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Abstract. An algorithm for computing wavefronts, based on the high frequency ap-
proximation to the wave equation, is presented. This technique applies the level set
method to underwater acoustic wavefront propagation in the time domain. The level
set method allows for computation of the acoustic phase function using established
numerical techniques to solve a first order transport equation to a desired order of ac-
curacy. Traditional methods for solving the eikonal equation directly on a fixed grid
limit one to only the first arrivals, so these approaches are not useful when multi-path
propagation is present. Applying the level set model to the problem allows for the
time domain computation of the phase function on a fixed grid, without having to re-
strict to first arrival times. The implementation presented has no restrictions on range
dependence or direction of travel, and offers improved efficiency over solving the full
wave equation which under the high frequency assumption requires a large number
of grid points to resolve the highly oscillatory solutions. Boundary conditions are dis-
cussed, and an approach is suggested for producing good results in the presence of
boundary reflections. An efficient method to compute the amplitude from the level set
method solutions is also presented. Comparisons to analytical solutions are presented
where available, and numerical results are validated by comparing results with exact
solutions where available, a full wave equation solver, and with wavefronts extracted
from ray tracing software.
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1 Introduction

In this work, a fixed-grid model is applied to computational, high-frequency, underwater
acoustic propagation. The proposed method builds upon the foundation established by
Osher, Cheng, Kang, Shim, and Tsai [1] in which a level set method for geometric optics
was introduced. High frequency propagation modeling in underwater acoustics is tradi-
tionally accomplished via ray tracing. Rather than solve for the acoustic pressure directly,
the geometric optics approximation to the wave equation is employed to solve for a more
slowly varying phase function and a separate amplitude function. Ray tracing solves the
eikonal equation for the phase using the method of characteristics. When rays (charac-
teristics) diverge, eventually they do not cover enough physical space, and well-resolved
solutions are not available on any uniform grid.

Several computational approaches in addition to ray tracing already exist which can
accurately solve the equations of acoustic propagation. However, these are not appropri-
ate methods at high frequencies where required grid sizes become large enough to over-
whelm computational resources. Ray tracing is therefore the current standard for high
frequency or long range propagation modeling in underwater acoustics. The level set
method may provide a practical alternative to ray tracing for solving the high frequency
approximation to the wave equation for certain applications in which the need for control
over solution accuracy is balanced against the need for computational speed. Such appli-
cations include modeling propagation in shallow water environments where multi-path
propagation leads to combinatorial expense in the tabulation of returns from numerous
eigenrays (one-way source to receiver paths). The effects of source and receiver beam
patterns combined with the divergence of rays from the source often lead to poor re-
construction of the pressure field, especially in the presence of variable bathymetry or
surface waves.

The difficulties with the Lagrangian approach are familiar from studies of long range
acoustic propagation. The ray chaos problem was discussed in [2]. The term ”ray chaos”
generally refers to the phenomenon whereby small perturbations in the ray shooting an-
gle result in large variations in the resulting trajectories. When chaotic rays are present,
a high degree of precision is required to specify shooting angles in order to be able to
locate eigenrays. In [3], Collins and Kuperman suggested an alternative method to com-
pute eigenrays in the presence of ray chaos, i.e., the boundary value problem perspective
vice an initial value problem (e.g., shooting method) for locating eigenrays, but their
method relied on direct path optimization and did not allow for bottom or surface re-
flections. Godin [4] examined the behavior of rays versus that of wavefronts under weak
sound speed fluctuations and showed that wavefronts are much more stable than rays, in
the sense that the significant ray perturbations tend to occur along the wavefronts rather
than across them. These results suggest that a propagation model based on acoustic
wavefronts would be a useful tool for the underwater acoustics community.

The level set method is a wavefront-based model. By solving on a fixed grid in the
phase space and evolving entire wavefronts in time, the eigenray (boundary-value) prob-
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Figure 1: Arrivals at a given point in space are determined by wavefront crossing rather than shooting test rays.

lem is eliminated. Thus in complex domains, e.g., shallow water, even though the level
set problem is posed in high dimensional phase space, improvement in computational
speed may be observed because it would no longer be necessary to use a large number of
test rays to determine a solution at a given point in space; this idea is illustrated in Fig. 1.

