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Abstract. In this paper, we present the use of the orthogonal spline collocation
method for the semi-discretization scheme of the one-dimensional coupled nonlin-
ear Schrödinger equations. This method uses the Hermite basis functions, by which
physical quantities are approximated with their values and derivatives associated with
Gaussian points. The convergence rate with order O(h4+τ2) and the stability of the
scheme are proved. Conservation properties are shown in both theory and practice.
Extensive numerical experiments are presented to validate the numerical study under
consideration.
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1 Introduction

The coupled nonlinear Schrödinger (CNLS) equations were first derived 30 years ago by
Benney and Newell [6] for two interacting nonlinear packets in dispersive and conser-
vative systems. Since then, the CNLS equations have been appeared in a great variety
of physical situations. Its applications can be found in many areas of physics, includ-
ing nonlinear optics and plasma physics, see, e.g., [1, 16, 22, 24, 28]. These equations also
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model a beam propagation inside crystals or photorefractives as well as water wave in-
teractions. In this paper, we consider the following CNLS equations:

i
∂ϕ

∂t
+

∂2 ϕ

∂x2
+(|ϕ|2+β|ψ|2)ϕ=0, (1.1a)

i
∂ψ

∂t
+

∂2ψ

∂x2
+(|ψ|2+β|ϕ|2)ψ=0, (1.1b)

where ϕ and ψ represent complex amplitudes of two polarization components, β is a
real-valued cross-phase modulation coefficient, i=

√
−1, x is the space variable and t is

the time variable. If β=0, Eq. (1.1) becomes two copies of a single nonlinear Schrödinger
equation which is integrable; when β = 1, Eq. (1.1) is known as the Manakov system
which is also integrable. In all the other cases, the situations are much more complicated
from different viewpoints. These equations have been studied intensively in the past 10
years [8, 14, 18]. Much work has been done on collisions in a large array of physical sys-
tems. Various collision scenarios, such as transmission, reflection, annihilation, trapping,
creation of solitary waves and even mutual spiraling, have been reported.

There are a great deal of numerical methods used to solve the CNLS equations. An-
toine et al. [2] give a review to discuss different techniques to solve numerically the time-
dependent Schrödinger equation on unbounded domains. Klein et al. [15] propose a
hierarchy of novel absorbing boundary conditions for the one-dimensional stationary
Schrödinger equation with general potential. The time-splitting spectral method for solv-
ing a general model of wave optical interactions is obtained by Bao et al. [3–5,30]. Xu and
Shu [25–27] develop local discontinuous Galerkin methods for solving high-order time-
dependent partial differential equations including CNLS equations. Ismail and Taha [14]
introduce a finite difference method for the numerical simulation of the CNLS equations.
The multi-symplectic splitting method is proposed to solve the CNLS equations in [9] and
the constrained interpolation profile-basis set method is considered in [21]. Wang [23]
presents a numerical solution of the single and coupled nonlinear Schrödinger equations
using a split-step finite difference method. However, in these numerical simulations and
computations, many constraints are required in order to keep the accuracy and stability.
Moreover, many properties of the system, such as energy conservation and momentum
conservation, are neglected.

The purpose of this paper is to investigate the use of the orthogonal spline collocation
(OSC) method with the piecewise Hermite cubic polynomials for the spatial discretiza-
tion of Eq. (1.1). This method has evolved as a valuable technique for the solution of
many types of partial differential equations; see [11] for a comprehensive survey. The
popularity of such a method is in part to its conceptual simplicity and ease of implemen-
tation. Another attractive feature of the OSC method is their superconvergence. One
obvious advantage of the OSC method over the finite element method is that the calcu-
lation of the coefficient matrices is very efficient since no integral calculation is required.
Another advantage of this method is that it systematically incorporates boundary con-
ditions and interface conditions. In comparison with finite difference methods, spline
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collocation method provides approximations to the solution and its derivative with re-
spect to x at all points in the domain of problems. In this paper, we present the use of
the OSC method for the semi-discretization scheme of the one-dimensional coupled non-
linear Schrödinger equations. This method uses the Hermite basis functions, by which
physical quantities are approximated with their values and derivatives associated with
Gaussian points. The accuracy and stability of solutions with order O(h4+τ2) are veri-
fied by ensuring that conserved quantities remain almost constant, where h and τ denote
the spatial and temporal mesh sizes respectively. It has been shown that the scheme has
remarkable mass, momentum and energy conserved properties.

The paper is organized as follows. In Section 2, we briefly review the OSC method and
give the discretization scheme of the CNLS equations. In Section 3, we present conserved
quantities of the scheme. In Section 4, we demonstrate the accuracy and stability of the
scheme. Numerical tests with various initial conditions of the CNLS equations like single
soliton, interaction of two solitons, interaction of arbitrary initial conditions and periodic
boundary conditions are reported in Section 5. Finally, in Section 6 we end our paper
with some remarks.

2 The OSC method for CNLS equations

2.1 Preliminaries

The OSC method with piecewise polynomials of arbitrary degree for solving two-point
boundary value problems is introduced and analyzed in [7]. The analysis of [7, 10] in-
cludes proofs of the superconvergence of the OSC approximations on nonuniform parti-
tions. To describe the OSC method, we introduce some notations.

For a given complex-valued function ϕ, we denote the complex conjugate of ϕ by ϕ̄.
Given any space S of functions, let R(S) denote the set of all real-valued functions in S.
Throughout the paper, we use C to denote a generic positive constant and make repeated
use of the inequality

de≤ εd2+
1

4ε
e2, ε≥0, d,e∈R,

without explicit mention each time.

With a positive integer N, given a partition of Ω=[xL,xR]

∆ : xL = x0< x1< ···< xN = xR.

Let hj = xj−xj−1, j=1,2,··· ,N and h=max1≤j≤N hj. A family F of partitions is said to be
quasi-uniform if there exists a finite positive number σ such that

max
1≤j≤N

h

hj
≤σ
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for every partition ∆ in F [17]. We assume that the partition ∆ is a member of a quasi-

uniform family. Let {tn}J
n=0 be a partition of [0,T], where tn = nτ and τ = T/J. In the

paper, h and τ denote the spatial and temporal mesh sizes respectively.
Let M0 be the space of piecewise Hermite cubics on Ω defined by

M0(∆)=
{

v|v∈C1(Ω) : v|[xj−1,xj]∈P3 and v(xL)=v(xR)=0
}

,

where P3 denotes the set of all polynomials of degree less than or equal to 3.
Let {λk}2

k=1 denote the roots of the Legendre Polynomial of degree 2, where λ1 ≡
(1−1/

√
3)/2 and λ2≡(1+1/

√
3)/2. These are the nodes of the 2-point Gaussian quadra-

ture rule on the interval Ω with corresponding weights ωk = 1 for k= 1,2. To apply the

collocation method, we introduce collocation points G={ξ j,k}N,2
j,k=1 taken as

ξ j,k = xj−1+hjλk, j=1,2,··· ,N, k=1,2.

For ϕ,ψ∈C1(Ω̄), we define a discrete inner product and its induced norm by

〈ϕ,ψ〉G=
N

∑
j=1

hj

2

∑
k=1

ωk ϕ(ξ j,k)ψ̄(ξ j,k), ‖ϕ‖G= 〈ϕ,ϕ〉
1
2
G .

We always use the following difference quotient notations:

(ϕn
j )t=

ϕn+1
j −ϕn

j

τ
, ϕ

n+ 1
2

j =
1

2
(ϕn+1

j +ϕn
j ), (ϕn

j )xx=
ϕn

j+1−2ϕn
j +ϕn

j−1

h2
.

