed of the new method
with that of the classical method using different grid numbers. Additional 4 sets of grids
are employed, i.e. 20×20, 40×40, 60×60 and 100×100. The computational time of the new
method and the classical method with the five average methods are compared in Fig. 5.
The computational speed differences among different mean methods of cp in Eq. (1.1) are
due to different Prandtl numbers (Pr=υ/a=µcp/λ) resulting from the different cp values
since other parameters are constant (Table 3). It is well known that the larger Prandtl
number leads to larger computational time in the simulation of heat transfer problems.
From Fig. 5, the cp values have the sequence that c2 > c3 > c1 > c5 > c4. Accordingly, the
computational time also has the sequence that t2>t3>t1>t5>t4. It is clear that the larger
cp is, the slower the computation will be. The reason can be found in Fig. 2 and Fig. 3 that
cp is small in most of the region so that the actual mean cp is closer to small value. Thus,
the average method which can obtain smaller mean cp is closer to the real situation and

Figure 5: Computational time for different grid numbers.
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Table 3: Prandtl number and specific heat capacity for different average methods.

c1 c2 c3 c4 c5

cp (J/(kg·◦C)) 2354 3723 3143 1086 1219

µ (Pa·s) 0.005 0.005 0.005 0.005 0.005
λ f (W/(m·◦C)) 0.5 0.5 0.5 0.5 0.5

Pr 23.54 37.23 31.43 10.86 12.19

has smaller computational time. Computational time of Eq. (2.6) is smaller and smaller
than those of Eq. (1.1) with increasing grid number. Take the grid number 100×100 as an
example, the highest and lowest computational time using Eq. (1.1) are 1465s and 709s
respectively while the computational time using Eq. (2.6) is only 593s. That is to say the
computational time of the classical method is as much as 1.2∼2.5 times of that of newly
proposed one. It should be noted here that the small computational time of Eq. (2.6) in
this case is due to the small Pr (i.e. small cp) in most of the region. For the case that Pr
is large in most of the region, computation using Eq. (2.6) may be slower than that using
Eq. (1.1).

In a word, Eq. (1.1) cannot reflect the real features of heat transfer in this case due to
its non-conservative quality. Therefore, it should not be applied to this kind of problems.
Instead, Eq. (2.6) should be used since it can maintain energy conservation.

3.2 Numerical results of fluid-solid coupling heat transfer

The above example illustrates that computational results of the popular general govern-
ing equations can hardly satisfy the needs of actual projects due to non-conservative en-
ergy equation, which is caused by considerable change of specific heat capacity cp with
temperature. On the other hand, as to the fluid-solid coupling heat transfer solved by
full-field computation methods, even if the variation of specific heat capacity cp with
temperature for each part of fluid and solid could be neglected, jump (sudden change) of
cp in the computational domain caused by different physical properties of fluid and solid
may lead to distorted or even erroneous results when using the popular general govern-
ing equations. When Eq. (1.1) is used in the computation, at the fluid-solid interface the
expression

λ f

cp f

(

∂T

∂y

)

f

=
λs

cps

(

∂T

∂y

)

s

(3.1)

is to be satisfied. The unequal specific heat capacity of fluid and solid, cp f
6= cps gives rise

to disparate heat flux

λ f

(

∂T

∂y

)

f

6=λs

(

∂T

∂y

)

s

. (3.2)

This is, however, inconsistent with actual physical process, leading to erroneous result.
Obviously, the greater difference of cp between fluid and solid, the more distorted calcu-
lation result. To ensure the continuity of the flux rate at the interface, Han and Chen [19]
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put forward a solution: the thermal conductivity of fluid adopts individual value, while
the heat capacity of the solid takes the value of the fluid. This method has been used
in [4, 20]. However,

λ f

(

∂T

∂y

)

f

=λs

(

∂T

∂y

)

s

(3.3)

is the default condition of the newly proposed general governing equation on the fluid-
solid coupling boundary, and is consistent with actual physical process. Apparently, the
new method is much easier to be implemented than that proposed by Han and Chen
dealing with complicated fluid-solid coupling issues.

Figure 6: Region distribution diagram for a fluid-solid coupling problem.

Take the fluid-solid coupling case shown in Fig. 6 as an example. Water and quartz
glass are chosen as the computation media, whose physical properties are shown in Table
4. The size of computational domain is L×L= 0.01m×0.01m and two heights of solid
region are considered: H = 0.002m (case 1), H = 0.004m (case 2). All the walls of the
computational domain are stationary. The left and the right walls are maintained 70◦C
and 10◦C respectively, and the other two walls are thermal insulated.

Table 4: Physical properties of water and quartz glass.