Level set methods are generic, computational techniques introduced by Osher and
Sethian [5] for tracking the evolution of moving curves and surfaces. The advantage of
this approach is that standard partial differential equation (PDE) solvers can be employed
to solve the problem on uniform grids which may then be refined to reduce the global
error. Level set methods achieve this by representing the propagating surface implicitly
as the zero level set of a function in a higher dimensional space. This zero level set is
then transported via the underlying velocity field. In the case of acoustic propagation in
isotropic media, the propagation direction is normal to the propagating surface (wave-
front). The extension to phase space allows for the computation of multi-valued solutions
in the physical space. Multi-path propagation is handled naturally by ray tracing, but be-
comes an issue when solving on a fixed grid. In physical space, the multiply-valued so-
lutions violate well-posedness of the problem. The bicharacteristic curves, an extension
of the characteristics to the phase space, are single-valued however and hence working
in the phase space, one can capture multi-path arrivals.

Eulerian (fixed grid) geometric optics has been an active research area in the scien-
tific computing community for quite some time. Benamou [6] provides an overview of
approaches to this problem. The most similar approach to the level set method is the
segment projection method [7] in which wavefronts are tracked in phase space as pro-
jections onto each two dimensional subspace of the three dimensional phase space. This
method is effective, but requires complicated bookkeeping in order to reconstruct wave-
fronts. The approach of Osher, et al. propagates the entire wavefront in the phase space
where the bicharacteristics of the eikonal equation are well-behaved. In [8], Qian, et al.
build upon [1] by extending the method to propagation in anisotropic materials. In [9],
a method for incorporating reflecting boundaries is introduced. An alternative approach
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to handling reflections is proposed in [10], although the results in this work are tied to
assumptions on the domain geometry which do not extend easily to general scenarios in
shallow water acoustics. Qian and Leung [11, 12] developed a level set method for the
paraxial approximation. This approximation is commonly applied to ray tracing imple-
mentations as it reduces the number of independent equations to solve by propagating
in a direction that increases monotonically with time (e.g., range). The approach of Qian
and Leung reduces the dimensionality of the problem, but introduces an additional equa-
tion to be solved in the phase space to compute arrival times. This method addresses
long range propagation problems, but the present work is primarily concerned with re-
flections and scattering back toward the source, which are precluded by the paraxial
assumption.

The purpose of this work is to demonstrate an application of these foundations to the
specific problem of high frequency underwater acoustics. A fast computational method
for computing the amplitude due to spreading along a wavefront that is compatible with
the framework of the level set method is also introduced for a more complete descrip-
tion of the acoustic pressure field. The proposed method is based on a ray approach to
avoid extra computation in the higher-dimensional phase space, but takes advantage of
the phase information provided by the level set method. Section 2 reviews background
material and provides an overview of the method. Section 3 offers a description of the im-
plementation, presenting the necessary components to implement a level set method for
underwater acoustics, and in Section 4, some preliminary results demonstrating the algo-
rithm’s performance in a few sample cases including varying sound speed profiles and
reflecting boundaries are presented. Results are summarized and section 5 concludes.

2 Background

2.1 High frequency acoustics and the eikonal equation for the phase

The high frequency wave equation results from application of a classical asymptotic ap-
proximation to the linear wave equation. Following [13], start with the d-dimensional
linear wave equation for the acoustic pressure in a medium with constant density and
variable sound speed function given by c(x):

ptt−c(x)2△p=0, (2.1)

where (t,x)∈R
+×Ω, Ω⊂R

d, and it is assumed that appropriate initial and boundary
conditions are available. At very high frequencies (or more generally, when the wave-
length is very small relative to the domain geometry), the solutions to this equation ex-
hibit rapid oscillations. In order to be able to reasonably compute these solutions, apply
the geometric optics approximation by assuming a solution of the form

p(t,x)= eiωS(t,x)
∞

∑
k=0

Ak(t,x)(iω)−k. (2.2)
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Upon substitution into the wave equation (2.1), this expression yields the eikonal equa-
tion for the phase function S from the highest order terms in ω