Let r be a nonnegative integer and denote by

‖ϕ‖Hr(Ω)=
( r

∑
j=0

∥

∥

∥

∂j ϕ

∂xj

∥

∥

∥

2

L2(Ω)

)
1
2
,

the norm on the usual Sobolev space Hr(Ω). We denote by Ls(0,T;Hr+3(Ω)) the Banach
space of all Ls integrable functions from (0,T) into Hr+3(Ω) with norm

‖ϕ‖Ls(0,T;Hr+3(Ω))=
(

∫ T

0
‖ϕ‖s

Hr+3(Ω)dt
)

1
s

for s∈ [1,+∞) and the standard modification for s=+∞. In this paper, we take r=3.
Since ∆ belongs to a quasi-uniform family of partitions, it can be shown using results

of [10] that there exist positive constants C1 and C2 such that for any ϕ∈M0(∆),

C1‖ϕ‖G ≤‖ϕ‖L2(Ω)≤C2‖ϕ‖G . (2.1)

We now use the Hermite basis functions where it is easy to define ϕn
h and ψn

h at the col-
location points. Recently, restricting problems to a bounded domain, the Fourier spectral
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methods are applicable, see Zhang et al. [30]. In the present situation, for any time inte-
gration method, the number of basis functions required for the Hermite spectral method
is always smaller than the number of basis functions required for the Fourier spectral
method, see [20] for details. Let {φn

j }2N
j=1 be basis functions of M0(∆), so one may write

ϕn
h(x)=

2N

∑
j=1

ϕ̂n
j φn

j (x), ψn
h (x)=

2N

∑
j=1

ψ̂n
j φn

j (x), n=0,1,2,··· , J−1, (2.2)

where ϕ̂n
j , ψ̂n

j (j= 1,2,··· ,2N; n= 0,1,2,··· , J−1) are unknown coefficients which should

be worked out.

We introduce the following lemmas.

Lemma 2.1. (see [10, 17]) For ϕ,ψ∈R(M0(∆)), we have

〈ϕx,ψ〉G =−〈ψx,ϕ〉G , −〈ϕxx,ψ〉G=−〈ϕ,ψxx〉G , (2.3)

−〈ϕxx,ϕ〉G≥‖ϕx‖L2(Ω). (2.4)

Lemma 2.2. (Discrete Gronwall inequality, see [12]) Let ω(k) and ρ(k) be nonnegative
grid functions. If C>0, ρ(k) is nondecreasing and

ω(k)≤ρ(k)+Cτ
k−1

∑
l=0

ω(l),

then for any 0≤ k≤N, we have

ω(k)≤ρ(k)eCkτ . (2.5)

Lemma 2.3. (see [10]) Let ϕ∈Hr+3(Ω) and suppose that Φ : [0,T]→R(M0(∆)) satisfies

(ϕxx−Φxx)(ξ j,k)−(ϕ−Φ)(ξ j,k)=0, j=1,2,··· ,N, k=1,2. (2.6)

Then we have

‖ϕ−Φ‖L2(Ω)≤Chr+1‖ϕ‖Hr+3(Ω). (2.7)

2.2 Discretization of CNLS equations

We assume that the solutions of Eq. (1.1) have compact support on a bounded interval
[xL,xR] during the time interval [0,T], i.e.,

i
∂ϕ

∂t
+

∂2ϕ

∂x2
+(|ϕ|2+β|ψ|2)ϕ=0, xL < x< xR, (2.8a)

i
∂ψ

∂t
+

∂2ψ

∂x2
+(|ψ|2+β|ϕ|2)ψ=0, xL < x< xR, (2.8b)
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where ϕ and ψ are wave amplitudes in two polarizations and β is the cross-phase modu-
lation coefficient, with initial conditions:

ϕ(x,0)= f (x), ψ(x,0)= g(x), (2.9)

and boundary conditions:

ϕ(xL,t)= ϕ(xR,t)=0, ψ(xL,t)=ψ(xR,t)=0, t>0. (2.10)

Two other different boundary conditions: the homogeneous Neumann boundary condi-
tions:

∂ϕ(x,t)

∂x
=

∂ψ(x,t)

∂x
=0, x= xL, x= xR, (2.11)

and the periodic boundary conditions:

ϕ(xL,t)= ϕ(xR,t), ψ(xL,t)=ψ(xR,t), t>0. (2.12)

In this paper, we mainly consider the boundary conditions Eq. (2.10), the boundary con-
ditions Eqs. (2.11) and (2.12) can be used in the similar way. In Section 5, we give an ex-
ample to present the efficiency and stability of our method to solve the periodic boundary
conditions.

We propose the following continuous-time OSC scheme for Eqs. (2.8):

{

i(ϕn
h)t+(ϕ

n+ 1
2

h )xx+
(

|ϕh|2+β|ψh|2
)n+ 1

2 ϕ
n+ 1

2

h

}

(ξ j,k)=0,
{

i(ψn
h )t+(ψ

n+ 1
2

h )xx+
(

|ψh|2+β|ϕh|2
)n+ 1

2 ψ
n+ 1

2

h

}

(ξ j,k)=0,

for j=1,2,··· ,N; n=0,1,2,··· , J−1 and k=1,2. The corresponding discrete-time scheme is
as follows:

{

i
ϕn+1

h −ϕn
h

τ
+
(ϕn+1

h )xx+(ϕn
h)xx

2

+
|ϕn+1

h |2+|ϕn
h |2+β

(

|ψn+1
h |2+|ψn

h |2
)

2

ϕn+1
h +ϕn

h

2

}

(ξ j,k)=0, (2.13a)

{

i
ψn+1

h −ψn
h

τ
+
(ψn+1

h )xx+(ψn
h )xx

2

+
|ψn+1

h |2+|ψn
h |2+β

(

|ϕn+1
h |2+|ϕn

h |2
)

2

ψn+1
h +ψn

h

2

}

(ξ j,k)=0, (2.13b)

for j=1,2,··· ,N; n=0,1,2,··· , J−1 and k=1,2.
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3 Conservation laws

In this section, we study the conservation properties of the CNLS equations.

The solutions of Eq. (1.1) satisfy the following three conservation laws.

• Mass conservation:

I1=
∫ +∞

−∞
|ϕ|2dx=const, I2=

∫ +∞

−∞
|ψ|2dx=const;

• Momentum conservation:

I3=
∫ +∞

−∞
i
(

ϕ
∂ϕ̄

∂x
− ϕ̄

∂ϕ

∂x
+ψ

∂ψ̄

∂x
−ψ̄

∂ψ

∂x

)

dx=const;

• Energy conservation:

E=
∫ +∞

−∞

(
∣

∣

∣

∂ϕ

∂x

∣

∣

∣

2
+
∣

∣

∣

∂ψ

∂x

∣

∣

∣

2
− 1

2
|ϕ|4− 1

2
|ψ|4−β|ϕ|2|ψ|2

)

dx=const.