Heat Heat Dynamic Thermal expansion

Density ρ capacity cp conductivity λ viscosity µ coefficient β

(kg/m3) (J/K) (W/(m·K)) (Pa·s) (1/K)

Water 998.23 4181.8 0.5984 1.002×10−3 6.9×10−5

Quartz glass 2180 750 1.38 +∞ —

Solving the example described above by the popular general governing Eq. (1.1) and
the newly proposed general governing Eq. (2.6), we could generate isotherms as in Fig. 7,
which shows remarkable discrepancy. Fig. 8(a) shows the Nusselt number curve at the
left side of computational domain while Fig. 8(b) shows the relative deviation E, from
which it can be observed that the maximum and average deviations of Nusselt number
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(a) case 1, H=0.002m (b) case 2, H=0.004m

Figure 7: Isotherms of fluid-solid coupling.
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Figure 8: Comparison of Nusselt number and relative deviation of fluid-solid coupling heat transfer.

are 56.59% and 20.23% respectively for case 1, while those are 55.33% and 23.01% for case
2. The large E is due to a large jump (sudden change) of specific heat capacity at the
interface, from in the water region to in the solid region. Apparently, the newly proposed
general governing Eq. (2.6) should be applied when the jump of specific heat capacity at
the fluid-liquid interface is encountered.

The condition satisfied at the fluid-solid coupling boundary, given by Eq. (1.1), is

0.5984

4181.8

(

∂T

∂y

)

f

=
1.38

750

(

∂T

∂y

)

s

or
(∂T/∂y) f

(∂T/∂y)s
=12.86, (3.4)

having a serious deviation from the following equality condition of heat flux by Eq. (2.6):

0.5984

(

∂T

∂y

)

f

=1.38

(

∂T

∂y

)

s

or
(∂T/∂y) f

(∂T/∂y)s
=2.3. (3.5)



1492 W. Li et al. / Commun. Comput. Phys., 12 (2012), pp. 1482-1494

This is the fundamental reason for the variation.

All the cases mentioned above are laminar convective heat transfer, however, con-
servative governing equations could be also recommended for turbulent convective heat
transfer and mass diffusion. Table 5 shows the recommended expressions for ρ∗, φ, Γφ

∗

and Sφ
∗, in which, cs, ρcs, Ds, µT and PrT respectively represent volume concentration of

component s, mass concentration, diffusion coefficient of component s, turbulent viscos-
ity and turbulent Prandtl number.

Table 5: Coefficients and source term of governing equations for turbulent convective heat transfer and com-
ponent diffusion.

Equation ρ∗ φ Γφ Sφ
∗

Traditional Component mass ρ cs ρDs Ss

general conservation equation

governing Turbulent energy ρ T
µ
Pr +

µT
PrT

ST
cp

equation equation

Proposed Component mass 1 ρcs Ds Ss

general conservation equation

governing Turbulent energy ρcp T cp(
µ
Pr +

µT
PrT

) ST

equations equation

4 Conclusions

This paper analyzes the general governing equations commonly used in computational
heat transfer and fluid flow and points out the limitations. Energy conservation of the
popular general governing equations cannot be guaranteed when specific heat capacity
varies with temperature or changes in space. The commonly used equations may result
in distorted or even erroneous results no matter which average method for heat capacity
is used. Based on theoretical analysis, the new general governing equations have been
proposed, using generalized density and generalized source term to distinguish differ-
ent physical equations. Conservation of all these expressions has been proved well by
computational examples.
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Nomenclature

a thermal diffusivity (m2/s), a= λ
ρcp

cp specific heat capacity under constant pressure (J/(kg·◦C))

c1 arithmetic mean of cp at the extreme temperatures (J/(kg·◦C)), c1=(cpTh
+cpTc

)/2

c2 cp evaluated by mean temperature of the extreme ones (J/(kg·◦C)), c2= cp ((Th+Tc)/2)

c3 weighted average of cp (J/(kg·◦C)), c3=
∫ Th

Tc
cpdT/

∫ Th
Tc

dT

c4 cp evaluated by the weighted mean temperature (J/(kg·◦C)),

c4= cp(
∫ L

0

∫ L
0 Tdxdy/

∫ L
0

∫ L
0 dxdy)

c5 area weighted average of cp (J/(kg·◦C)), c5=
∫ L

0

∫ L
0 cpdxdy/

∫ L
0

∫ L
0 dxdy

cs volume concentration of component s; Ds diffusion coefficient

fx body force in the x- coordinate (m/s2); fy body force in the y- coordinate (m/s2)

Gr Grashof number, Gr=ρ2βg(Th−Tc)L3/µ2

L side length of the square cavity (m)