S(t,x)±c|▽S(t,x)|=0 (2.3)

and a transport type equation for the first amplitude term

(A0)t+c(x)
▽S·▽A0

|▽S| +
c(x)2△S−Stt

2c(x)|▽S| A0=0. (2.4)

Similar transport equations can also be derived for the remaining amplitude terms, how-
ever for ω ≫ 1, only the two leading terms in the expansion are significant (this is the
geometric optics approximation).

The weakly coupled system consisting of (2.3) along with (2.4) form the equations of
high frequency acoustics.

2.2 Level set method for the eikonal equation

The eikonal equation is a Hamilton-Jacobi type equation with Hamiltonian given by
H(x,k) = c(x)|k|. The vector-valued variable k is associated with ▽S. First order PDE
of this type can be solved locally via the method of characteristics by expressing (2.3),
where, without loss of generality, only the equation with the plus sign (propagation out-
ward from the initial wavefront) is considered, in terms of the phase space variables x

and k. The Hamilton-Jacobi formulation is in the full phase space, where the variable k

is the generalized momentum. The characteristic equations are given by

ẋ(t)=▽kH(x,k)= c(x(t))
k(t)

|k(t)| , (2.5a)

k̇(t)=−▽xH(x,k)=−|k(t)|▽xc(x(t)), (2.5b)

with given consistent initial conditions x(0)=x0, k(0)=k0=▽xS(0,x0). Conservation of
the Hamiltonian ensures that, for H≡1,

|k|= |▽S|= 1

c(x)
(2.6)

holds.
The ray tracing approach involves computing x(t) from (2.5), typically using arclength

parameterization rather than unscaled time. The difficulty with solving (2.3) on a fixed
grid is that, in general, rays may cross, generating multi-valued solutions for the phase
function S at some points. Thus standard PDE solvers fail in this case. One of the ear-
lier methods for dealing with this situation was to compute the viscosity solution [14]
which forces uniqueness by computing only the first arrival time. However, in applica-
tions, multi-valued arrival times are often desired. The level set method is able to handle
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multi-valued arrival times by working in the phase space, where the bicharacteristics do
not suffer from this problem [1].

In ray tracing, the ordinary differential equations (2.5) are solved along the ray from a
starting point, x0, on the initial wavefront. Often these equations are parameterized with
respect to arclength in cylindrical coordinates in the presence of azimuthal symmetry,
(r,z), and the initial conditions are specified by a take-off angle. The level set method is
based rather on an implicit representation of the wavefront. That is, the wavefront is not
expressed explicitly as a function in the physical space, but is instead embedded as the
zero level set of a function that is defined in a higher dimensional space (the phase space).
Thus, a function that may be multi-valued or otherwise poorly behaved in the physical
space is represented by a smoothly varying and well-defined quantity in the phase space.
In fact, given the restriction (2.6), it is not necessary to utilize the full phase space in order
to find S, since the magnitude |k| is fixed, the dimension can be reduced by one. For an
example with two dimensional physical space, let

k=

(|k|cosθ
|k|sinθ

)

, (2.7)

then only θ need be considered an independent variable. In this representation, θ rep-

resents the propagation direction of the wavefront, and k =
( cos(θ)

c ,
sin(θ)

c

)

. So for two-
dimensional physical space, the reduced phase space has three dimensions. It is desir-
able to work in the reduced phase space rather than full phase space for computational
efficiency.