The corresponding discrete conservation laws are as follows:

(i) Mass conservation:

In+1
1 =‖ϕn+1

h ‖2
G = In

1 = ···= I0
1 =const,

In+1
2 =‖ψn+1

h ‖2
G = In

2 = ···= I0
2 =const;

(ii) Momentum conservation:

In+1
3 =i

〈

ϕn+1
h ,(ϕ̄n+1

h )x

〉

G−i
〈

ϕ̄n+1
h ,(ϕn+1

h )x

〉

G+i
〈

ψn+1
h ,(ψ̄n+1

h )x

〉

G
−i

〈

ψ̄n+1
h ,(ψn+1

h )x

〉

G= In
3 = ···= I0

3 =const;

(iii) Energy conservation:

En+1=
〈

(ϕn+1
h,1 )xx,ϕn+1

h,1

〉

G+
〈

(ϕn+1
h,2 )xx,ϕn+1

h,2

〉

G+
〈

(ψn+1
h,1 )xx,ψn+1

h,1

〉

G

+
〈

(ψn+1
h,2 )xx,ψn+1

h,2

〉

G+
1

2

N

∑
j=1

hj

2

∑
k=1

ωk

(

|ϕn+1
h |4+|ψn+1

h |4
)(

ξ j,k

)

+
N

∑
j=1

hj

2

∑
k=1

ωkβ|ϕn+1
h |2|ψn+1

h |2
(

ξ j,k

)

=En = ···=E0=const.

Here for definition of ϕn+1
h,1 , ϕn+1

h,2 , ψn+1
h,1 and ψn+1

h,2 , we refer to Eq. (3.4) later.
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We try to prove these conservation laws one by one as follows.

The proof of (i): Computing the inner product of Eq. (2.13a) with (ϕn+1
h +ϕn

h) and taking

the imaginary part; and computing the inner product Eq. (2.13b) with (ψn+1
h +ψn

h ) and
taking the imaginary part, we obtain

‖ϕn+1
h ‖2

G =‖ϕn
h‖2

G , ‖ψn+1
h ‖2

G =‖ψn
h‖2

G .

Hence the mass conservation law is obtained.

The proof of (ii): For solitary waves collide, global momentum property is conserved.
Computing the inner product of Eq. (2.13a) with (ϕ̄n+1

h )x+(ϕ̄n
h)x and subtracting the inner

product of its complex conjugate with (ϕn+1
h )x+(ϕn

h)x, we obtain

i
〈 ϕn+1

h −ϕn
h

τ
,(ϕ̄n+1

h )x+(ϕ̄n
h)x

〉

G
+

1

2

〈

(ϕn+1
h )xx+(ϕn

h)xx,(ϕ̄n+1
h )x+(ϕ̄n

h)x

〉

G

+
1

4

〈(

|ϕn+1
h |2+|ϕn

h |2+β(|ψn+1
h |2+|ψn

h |2)
)

(ϕn+1
h +ϕn

h),(ϕ̄n+1
h + ϕ̄n

h)x

〉

G

−i
〈 ϕ̄n+1

h − ϕ̄n
h

τ
,(ϕn+1

h )x+(ϕn
h)x

〉

G
− 1

2

〈

(ϕ̄n+1
h )xx+(ϕ̄n

h)xx,(ϕn+1
h )x+(ϕn

h)x

〉

G

− 1

4

〈(

|ϕn+1
h |2+|ϕn

h |2+β(|ψn+1
h |2+|ψn

h |2)
)

(ϕ̄n+1
h + ϕ̄n

h),(ϕn+1
h +ϕn

h)x

〉

G=0. (3.1)

Note that for arbitrary complex functions ϕ and ψ, ϕ̄ψ−ϕψ̄ is an imaginary function. So
taking the imaginary part of Eq. (3.1) gives

i
〈 ϕn+1

h −ϕn
h

τ
,(ϕ̄n+1

h )x+(ϕ̄n
h)x

〉

G
−i

〈 ϕ̄n+1
h − ϕ̄n

h

τ
,(ϕn+1

h )x+(ϕn
h)x

〉

G

=
i

τ

(〈

ϕn+1
h ,(ϕ̄n+1

h )x

〉

G−
〈

ϕ̄n+1
h ,(ϕn+1

h )x

〉

G−
〈

ϕn
h ,(ϕ̄n

h)x

〉

G+
〈

ϕ̄n
h ,(ϕn

h)x

〉

G
)

+
i

τ

(〈

ϕn+1
h ,(ϕ̄n

h)x

〉

G+
〈

ϕ̄n
h ,(ϕn+1

h )x

〉

G−
〈

ϕn
h ,(ϕ̄n+1

h )x

〉

G−
〈

ϕ̄n+1
h ,(ϕn

h)x

〉

G
)

=0. (3.2)

Using Lemma 2.1, we observe that the second term of the middle side of (3.2) is zero.
Consequently,

In+1
31 =i

〈

ϕn+1
h ,(ϕ̄n+1

h )x

〉

G−i
〈

ϕ̄n+1
h ,(ϕn+1

h )x

〉

G= i
〈

ϕn
h ,(ϕ̄n

h)x

〉

G−i
〈

ϕ̄n
h ,(ϕn

h)x

〉

G
=In

31= ···= I0
31=const.

Similarly,

In+1
32 =i

〈

ψn+1
h ,(ψ̄n+1

h )x

〉

G−i
〈

ψ̄n+1
h ,(ψn+1

h )x

〉

G= i
〈

ψn
h ,(ψ̄n

h )x

〉

G−i
〈

ψ̄n
h ,(ψn

h )x

〉

G
=In

32= ···= I0
32=const.
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Therefore, we have
In+1
3 = In+1

31 + In+1
32 = In

3 = ···= I0
3 =const.

The momentum conservation law is obtained.

The proof of (iii): We compute the inner product of Eq. (2.13a) with (ϕn+1
h −ϕn

h) and take

the real part; and compute the inner product of Eq. (2.13b) with (ψn+1
h −ψn

h ) and take the
real part and then obtain

E1+E2+E3+E4=0, (3.3)

where

E1=Re
(〈

(ϕn+1
h )xx+(ϕn

h)xx,ϕn+1
h −ϕn

h

〉

G
)

,

E2=
1

2
Re

(〈

|ϕn+1
h |2+|ϕn

h |2+β(|ψn+1
h |2+|ψn

h |2)(ϕn+1
h +ϕn

h),ϕ
n+1
h −ϕn

h

〉

G
)

,

E3=Re
(〈

(ψn+1
h )xx+(ψn

h )xx,ψn+1
h −ψn

h

〉

G
)

,

E4=
1

2
Re

(〈

|ψn+1
h |2+|ψn

h |2+β(|ϕn+1
h |2+|ϕn

h |2)(ψn+1
h +ψn

h ),ψ
n+1
h −ψn

h

〉

G
)

.