Nux Nusselt number on the vertical walls, Nux=∂θ/∂X

Nuy Nusselt number on the horizontal walls, Nuy=∂θ/∂Y

Nu average Nusselt number

Pr Prandtl number, Pr=υ/a; PrT turbulent Prandtl number

p pressure (Pa); Re Reynolds number, Re=ρuL/µ

Sφ
∗ generalized source term; ST heat source (W/m3)

T temperature of computation media (◦C)

Th temperature of the hot wall (◦C); Tc temperature of the cold wall (◦C)

t time (s); ti computational time by using Eq. (1.1) with ci (s), 1≤ i≤5

u velocity component in the x-coordinate (m/s)

v velocity component in the y-coordinate (m/s)

x horizontal direction (m); y vertical direction (m)

X non-dimensional abscissa, X=x/L; Y non-dimensional ordinate, Y=y/L

Greek symbols

β thermal expansion coefficient (1/K) Γφ
∗ generalized diffusion coefficient

θ non-dimensional temperature, θ=T/(Th−Tc)

λ thermal conductivity (W/(m·◦C)) µ dynamic viscosity (Pa·s)

µT turbulent viscosity (Pa·s) υ kinetic viscosity (m2/s)

ρ density (kg/m3) ρ∗ generalized density

φ general variable to represent u, v, w, T etc.



1494 W. Li et al. / Commun. Comput. Phys., 12 (2012), pp. 1482-1494

References

[1] S.V. Pantanker, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corpora-
tion,1980.

[2] H.K. Versteeg, W. Malalsekera, An Introduction to Computational Fluid Dynamics, The Fi-
nite Volume Method. Essex: Longman Scientific and Technical, 1995.

[3] P. Wesseling, Principles of Computational Fluid Dynamics, Science Press, Beijing, 2001
[4] W.Q. Tao, Numerical Heat Transfer, 2nd ed., Xi’an Jiaotong University Press, Xi’anA2002.
[5] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002.
[6] A.W. Date, Introduction to Computational Fluid Dynamics, Cambridge: Cambridge Univer-

sity Press, 2005
[7] R.W. Lewis, P. Nithiarasu, K.N. Seetharamu, Fundamentals of the Finite Element Method

for Heat and Fluid Flow, John Wiley & Sons,Ltd, 2008
[8] W.J. Minkowycz, E.M. Sparrow, J.Y.J. Murthy, Handbook of Numerical Heat Transfer, Sec-

ond Edition, John Wiley & Sons, Ltd, 2009
[9] T.Y. Long, Y.X. Su, W.Y. Xiang, C. He, Computational Fluid Dynamics, Chongqing,

Chongqing University Press, 2007.
[10] S.V. Pantanker, Recent developments in computational heat transfer, J. Heat Transfer, Vol.

110, No. 4, pp. 1037-1046, 1988.
[11] R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley & Sons, Inc, 2002.
[12] J.P. Holman, Heat Transfer, McGraw-Hill, New York, 2002.
[13] G. Barakos, E. Mitsoulis, D. Assimacopoulos, Natural convection flow in a square cavity, Int.

J. Numer. Methods Fluids, Vol. 18, pp. 695-719, 1994.
[14] O. Botella, R. Peyret. Benchmark spectral results on the lid-driven cavity flow, Comput.

Fluids, Vol. 27, No. 4, pp. 421-433, 1998.
[15] C.H. Bruneau, M. Saad, The 2D lid-driven cavity problem revisited, Comput. Fluids, Vol. 35,

pp. 326-348, 2006.
[16] O. Aydin, Aiding and opposing mechanisms of mixed convection in a shear and buoyancy-

driven cavity, Int. Commun. Heat Mass Transfer, Vol. 26, pp. 1019-1028, 1999.
[17] H.F. Oztop, I. Dagtekin, Mixed convection in two-sided lid-driven differentially heated

square cavity, Int. J. Heat Mass Transfer, Vol. 47, pp. 1761-1769, 2004.
[18] N. Alleborn, H. Raszillier, F. Durst, Lid-driven cavity with heat and mass transport, Int. J.

Heat Mass Transfer, Vol. 42, pp. 833-853, 1999.
[19] P. Han, X. Chen, Discussion on integral solution method for solid-liquid interaction prob-

lems, Proceedings of 7th National Symposium on Computational Heat Transfer, Beijing, pp.
32-37,1997.

[20] Z.G. Qu, W.Q. Tao, Y.L. He, Three dimensional numerical simulation on laminar heat trans-
fer and fluid flow characteristics of strip fin surfaces with X-arrangement of strips, J. Heat
Transfer, Vol. 126, No. 4, pp. 697- 707, 2004.