In two-dimensional propagation, since the wavefront is a curve in three-dimensional
reduced phase space, define a vector-valued function

Φ=

(

φ1

φ2

)

, (2.8)

referred to as the ”level set function” [1] in the phase space. Define the two components,
φ1(t,x,k) and φ2(t,x,k), such that the initial wavefront is embedded in the intersection
of the zero level sets of φ1 and φ2, i.e., the projection onto the physical space of the set
{(x,k)|φ1(0,x,k)=φ2(0,x,k)=0}. Fig. 2 offers an example of the implicit wavefront rep-
resentation as the intersection of level set surfaces for two level set functions for a two-
dimensional physical space.

To evolve the level set functions, note that the wavefront propagates in the direction
of its normal, which is the local ray direction, given by k

|k| . Consider the zero level set of a

component, φi, evaluated on the ray in phase space, i.e., φi(t,x(t),k(t))=0. Differentiating
in time and substituting from (2.5) shows that φi must satisfy the Liouville equation,

∂φi

∂t
+c(x)

k

|k| ·▽xφi−|k|▽xc(x)·▽kφi=0. (2.9)
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Figure 2: Implicit representation of 2D wavefront in the phase space.

In the reduced phase space for the two dimensional problem, (2.9) reduces to the
following transport equation

∂φi

∂t
+V·▽φi =0, i=1,2 (2.10)

with the velocity field V given as

V=





c(x)cosθ
c(x)sinθ

∂c
∂x1

sinθ− ∂c
∂x2

cosθ



, (2.11)

where x=(x1,x2) and θ is the direction of propagation in the x1-x2 coordinate plane. This
velocity field is derived directly from the ray equations (2.5). The functions φ1 and φ2 are
defined at t=0 so that the known initial wavefront is embedded as the intersection of the
zero level surfaces of the two functions. It is convenient if the source can be parameter-
ized in θ so that it can be described as

x1= f1(θ),

x2= f2(θ).

Then φ1 and φ2 can be initialized as

φ1(0,x1,x2,θ)= x1− f1(θ), (2.12a)

φ2(0,x1,x2,θ)= x2− f2(θ). (2.12b)

For instance, if the wavefront is a circle in the x1x2 plane with radius α centered at some
point (x0

1,x0
2),

φ1(0,x1,x2,θ)= x1−x0
1−αcosθ,

φ2(0,x1,x2,θ)= x2−x0
2−αsinθ
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defines such a choice. Letting α → 0 gives an appropriate initial condition for a point
source at (x0

1,x0
2). The two level set surfaces are orthogonal, an important property

since recovering the wavefront involves seeking the intersection of the level set surfaces.
Eq. (2.10) represents a decoupled hyperbolic system and can be evolved in time using
appropriate numerical techniques. The wavefront, W(x1,x2;t) may be recovered at any
time t as

W(x1,x2;t)={(x1,x2)|φ1(t,x1,x2,θ)=φ2(t,x1,x2,θ)=0}. (2.13)

A more thorough description of the level set method for geometric optics can be found
in [1].

2.3 Amplitude

In underwater acoustics, it is important to be able to compute not only the arrival times
of the wavefronts, but the amplitudes as well in order to properly simulate reverberation
or scattering for simulation and testing purposes. The amplitude (alternately expressed
as a transmission loss) consists primarily of three components: loss due to geometric
spreading, scattering loss, and attenuation loss. Attenuation causes a plane wave to
decay according to an exponential law A= A(0)e−αr due to the conversion of acoustic
energy into heat. Given information about an environment, this would be applied as a
factor multiplying the other losses. To handle scattering loss (e.g., from surface, bottom,
and objects in the environment), models have been developed for which the loss is spec-
ified as a function of incidence angle [15]. The angles of incidence and reflection at the
boundary are readily available from the level set data, thus could be incorporated into
the boundary conditions.

The greater difficulty is posed by the computation of the spreading loss. An important
consideration here is computational speed. In situations where the loss is only required
at a few distinct locations in space at a given time, loss data need not be computed every-
where on the wavefront. This can be exploited in order to speed up the algorithm. For
other applications, accuracy may be more important than speed, in that case it may be
desirable to have full wavefront information. Methods for computing the spreading loss
along a ray have long been established, cf. [13,16]. In [17–19], it is shown that the related

quantity ρ=
A2

0

c2 also satisfies (2.9). However this is a full phase space approach, which sig-
nificantly increases the computational burden. The idea of the approach presented here
is to combine the simplicity of existing algorithms with wavefront information provided
by the level set method.