Here Re(·) denotes taking the real part of the argument. Setting

ϕn
h = ϕn

h,1+iϕn
h,2, ψn

h =ψn
h,1+iψn

h,2, (3.4)

where ϕn
h,1 and ϕn

h,2 are real and imaginary parts of ϕn
h , ψn

h,1 and ψn
h,2 are real and imaginary

parts of ψn
h , we obtain

E1=Re
(〈

(ϕn+1
h )xx+(ϕn

h)xx,ϕn+1
h −ϕn

h

〉

G
)

=
N

∑
j=1

hj

2

∑
k=1

ωk

(〈

(ϕn+1
h,1 )xx,ϕn+1

h,1 −ϕn
h,1

〉

G+
〈

(ϕn+1
h,2 )xx,ϕn+1

h,2 −ϕn
h,2

〉

G
)

(ξ j,k)

+
N

∑
j=1

hj

2

∑
k=1

ωk

(〈

(ϕn
h,1)xx,ϕn+1

h,1 −ϕn
h,1

〉

G+
〈

(ϕn
h,2)xx,ϕn+1

h,2 −ϕn
h,2

〉

G
)

(ξ j,k)

=
(〈

(ϕn+1
h,1 )xx,ϕn+1

h,1

〉

G+
〈

(ϕn+1
h,2 )xx,ϕn+1

h,2

〉

G−
〈

(ϕn+1
h,1 )xx,ϕn

h,1

〉

G−
〈

(ϕn+1
h,2 )xx,ϕn

h,2

〉

G
)

+
(〈

(ϕn+1
h,1 )xx,ϕn

h,1

〉

G+
〈

(ϕn+1
h,2 )xx,ϕn

h,2

〉

G−
〈

(ϕn
h,1)xx,ϕn

h,1

〉

G−
〈

(ϕn
h,2)xx,ϕn

h,2

〉

G
)

=
〈

(ϕn+1
h,1 )xx,ϕn+1

h,1

〉

G+
〈

(ϕn+1
h,2 )xx,ϕn+1

h,2

〉

G−
〈

(ϕn
h,1)xx,ϕn

h,1

〉

G−
〈

(ϕn
h,2)xx,ϕn

h,2

〉

G . (3.5)

By using Lemma 2.1, we get

E2=
1

2
Re

(〈(

|ϕn+1
h |2+|ϕn

h |2+β(|ψn+1
h |2+|ψn

h |2)
)

(ϕn+1
h +ϕn

h),ϕ
n+1
h −ϕn

h

〉

G
)

=
1

2

N

∑
j=1

hj

2

∑
k=1

ωk

(

|ϕn+1
h |2+|ϕn

h |2+β(|ψn+1
h |2+|ψn

h |2)
)(

|ϕn+1
h |2−|ϕn

h |2
)

(ξ j,k)

=
1

2

N

∑
j=1

hj

2

∑
k=1

ωk

(

|ϕn+1
h |4−|ϕn

h |4+β(|ψn+1
h |2+|ψn

h |2)
(

|ϕn+1
h |2−|ϕn

h |2
))

(ξ j,k). (3.6)
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Similarly,

E3=
〈

(ψn+1
h,1 )xx,ψn+1

h,1

〉

G+
〈

(ψn+1
h,2 )xx,ψn+1

h,2

〉

G−
〈

(ψn
h,1)xx,ψn

h,1

〉

G−
〈

(ψn
h,2)xx,ψn

h,2

〉

G , (3.7)

E4=
1

2

N

∑
j=1

hj

2

∑
k=1

ωk

(

|ψn+1
h |4−|ψn

h |4+β(|ϕn+1
h |2+|ϕn

h |2)
(

|ψn+1
h |2−|ψn

h |2
))

(ξ j,k). (3.8)

Substituting (3.5)-(3.8) into (3.3), we obtain

En+1,
〈

(ϕn+1
h,1 )xx,ϕn+1

h,1

〉

G+
〈

(ϕn+1
h,2 )xx,ϕn+1

h,2

〉

G+
〈

(ψn+1
h,1 )xx,ψn+1

h,1

〉

G+
〈

(ψn+1
h,2 )xx,ψn+1

h,2

〉

G

+
1

2

N

∑
j=1

hj

2

∑
k=1

ωk

(

|ϕn+1
h |4+|ψn+1

h |4
)

(ξ j,k)+
N

∑
j=1

hj

2

∑
k=1

ωkβ|ϕn+1
h |2|ψn+1

h |2(ξ j,k)

=
〈

(ϕn
h,1)xx,ϕn

h,1

〉

G+
〈

(ϕn
h,2)xx,ϕn

h,2

〉

G+
〈

(ψn
h,1)xx,ψn

h,1

〉

G+
〈

(ψn
h,2)xx,ψn

h,2

〉

G

+
1

2

N

∑
j=1

hj

2

∑
k=1

ωk

(

|ϕn
h |4+|ψn

h |4
)

(ξ j,k)+
N

∑
j=1

hj

2

∑
k=1

ωkβ|ϕn
h |2|ψn

h |2(ξ j,k)

,En.

The energy conservation law is proved.

4 Accuracy and stability of the scheme

In this section, we study the accuracy and stability of the numerical method.

Theorem 4.1. Suppose ϕ,ψ ∈ C2,4∩L2(0,T;Hr+3) are the solution of (2.8), ∂ϕ/∂t, ∂ψ/∂t,
∂2 ϕ/∂t2, ∂ψ2/∂t2 ∈ L2(0,T;Hr+3), while ϕn

h ,ψn
h ∈M0(∆)(n= 0,1,··· , J−1) are the solutions

of (2.13). If Φ,Ψ : [0,T]→M0(∆) are defined by (2.6) and ‖ϕ0
h−Φ0‖L2(Ω), ‖ψ0

h−Ψ0‖L2(Ω) are

O(τ2+h4)2, then for τ and h sufficiently small, we have

‖ϕJ−ϕJ
h‖∞+‖ψJ−ψJ

h‖∞ =O(τ2+h4), (4.1)

where ϕn(x)= ϕ(x,nτ), ψn(x)=ψ(x,nτ) are the exact solution of (2.8) when t=nτ.

Proof. Substituting ϕn(x),ψn(x) into (2.13) and using Taylor expansion at t = n+ 1
2 , we

have

Rn
1(ξ j,k)=

i

τ
(ϕn+1−ϕn)+(ϕn+ 1

2 )xx+(|ϕ|2+β|ψ|2)n+ 1
2 ϕn+ 1

2 =O(τ2), (4.2a)

Rn
2(ξ j,k)=

i

τ
(ψn+1−ψn)+(ψn+ 1

2 )xx+(|ψ|2+β|ϕ|2)n+ 1
2 ψn+ 1

2 =O(τ2). (4.2b)

Here Rn
1 and Rn

2 are truncation errors. Let

ên
1 = ϕn−Φn, en

1 = ϕn
h−Φn, ên

2 =ψn−Ψn, en
2 =ψn

h −Ψn.
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Then we have

ϕn−ϕn
h = ên

1 −en
1 , ψn−ψn

h = ên
2 −en

2 .

For simplicity, we only give the process of Eq. (4.2a). Let

G(ϕn)=(|ϕ|2+β|ψ|2)n+ 1
2 .

Subtracting (2.13) from (4.2a), we have

i

τ
(en+1

1 −en
1)+(e

n+ 1
2

1 )xx

=
i

τ
(ên+1

1 − ên
1)+(ê

n+ 1
2

1 )xx−Rn
1+

(

G(ϕn)−G(ϕn
h)
)

ϕ
n+ 1

2
n +G(ϕn)(ê

n+ 1
2

1 −e
n+ 1

2
1 ). (4.3)

Computing the inner product of (4.3) with en+1
1 +en

1 and taking the imaginary part, we
obtain

‖en+1
1 ‖2

G−‖en
1‖2

G =Π1+Π2+Π3, (4.4)

where

Π1= Im〈ên+1
1 − ên

1 ,en+1
1 +en

1〉G+τIm〈(ên+ 1
2

1 )xx−Rn
1 ,en+1

1 +en
1 〉G

=τIm
〈

(ên
1)t+(ê

n+ 1
2

1 )xx−Rn
1 ,en+1

1 +en
1

〉

G

≤Cτ
(

‖(ên
1 )t‖2

G+‖(ên+ 1
2

1 )xx‖2
G+‖Rn

1‖2
G+‖e

n+ 1
2

1 ‖2
G
)

,

Π2=τIm
〈(

G(ϕn)−G(ϕn
h)
)

ϕ
n+ 1

2

h ,en+1
1 +en

1

〉

G ,

Π3=τIm
〈

G(ϕn)(ê
n+ 1

2
1 −e

n+ 1
2

1 ),en+1
1 +en

1

〉

G

≤Cτ
(

‖ê
n+ 1

2
1 ‖2

G+‖e
n+ 1

2
1 ‖2

G
)

.