Recalling (2.4), if the phase function S takes the form S(t,x)=τ(x)−t, substituting (2.2)
into (2.1) results in the Helmholtz equation and associated frequency domain equation
for the phase, |▽τ|2 = 1

c2(x)
, and amplitude:

2▽τ ·▽A0+(▽2τ)A0=0. (2.14)
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Parameterizing in terms of arclength s, the ray trajectory x(s) is defined as dx
ds = c▽τ.

Rewriting the transport equation in terms of s gives [16]

2
dA0

ds
+

[

c

Ĵ

d

ds

(

Ĵ

c

)]

A0=0, (2.15)

which has the solution

A0(s)=A0(0)

∣

∣

∣

∣

c(s) Ĵ(0)

c(0) Ĵ(s)

∣

∣

∣

∣

1/2

, (2.16)

where s is the arclength parameter, and Ĵ is the Jacobian determinant describing the
spreading of a ”ray tube” in terms of the ray arclength, s. This Jacobian is given as
| ∂x

∂(s,γ,φ1)
| with γ and φ1 as the initial declination and azimuthal angles of the ray, re-

spectively [16]. Typically the declination angle at the source is denoted θ, but γ is used
here to avoid confusion with the independent variable θ used in the level set method.
Converting to cylindrical coordinates and assuming azimuthal symmetry gives

Ĵ= r

√

(
∂z

∂γ
)2+(

∂r

∂γ
)2.

The key step in computing the amplitude using this approach is to compute the value of
the Jacobian. Section 3 proposes a method for approximating (2.16) by using the solution
provided by the level set method to compute the Jacobian Ĵ.

3 Implementation

3.1 Solving the level set equations for underwater acoustics

The implementation discussed in this work is for computing the phase function in two-
dimensional propagation. Eq. (2.10) is solved in Cartesian coordinates with a uniform
line source, parallel to the y-axis as in Fig. 3, with z representing the water depth. Thus,
the wave equation is reduced by symmetry to two dimensions given by (x,z), where z=0
at the surface, and increases with increasing depth. If azimuthal symmetry is present in
the domain and sound speed profile, a range-depth solution can be obtained by restrict-
ing to the right half of the x-z plane. Take the source to be located at (0,zs), then the level
set functions can be initialized by setting

φ1(0,x,z,θ)= x, (3.1a)

φ2(0,x,z,θ)= z−zs. (3.1b)

Solving the level set equations equates to solving a first order transport equation with
variable coefficients in the reduced phase space, (x,z,θ):

ft+c(x,z)cos(θ) fx+c(x,z)sin(θ) fz+(cx sin(θ)−cz cos(θ)) fθ =0. (3.2)
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Figure 3: Sample problem geometry: a uniform line source parallel to the y-axis.

Eq. (3.2) is a Hamilton-Jacobi equation which can be solved using upwind finite dif-
ferences as described in [20]. The complications arise from the boundary conditions. In
this work, two types of boundary conditions have been applied: pure reflection and ab-
sorbing. The absorbing condition is handled naturally; the wavefront simply flows out of
the domain. However, recall that the level set equations are solved in the full domain and
for all −π≤θ<π, hence an inflow condition must be imposed at the boundary. One way
to do this is to modify the differencing at inflow to use only data within the truncated
domain. Alternately one could impose a zero flow Neumann condition.

The domain truncation at inflow will distort the solution near these boundaries, and
the effect will worsen over time. In this level set method, only the intersection of zero
level sets, representing the wavefront, is of interest. Since the wavefront propagates away
from the source, the distortion at inflow is sufficiently removed from the zero level set.
That is, perturbations to the level set function far from the wavefront do not affect the
zero level set. It is important to keep in mind though that for very long time integration
or for very sparse grids, the level set functions may need to be re-initialized periodically
to prevent distortion of data close to the wavefront. For a discussion of reinitialization,
see [1].