Here Im(·) denotes taking the imaginary part of the argument. For Π2, we have by a
direct calculation that

G(ϕn)−G(ϕn
h)

=
1

2

(

ϕn+1 ϕ̄n+1−ϕn+1
h ϕ̄n+1

h +ϕn ϕ̄n−ϕn
h ϕ̄n

h

)

+
β

2

(

ψn+1ψ̄n+1−ψn+1
h ψ̄n+1

h +ψnψ̄n−ψn
h ψ̄n

h

)

=
1

2

(

ϕn+1( ¯̂en+1
1 − ēn+1

1 )+ ϕ̄n+1
h (ên+1

1 −en+1
1 )+ϕn( ¯̂en

1− ēn
1 )+ ϕ̄n

h(ê
n
1−en

1 )
)

+
β

2

(

ψn+1( ¯̂en+1
2 − ēn+1

2 )+ψ̄n+1
h (ên+1

2 −en+1
2 )+ψn( ¯̂en

2− ēn
2 )+ψ̄n

h (ê
n
2−en

2)
)

.

According to the assumptions of the theorem, ϕn, ϕn
h , ψn, ψn

h are bounded, therefore

Π2≤Cτ
(

‖ên+1
1 ‖2

G+‖en+1
1 ‖2

G+‖ên
1‖2

G+‖en
1‖2

G+‖ên+1
2 ‖2

G+‖en+1
2 ‖2

G+‖ên
2‖2

G+‖en
2‖2

G
)

.
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From the above analysis, (4.4) implies

‖en+1
1 ‖2

G−‖en
1‖2

G

≤Cτ
(

‖(ên
1 )t‖2

G+‖(ên+ 1
2

1 )xx‖2
G+‖Rn

1‖2
G+‖e

n+ 1
2

1 ‖2
G+‖ê

n+ 1
2

1 ‖2
G+‖e

n+ 1
2

2 ‖2
G+‖ê

n+ 1
2

2 ‖2
G
)

.

According to the definite of Φn, one can easily obtain (ên+1/2
1 )xx= ên+1/2

1 . From (4.2a), we
obtain Rn

1 =O(τ2). Those conditions together with Lemma 2.3 yield

‖(ên
1 )t‖G =

∥

∥

∥

ên+1
1 − ên

1

τ

∥

∥

∥

G
=
∥

∥

∥

ϕn+1−ϕn−(Φn+1−Φn)

τ

∥

∥

∥

G
≤Chr+1

∥

∥

∥

ϕn+1−ϕn

τ

∥

∥

∥

Hr+3

=Chr+1
∥

∥

∥

1

τ

∫ nτ+τ

nτ

∂ϕ

∂t
dt
∥

∥

∥

Hr+3
=Chr+1

∥

∥

∥

1

τ

∫ τ

0

∂ϕ(s+nτ)

∂s
ds
∥

∥

∥

Hr+3

≤Chr+1 1

τ

∫ τ

0

∥

∥

∥

∂ϕ(s+nτ)

∂s

∥

∥

∥

Hr+3
ds

≤Chr+1
(∥

∥

∥

∂ϕ

∂t

∥

∥

∥

L∞(0,T;Hr+3)
+‖ϕ‖L∞(0,T;Hr+2)

)

≤Chr+1.

By using (2.1) and Lemma 2.1, one can get

‖ên
1‖2

G≤C‖ên
1‖2

L2 ≤Chr+1‖ϕn‖Hr+3 ≤C(hr+1)2,

‖ên
2‖2

G≤C‖ên
2‖2

L2 ≤Chr+1‖ψn‖Hr+3 ≤C(hr+1)2.

Thus (4.4) can be written in the following form

‖en+1
1 ‖2

G−‖en
1‖2

G ≤Cτ
(

‖e
n+ 1

2
1 ‖2

G+‖e
n+ 1

2
2 ‖2

G
)

+Cτ
(

τ2+hr+1
)2

. (4.5)

Similarly, we obtain

‖en+1
2 ‖2

G−‖en
2‖2

G ≤Cτ
(

‖e
n+ 1

2
1 ‖2

G+‖e
n+ 1

2
2 ‖2

G
)

+Cτ
(

τ2+hr+1
)2

. (4.6)

In the following, Ci, i = 1,··· ,10, denote generic constants. Summing up both sides of
Eq. (4.5) and Eq. (4.6) from 0 to J−1, we have

‖eJ
1‖2

G ≤C1τ‖eJ
1‖2

G+(1+C1τ)‖e0
1‖2

G+C1τ‖e0
2‖2

G

+C2τ
J−1

∑
n=1

(

‖en
1‖2

G+‖en
2‖2

G
)

+C3τ
J−1

∑
n=0

(

τ2+hr+1
)2

, (4.7a)

‖eJ
2‖2

G ≤C4τ‖eJ
2‖2

G+(1+C4τ)‖e0
2‖2

G+C4τ‖e0
1‖2

G

+C5τ
J−1

∑
n=1

(

‖en
2‖2

G+‖en
1‖2

G
)

+C6τ
J−1

∑
n=0

(

τ2+hr+1
)2

. (4.7b)
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Combining Eq. (4.7a) with Eq. (4.7b), we obtain

(1−C7τ)
(

‖eJ
1‖2

G+‖eJ
2‖2

G
)

≤(1+C8τ)
(

‖e0
1‖2

G+‖e0
2‖2

G
)

+C9τ
J−1

∑
n=1

(

τ2+hr+1
)2
+C10τ

J−1

∑
n=1

(

‖en
1‖G+‖en

2‖G
)

.

Let τ be small enough so that 1−C1τ>0. We get by use of the Gronwall inequality,

‖eJ
1‖2

G+‖eJ
2‖2

G≤
(

(1+Cτ)
(

‖e0
1‖2

G+‖e0
2‖2

G
)

+Cτ
J−1

∑
n=0

(τ2+hr+1)2

)

exp(CJτ)

≤‖e0
1‖2

G+‖e0
2‖2

G+(τ2+hr+1)2.

From the assumptions of the theorem, we obtain

‖eJ
1‖2

G+‖eJ
2‖2

G≤C(τ2+hr+1)2.

By using (2.1), we have

‖eJ
1‖2

L2 +‖eJ
2‖2

L2 ≤C(τ2+hr+1)2.

Finally, by using the concept of equivalent norms,

‖eJ
1‖∞+‖eJ

2‖∞ ≤C(τ2+hr+1)2=C(τ2+h4)2.

So, the proof is complete.

In the following theorem, we give the stability of the numerical method.

Theorem 4.2. If the conditions of Theorem 4.1 are satisfied, then the scheme (2.13) depends on
the initial value continuously.

Proof. By a similar proof as that of Theorem 4.1, one can easily obtain

‖eJ
1‖2

∞+‖eJ
2‖2

∞ ≤C
(

‖e0
1‖2+‖e0

2‖2
)

,

which implies that (2.13) depends on the initial value continuously.