The reflection boundary condition poses a slight complication. To impose a reflection
boundary condition at, say, the surface {z=0}, set [9]

φ1(t,x,0,θre f l)=φ1(t,x,0,θinc), (3.3a)

φ2(t,x,0,θre f l)=φ2(t,x,0,θinc), (3.3b)

θre f l =−θinc (3.3c)

in accordance with Snell’s Law. Here, θinc and θre f l are, respectively, the angles incident
upon and reflected from the surface. For a general boundary, the condition would be

θre f l =2θB−θinc−π, (3.4)

where θB is the angle of the outward normal to the reflecting surface. This construction,
under the velocity field given by (2.11) results in a sharp cusp at the boundary that grows
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like 2c0t in the case of a constant sound speed c(x,z)= c0, at vertical incidence. This can
be seen by recognizing that under a constant wave speed, (2.10) has the solutions

φ1(t,x,z,θ)= x−c0tcosθ,

φ2(t,x,z,θ)= z−zs−c0tsinθ.

Of course, vertical incidence is a worst-case scenario; at less severe angles, the vertical
component of the velocity field, c0sinθ, is reduced in magnitude. However, the singu-
larity will worsen in severity for higher sound speeds and for longer periods of time
integration. Such features may produce spurious oscillations when standard finite differ-
encing methods are used. To mitigate this issue, a Weighted Essentially Non-Oscillatory
(WENO) [21] interpolation based method is employed to obtain the spatial derivatives,
and this is coupled with Total Variation Diminishing Runge-Kutta (TVDRK) [22] time in-
tegration. The first order TVDRK is equivalent to Forward Euler. These are Runge-Kutta
methods designed to ensure that oscillations in the numerical approximation diminish
over time. It is also necessary to be careful about interpolating in θ near the boundary for
this reason. For this purpose, coefficients for WENO interpolation at an arbitrary point
were derived and are presented in the Appendix.

WENO methods are high order methods; while higher order methods generally in-
volve more computational work per grid point, there is a trade-off in that high order
solvers require fewer grid points to meet a given error tolerance. To compute the time
derivatives, first, second, and third order TVDRK methods are used. The WENO solvers
that have been implemented for this work have orders ν=1,3, or 5. The subsequent exam-
ples were produced using a combination of fifth order WENO and third order TVDRK.
WENO methods are discussed further in the Appendix; for further details on TVDRK
methods, the reader should refer to [22]. It is worth noting that Cheng proposes a semi-
Lagrangian approach to propagating the level sets in phase space in [23]. In the present
work, better performance was observed from the higher order WENO methods when the
source was located close to a reflecting boundary.

The other matter with respect to boundary handling is the fact that the boundary
location might not be in the (Cartesian) grid. One could use a non-uniform grid, but
this affects the accuracy of the underlying WENO method. Instead, experimentation has
shown that approximating the location of the boundary by the nearest grid points yields
convergence. Two examples for which the boundary does not conform to the grid are
presented in Section 4.

3.2 Solving the transport equation for the amplitude

In the level set method presented in this work for 2D propagation in the x-z plane, two
level set functions φ1(t,x,z,θ) and φ2(t,x,z,θ) are defined in the reduced phase space
⊂R

2×[−π,π], where θ gives the propagation direction of the wavefront (normal to the
wavefront). Solving the level set equations for φ1 and φ2, the wavefront can be extracted
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as the intersection of the zero level sets of φ1 and φ2. The objective is to use this informa-
tion along with the initial condition in (2.15) to compute the solution given by (2.16). It is
assumed at this point that no reflections occur; that is reserved for future extension.