5 Numerical results

In this section, we provide numerical examples to illustrate the accuracy and capability
of methods developed in previous sections.
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Since (2.13) is a nonlinear scheme, one should utilize some iterative method to solve
it. One possible choice is given below:

{

i
(ϕn+1

h )(s+1)−ϕn
h

τ
+
(ϕn+1

h )
(s+1)
xx +(ϕn

h)xx

2

+
|(ϕn+1

h )(s)|2+|ϕn
h |2+β

(

|(ψn+1
h )(s)|2+|ψn

h |2
)

2

(ϕn+1
h )(s+1)+ϕn

h

2

}

(ξ j,k)=0, (5.1a)

{

i
(ψn+1

h )(s+1)−ψn
h

τ
+
(ψn+1

h )
(s+1)
xx +(ψn

h )xx

2

+
|(ψn+1

h )(s)|2+|ψn
h |2+β

(

|(ϕn+1
h )(s)|2+|ϕn

h |2
)

2

(ψn+1
h )(s+1)+ψn

h

2

}

(ξ j,k)=0, (5.1b)

for j=1,2,··· ,N; n=0,1,2,··· , J−1 and k=1,2, where s denotes the s-th iteration at a given
time-step and the iteration continues until the condition

max
1≤j≤N
k=1,2

|(ϕn+1
h )(s+1)(ξ j,k)−(ϕn+1

h )(s)(ξ j,k)|+max
1≤j≤N
k=1,2

|(ψn+1
h )(s+1)(ξ j,k)−(ψn+1

h )(s)(ξ j,k)|<10−6

is reached. Setting

~ϕn=[ϕ̂n
1 , ϕ̂n

2 ,··· , ϕ̂n
2N ]

T, ~ψn =[ψ̂n
1 ,ψ̂n

2 ,··· ,ψ̂n
2N ]

T

and substituting (2.2) into (5.1), one can obtain

A(~ϕn+1)(s+1)=(~cn+1
h )(s), B(~ψn+1)(s+1)=(~dn+1

h )(s),

where (~cn+1
h )(s) is a vector which composes of (ϕn+1

h )(s), (ψn+1
h )(s), (ϕn

h)xx, ϕn
h , ψn

h and

(~dn+1
h )(s) is a vector which composes of (ϕn+1

h )(s), (ψn+1
h )(s), (ψn

h )xx, ψn
h , ϕn

h , both A and B
are matrix with special structure.

Now we consider (1.1) with the following soliton solution [24]:

ϕ(x,t)=

√

2α1

1+β
sech

(√
α1(x−2v1t)

)

exp
(

i(v1x−(v2
1−α1)t)

)

, (5.2a)

ψ(x,t)=

√

2α2

1+β
sech

(√
α2(x−2v2t)

)

exp
(

i(v2x−(v2
2−α2)t)

)

, (5.2b)

where αi and vi (i=1,2) are arbitrary constants.
We test conserved quantities and the order of convergence. In addition, we make

some comparisons with other schemes and it proves that the scheme in the paper does
have high accuracy and efficiency. We study single solitary wave propagation, double
solitary wave propagation, various kinds of collisions of two different vector solitons
and periodic boundary conditions. We consider the following problems to highlight the
properties of the derived scheme.
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5.1 Single soliton

In this test we choose the initial condition from the soliton solution (5.2)

ϕ(x,0)=ψ(x,0)=

√

2α

1+β
sech(

√
αx)exp(ivx),

where α, β and v are constants.
To compute the numerical solution, the following parameters are used

xL =−30, xR =60, v=0.5, α=0.2, β=1, h=0.1, τ=0.01, T=24.

Perspective views of the traveling soliton are presented in Fig. 1. To demonstrate the high
accuracy of the OSC method, we use the same procedure as that in [19] which emphasizes
that a good numerical scheme should have excellent long-time numerical behavior, as
well as conservation properties. In Table 1, we display the conserved quantities obtained
from the proposed scheme. It is very easy to see that all of them are exactly conserved. It
shows that the proposed method is stable and preserves conserved properties well. The
number of iterations shows the efficiency of the method.

−30 −20 −10 0 10 20 30 40 50 600

5

10

15

20

25

0

0.2

0.4

0.6

0.8

x

t

|φ
|,|

ψ
|

Figure 1: Single soliton at difference time levels.

The rate of convergence of the proposed method can be calculated from the for-
mula [13]

p= log
(‖ϕ−ϕh1

‖∞

‖ϕ−ϕh2
‖∞

)/

log
(h1

h2

)

,

where h1, h2 are space steps and the value of p is called the rate of convergence. In
Theorem 4.1, we prove that our proposed scheme is fourth-order in space and second-
order in time. For this computation we choose the time step τ = h2 as we expect the
scheme to be second order accurate in time and fourth order accurate in space in the
discrete maximum norm and L2 norm respectively. Table 2 confirms our conclusion. We
can see that the numbers in the last column in Table 2 are more than four, which shows
fourth order accurate in space. As we choose the time step τ= h2, the scheme is second
order accurate in time. The results are obtained in the final time T=24.
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Table 1: Conserved quantities (single soliton).

Time I1 I3 E Iter. No.
0.0 1.78885431 -3.57770839 -0.65591323 3
6.0 1.78885431 -3.57770839 -0.65591323 3
12.0 1.78885431 -3.57770839 -0.65591323 3
18.0 1.78885431 -3.57770839 -0.65591323 3
24.0 1.78885431 -3.57770839 -0.65591323 3

Table 2: Rate of convergence.

h τ ‖ϕ−Φ‖∞ order
1.0 1.0 0.04708139 -
0.5 0.25 0.00276749 4.0885

0.25 0.0625 1.72790606e-04 4.0015
0.125 0.015625 1.07464795e-05 4.0071

In Fig. 2, a comparison of the OSC scheme with the CN scheme [14], the Ismail
scheme [13] and the Wang scheme [23] has been made. Though our scheme and the
Ismail scheme have the same fourth-order in space and second-order in time, our algo-
rithm is easy to implement. In fact, our scheme is more accurate than the Ismail scheme.

5.2 Two solitons with same initial values

Let us consider the interaction of two solitons as examples to test the stability. We use the
initial condition

ϕ(x,0)=ψ(x,0)= ∑
j=1,2

√

2αj

1+β
sech(

√
αjx−xj)exp{ivj x}.

In our numerical calculations we choose parameters

xL =0, xR =60, α1=α2=1, β=1,

x1=20, x2=45, v1=0.5, v2=−0.5, T=30.

Table 3: Two solitons with same initial values (conserved quantities).

Time I1 I3 E Iter. No.
0.0 7.99753656 -0.01773143 -2.22130218 4
6.0 7.99753656 -0.01620189 -2.22130214 3
12.0 7.99753656 -0.01546758 -2.22130212 4
18.0 7.99753656 -0.01560848 -2.22130211 3
24.0 7.99753656 -0.01692837 -2.22130205 3
30.0 7.99753656 -0.01576484 -2.22130202 3
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Figure 2: Convergence rate of four different schemes.

When β = 1, the equations are integrable, solitary waves collide elastically. As wave
velocity has the same absolute value and α1 =α2 keeps the same, so two waves transmit
without any change to the same direction at the same rate. Fig. 3(a) gives the perspective
views of the traveling two solitons at difference time with the same initial values. We can
see that after the collision of two solitons, they move in the same direction and with the
same velocity as before. Fig. 3(b) shows contours of the interaction scenario. We observe
that sympathia phenomenon takes place at t=12. Table 3 shows that I3 varies from time
to time as collision happens, but the global momentums keep the same. High mass and
energy conservation quantities have been conserved during the interaction scenario.
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Figure 3: (a) Waves of two solitons; (b) contours of two solitons.