3.2.1 Approach

Let W(t) = {x|φ1(t,x,k)=φ2(t,x,k)=0} be the wavefront extracted from the level set
method at time t. The goal is to compute the spreading loss at a given point x(t)∈W(t),

where x is specified in a Cartesian coordinate system, x(t)=(x(t),y(t),z(t))T
. To solve the

amplitude problem, the 3D scenario is considered with azimuthal symmetry and spher-
ical spreading. Cylindrical spreading can also be treated (line source) with appropriate
modification to the Jacobian. Suppose the loss is known along the wavefront at the pre-
vious time step, W(t−∆t), and identify x(t−∆t) with x0. Then in light of the above, it
can be written that [13]

A(x(t))=A(x0)
c(x(t))

c(x0)

√

∣

∣

∣

∣

J(0)

J(∆t)

∣

∣

∣

∣

. (3.5)

In this notation, t is the ray parameter, and x(t) is the ray trajectory, that is, the point on
the wavefront at the current time t evolved according to the ray direction from the point
x(t−∆t)=x0. The Jacobian in this formulation is given based on a time parameterization.
It is convenient to use time as a parameter here since the level sets formulation is in the
time domain. Since the initial condition is at time t−∆t, the Jacobian is evaluated for one
time step. By definition, J(0) = 1. If c(x(t)) is constant, then the rays are simply radial
lines directed away from the source.

If the sound speed varies slowly with respect to the time evolution of the wavefront,
the sound speed can be approximated as locally constant. Assume, without loss of gen-
erality, that the acoustic source is located at the origin. Let x be a point on the wavefront
at which the loss is to be computed, at some time t=n∆t, with n>1 a positive integer. A
ray can be traced back one time step using an ODE integrator (this is essentially a semi-
Lagrangian scheme) to find the point on the wavefront, along that ray, at the previous
time corresponding to x, call this point x0. Now let y = x−x0, and let c̄ = c(x0) be the
wave speed at the location x0, which is assumed to be locally constant. Then this ray has
the exact form

y(t)=y0+ c̄t
y0

|y0|
(3.6)

and the Jacobian matrix is

I+t
c̄

|y0|

(

I− y0y0
T

|y0|2

)

. (3.7)

It is assumed here that y0 6=0 is an arbitrary point along the ray from the origin to y. The
Jacobian determinant J of the transformation from y0 at time t=0 to y(t) is given as

J(t)=

(

1+t
c̄

|y0|

)2

. (3.8)
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Expression (3.8) describes spherical spreading of rays in a medium with constant wave
speed, and its value depends only on the distance of the starting location from the origin
(source), and the distance traveled by a particle along the ray. It is independent of the
actual location in space of the starting point (except that it cannot be evaluated directly
for a ray starting at the origin).

To translate back to x coordinates, take y0=ǫ
y
|y| where ǫ>0 is small. Then y0 maps to

a starting point x0+ǫ x−x0

|x−x0| . Evaluate (3.8) at t∗=∆t− ǫ
c̄ so that the evaluation point maps

to the desired location x, and let ǫ→0, yielding

J(∆t)= lim
ǫ→0



1+
(

∆t− ǫ

c̄

) c̄
∣

∣

∣x0+ǫ x−x0

|x−x0|

∣

∣

∣





2

=

(

1+
∆tc̄

|x0|

)2

. (3.9)

Substituting the above into (3.5) yields

A(x(t))=A(x0)
|x0|

|x0|+ c̄∆t
. (3.10)

Since it was assumed that c(x) is constant along the ray from x0 to x, the term from (3.5)
involving the sound speed cancels.

Eq. (3.9) is only valid locally, so consider N rays corresponding to wavefront locations

at time t given by
{

xi
}N

i=1
. These locations correspond to N locations on the wavefront

at time t−∆t, given by
{

x0
i
}N

i=1
. Let ci denote the constant sound speed value for ray i.