5.3 Soliton collisions of different initial conditions

In this section, we solve (2.8) together with different initial condition. In the following
calculations, we fix xL =−40, xR =40,
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Table 4: Two solitons interaction β=1 (conserved quantities).

Time I1 I2 I3 E Iter. No.
0.0 9.59990132 7.99995731 -0.79981944 6.17443445 6

20.0 9.59990132 7.99995731 -0.79975390 6.17443473 6
40.0 9.59990132 7.99995731 -0.79980237 6.17443502 6
60.0 9.59990132 7.99995731 -0.79980010 6.17443530 6
80.0 9.59990132 7.99995731 -0.79979386 6.17443558 6

Table 5: Conserved quantities (β=0.3, v=0.4).

Time I1 I2 I3 E Iter. No.
0.0 9.59999779 7.99999909 -0.31999819 7.09866028 5

20.0 9.59999779 7.99996509 -0.31999775 7.09866033 5
40.0 9.59999779 7.99996509 -0.32007717 7.09866040 5
60.0 9.59999779 7.99996509 -0.23995993 7.09866049 5
80.0 9.59999779 7.99996509 -0.52739889 7.09866054 5

ϕ(x,0)=
√

2α1sech(
√

2α1x+x1,0)exp(iv1x),

ψ(x,0)=
√

2α2sech(
√

2α2x+x2,0)exp(iv2x),

where amplitudes are
√

2αj, velocities are vj and initial phase constant are xj,0, for j=1,2.
Without loss of generality, we take v1=v/4 and v2=−v/2, so the approaching velocity of
the two solitons is v. We also fix α1 =0.6 and α2 =0.5. The choices for the initial position
parameters xj,0, j=1,2, can be totally arbitrary. They will not affect the collision outcome
as long as x1,0<0 and x2,0>0 are large enough. We fix x1,0=−x2,0=10 in our calculations.

In the first case, we choose β = 1 and v = 0.5. This is a Manakov model which is
completely integrable and hence we expect the interaction of two solitons to be elastic and
this is indeed the case (see Fig. 4). The computation is done for 0≤ t≤80. The behaviors
of solitons are completely known from exact inverse scattering solutions [1]. We observe
that solitons collide at t ≈ 12 and retain their identity after nonlinear interactions with
the other soliton. The mass conservations I1, I2, the momentum conservation I3 and the
energy conservation E are also shown in Table 4. Although it seems that energy E almost
keeps the same, while momentum I3 varies because of the same reason as last example.
Fig. 5 shows contours of Manakov type.

In the second test, we choose β=0.3 and v=0.4, which is inelastic collision between
two orthogonally polarized solitons. The computation is done for 0≤t≤70. As mentioned
in [28], the transmission, reflection and fusion scenarios depend on the precollision soli-
ton parameters. Table 5 gives the conserved quantities which show exactly the same for
I1, I2, the momentum conservation values I3 varies because of collision and energy varies
slightly after two solitons collision. Fig. 6 shows transmission wave of ϕ and ψ. Fig. 7
shows contours of two solitons fusion. We can see that there is fusion of two solitons into
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Figure 4: Interaction of two solitons (Manakov equation).
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Figure 5: (a) Contours of Manakov type with β=1, v=0.5; (b) contour of ϕ for β=1, v=0.5.
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Figure 6: (a) Wave of ϕ for β=0.3, v=0.4; (b) wave of ψ for β=0.3, v=0.4.
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Table 6: Conserved quantities (β=2/3, v=0.4).

Time I1 I2 I3 E Iter. No.
0.0 9.59991459 7.99996509 -0.31992956 7.09842172 5

20.0 9.59991459 7.99996509 -0.31992956 7.09842252 5
40.0 9.59991459 7.99996509 -0.31610222 7.09842326 6
60.0 9.59991459 7.99996509 -0.31483488 7.09842354 6
80.0 9.59991459 7.99996509 -0.33704670 7.09842377 6

Table 7: Conserved quantities (β=2/3, v=1.6).

Time I1 I2 I3 E Iter. No.
0.0 9.59987544 7.99994179 -1.27968893 4.45846614 6

20.0 9.59987544 7.99994179 -1.27824690 4.45846661 6
40.0 9.59987544 7.99994179 -0.93481861 4.45846688 6
60.0 9.59987544 7.99994179 -1.01186782 4.45846716 6
80.0 9.59987544 7.99994179 -1.07590965 4.45848456 6

one after the collision of the two solitons.

Next, we select β = 2/3 and v = 0.4, which gives the approaching velocity 0.4. For
β=2/3, the CNLS equations represent real single-mode birefringent fibers, where ϕ and
ψ represent the two-linear polarizations. Much theoretical and numerical work has been
performed in [22,28]. Fig. 8 shows an interesting phenomenon. The right-moving soliton
ϕ, which has larger momentum and energy, is reflected back by the collision. So it steadily
decreases and becomes negative when it emerges from the collision. On the other hand,
the left-moving soliton initially moves to the left but turns around after the collision.
This reflection scenario has been reported in [29]. The amplitudes of the larger soliton
gets even larger and the smaller one gets even smaller. These daughter waves are small
pulses that split off from a solitary wave and propagate along beside it but in the other
mode. From Fig. 9(a) we observe that the collision takes place at t≈ 40. Fig. 9(b) shows
the contour of ϕ when β=2/3, v=0.4. In Table 6, we observe that the mass conservations
have been kept, the energy changes slightly, while the momentum conservation varies
from time to time because the collision takes place, but the total momentum conservation
is conserved.

If we increase the colliding velocity v, we expect these two solitons to pass through
each other. This is indeed the case. We repeat the test by increasing the velocity to v=1.6.
We notice that, when the solitons come into collision, their velocities decrease signif-
icantly as before. We also notice that two waves pass through each other with some
reshaping and radiation shedding and daughter waves are generated. This transmission
scenario can be interpreted in Figs. 10 and 11. Table 7 shows the conserved quantities
with β= 2/3 and v= 1.6. The mass conservations keep the same, the energy conserva-
tion keeps almost the same, while the single momentum conservation changes over time
because of collision of solitons, the total momentum quantities keep the same.
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Figure 8: (a) Wave of ϕ for β=2/3, v=0.4; (b) wave of ψ for β=2/3, v=0.4.
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Figure 9: (a) Contours of two interaction for β=2/3, v=0.4; (b) contour of ϕ for β=2/3, v=0.4.
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Figure 10: (a) Wave of ϕ for β=2/3, v=1.6; (b) wave of ψ for β=2/3, v=1.6.
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Figure 11: (a) Contours of two interaction for β=2/3, v=1.6; (b) contour of ϕ for β=2/3, v=1.6.
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The last test concerning the creation of new vector solitons which can be happened
when β is large and positive. As expected, after interaction, these two solitary waves are
significantly reshaped; large daughter waves are created; and radiation is also shedded.
A novel feature is that new solitary waves are created. These new waves travel at speeds
very different from those of the original two solitary waves. One example with β = 4
and v=1.6 is shown in Fig. 12, four new solitary waves are generated for wave ϕ and ψ.
Fig. 13 gives contour of creation scenario with β= 2 and v= 1.6; and β= 3 and v= 1.6,
respectively. We observe that two and three new solitary waves are created.

5.4 Periodic boundary conditions

We consider the periodic boundary conditions (2.12). In the test we select the parameters

xL =−40, xR =40, α1=0.6, α2=0.5,

β=0.3, v1=0.15, v2=−0.6, x1,0=−x2,0=10.

The computation is done for 0 ≤ t ≤ 80. The interaction scenario is given in Fig. 14(a),
Fig. 14(b) shows contours of the interaction scenario. The two waves interact at t = 20
and t=75 and leave the interaction without any change in behavior shape and velocity.
The numerical results show that the soliton moves to the left periodically, it disappears at
x=xL, but reappears at x=xR. Table 8 gives the conserved quantities which show exactly
the same. It is clear that all of these quantities are recovered after the interaction.

Table 8: Conserved quantities with periodic boundary conditions.

Time I1 I2 I3 E Iter. No.
0.0 4.79999666 3.99998777 3.35997108 -0.63866341 4

20.0 4.79999666 3.99998777 3.35996743 -0.63866341 4
40.0 4.79999666 3.99998777 3.35998267 -0.63866341 4
60.0 4.79999666 3.99998777 3.35997229 -0.63866341 4
80.0 4.79999666 3.99998777 3.35994856 -0.63866341 4

6 Conclusions

We have developed the OSC method to solve coupled nonlinear Schrödinger equations.
We use finite difference for time discretization, while the OSC method is used for space
discretization. The stability and convergence of solutions with order O(h4+τ2) are also
proved in the energy norm. We observe that the scheme simulates the evolution of the
solitons and preserves conserved quantities well. It has advantage for the long time com-
puting accuracy and preserving the conservation properties. The algorithm is relatively
simple and has been shown to handle easily. The derived method can be easily gener-
alized to solve N coupled Schrödinger equations. And this method is applicable for the
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Figure 12: (a) Wave of ϕ for β=4, v=1.6; (b) wave of ψ for β=4, v=1.6.
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Figure 13: (a) Contours of ϕ for β=2; (b) contours of ϕ for β=3.
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Figure 14: (a) Interaction of two solitons with periodic boundary conditions; (b) contours of two solitons with
periodic boundary conditions.

study of the dynamics of a broad spectrum of complex physical and engineering prob-
lems.
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artificial boundary conditions techniques for linear and nonlinear Schrödinger equations,
Commun. Comput. Phys., 4 (2008), 729–796.

[3] W. Z. Bao, Ground states and dynamics of multicomponent Bose-Einstein condensates, Mul-
tiscale Model. Simul., 2 (2004), 201–236.

[4] W. Z. Bao and J. Shen, A fourth-order time-splitting Laguerre-Hermite pseudospectral
method for Bose-Einstein condensates, SIAM J. Sci. Comput., 26 (2005), 2010–2028.

[5] W. Z. Bao and C. X. Zheng, A time-splitting spectral method for three-wave interactions
in media with competing quadratic and cubic nonlinearities, Commun. Comput. Phys., 2
(2007), 123–140.

[6] D. J. Benney and A. C. Newell, Random wave closures, Stud. Appl. Math., 48 (1969), 29–53.
[7] C. de Boor and B. Swartz, Collocation at Gauss points, SIAM. J. Numer. Anal., 10 (1973),

582–606.
[8] Q. S. Chang, E. H. Jia and W. W. Sun, Difference schemes for solving the generalized nonlin-

ear Schrödinger equation, J. Comput. Phys., 148 (1999), 397–415.
[9] Y. M. Chen, H. J. Zhu and S. H. Song, Multi-symplectic splitting method for the coupled

nonlinear Schrödinger equation, Comput. Phys. Commun., 181 (2010), 1231–1241.
[10] J. Douglas Jr and T. Dupont, Collocation Methods for Parabolic Equations in a Single Space

Variable, Lecture Notes in Math, Vol. 385, Spring-Verleg, New York, 1974.
[11] G. Fairweather and D. Meade, A survey of spline collocation methods for the numerical

solution of differential equations, in: J. C. Diaz ed., Mathematics for Large Scale Computing,
Lecture Notes in Pure Appl. Math., Vol. 120, Marcel Dekker, New York, (1989), 297–341.

[12] B. Y. Guo, J. P. Pedro, J. R. Maria and V. Luis, Numerical solution of the Sine-Gordon equa-
tion, Appl. Math. Comput., 18 (1986), 1–14.

[13] M. S. Ismail and S. Z. Alamri, Highly accurate finite difference method for coupled nonlinear
Schrödinger equation, Int. J. Comput. Math., 81 (2004), 333–351.

[14] M. S. Ismail and T. R. Taha, Numerical simulation of coupled nonlinear Schrödinger equa-
tion, Math. Comput. Simul., 56 (2001), 547–562.

[15] P. Klein, X. Antoine, C. Besse and M. Ehrhardt, Absorbing boundary conditions for solving
N-dimensional stationary Schrödinger equations with unbounded potentials and nonlinear-
ities, Commun. Comput. Phys., 10 (2011), 1280–1304.

[16] C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quantum
Electron., 23 (1987), 174–176.

[17] M. P. Robinson and G. Fairweather, Orthogonal spline collocation methods for Schrödinger-
type equations in one space variable, Numer. Math., 68 (1994), 355–376.

[18] J. Q. Sun, X. Y. Gu and Z. Q. Ma, Numerical study for the soliton waves of the coupled
nonlinear Schrödinger system, Phys. D, 196 (2004), 311–328.



1416 Q.-J. Meng, L.-P. Yin, X.-Q. Jin and F.-L. Qiao / Commun. Comput. Phys., 12 (2012), pp. 1392-1416

[19] J. Q. Sun and M. Z. Qin, Multi-symplectic methods for the coupled 1D nonlinear Schrödinger
system, Comput. Phys. Commun., 155 (2003), 221–235.

[20] M. Thalhammer, M. Caliari and C. Neuhauser, High-order time-splitting Hermite and
Fourier spectral methods, J. Comput. Phys., 228 (2009), 822–832.

[21] T. Utsumi, T. Aoki, J. Koga and M. Yamagiwa, Solutions of the 1D coupled nonlinear
schrödinger equations by the CIP-BS method, Commun. Comput. Phys., 1 (2006), 261–275.

[22] T. Ueda and W. L. Kath, Dynamics of coupled solitons in nonlinear optical fibers, Phys. Rev.
A, 42 (1990), 563–571.

[23] H. Q. Wang, Numerical studies on the split step finite difference method for the nonlinear
Schrödinger equations, Appl. Math. Comput., 170 (2005), 17–35.

[24] M. Wadati, T. Izuka and M. Hisakado, A coupled nonlinear Schrodinger equation and opti-
cal solitons, J. Phys. Soc. Jpn., 61 (1992), 2241–2245.

[25] Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for nonlinear Schrödinger equa-
tions, J. Comput. Phys., 205 (2005), 72–97.

[26] Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for high-order time-dependent
partial differential equations, Commun. Comput. Phys., 7 (2010), 1–46.

[27] Y. Xu and C. W. Shu, Local discontinuous Galerkin methods for the Degasperis-Procesi equa-
tion, Commun. Comput. Phys., 10 (2011), 474–508.

[28] J. K. Yang, Multisoliton perturbation theory for the Manakov equations and its applications
to nonlinear optics, Phys. Rev. E, 59 (1999), 2393–2405.

[29] J. K. Yang and D. J. Benney, Some properties of nonlinear wave systems, Stud. Appl. Math.,
96 (1996), 111–135.

[30] Y. Z. Zhang, W. Z. Bao and H. L. Li, Dynamics of rotating two-component Bose-Einstein
condensates and its efficient computation, Phys. D, 234 (2007), 49–69.