To compute the spherical spreading, express x0
i = ri

0

(

cosγicosφi,cosγi sinφi,sinγi
)

, with
ri

0 = |xi
0−xs| where xs is the source location. Then the spreading loss at the point xi(t)

along the wavefront is approximately

A(xi(t))=A(x0
i)

ri
0

ri
0+ci∆t

, i=1,··· ,N. (3.11)

The value of A(xi
0) can be estimated by interpolating the known values along the wave-

front. For instance, if the wavefront is in the form of a circle in the x-z plane, it can be
expressed as

A(x,y)=A((x−xs)cos(θ),(z−zs)sin(θ)), (3.12)

where (xs,ys) is the source location, then interpolated in θ to obtain A(xi
0)=A(θi

0).
In the case of cylindrical spreading (line source), the Jacobian Jcyl(∆t) is similarly

given by

Jcyl(∆t)=1+
c̄∆t

|x0|
. (3.13)
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The corresponding expression for the amplitude is

A(xi(t))=A(xi
0)

√

ri
0

ri
0+ci∆t

. (3.14)

3.2.2 Initialization

The preceding derivation assumes that the function A(x) is known on W(t−∆t). That
information can be used to step forward in time to evolve the amplitude along with the
level sets, or as post-processing. At t = 0, the initial condition to the wave equation is
taken as a point source located in space at xs = (xs,ys,zs), or in the 2D formulation in
the x-z plane, the source is located at xs = (xs,zs). The source is associated with some
initial, known, source level, Asource. The Jacobian is not defined at the source, so another
technique must be used. To initialize the procedure, proceed as in [16]. The exact solution
for the pressure field due to a point source in an unbounded, homogeneous medium with
sound speed c0 is proportional to

p(x(t))=−Sω
eiωt

4πc0t
. (3.15)

The value Sω represents a known source strength, in terms of the surface displacement
of a small, spherical source, and is proportional to Asource. Given the general form of the
pressure,

p(x)=A(x)eiωτ(x), (3.16)

it can be deduced that

A(x(∆t))=−Sω
1

4πc0∆t
. (3.17)

3.2.3 Algorithm

An outline of the algorithm for computing the amplitude using the ray-based procedure
for 2D propagation in the x-z plane is given below. Suppose there is a known set of points
{x0

i}N
i=0 along a wavefront at a time t0, the values of A(x0

i(t0)) for i=1,··· ,N, and a set
of points along the evolved wavefront, {x1

i}M
i=0 at time t1 = t0+∆t, the following steps

are used to compute A(x1
i(t1)), i=1,··· ,M. Let x1

i=(xi
1(t),z

i
1(t)). Then,

1. Solve the backward ray equations in the time domain:

ẋ(t)= c(x(t))cosθ(t),

ż(t)= c(x(t))sinθ(t),

θ̇(t)=
∂c

∂x
sinθ(t)− ∂c

∂z
cosθ(t),
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subject to xi(t1)= xi
1 and zi(t1)= zi

1. Also assume θi(t1) for i=1,··· ,M is available from the
level set data. This solve can be implemented using a simple Euler method backward in time as

xi(t0)=xi
1−c(x1

i)∆tcosθi(t1),

zi(t0)=zi
1−c(x1

i)∆tsinθi(t1),

θi(t0)=θi(t1)−∆tVθ,

where

Vθ =
∂c

∂x

∣

∣

∣

xi
1

sinθi(t1)−
∂c

∂z

∣

∣

∣

xi
1

cosθi(t1).

Note that the sound speed is assumed to be smooth so that these derivatives exist. A higher
order method could be applied, but in the general case may require a nonlinear solve depending
on the form of c. A first order method is used here due to its simplicity and the fact that the
wavefront locations are only available to first order.

2. Compute the range from the acoustic source to xi(t0) for i=1,··· ,N:

ri
0=
√

(xi(t0)−xs)2+(zi(t0)−zs)2,

where the source is located at (xs,zs).

3. If t1=∆t (first step only), compute the arclength

si =
∫ t1

t0

c(xi(t))dt

for each ray, xi(t).

4. Consider the amplitude along the wavefront at t0 to be a function of the phase space variable θ,
A=A(θ(t)) and interpolate to find A(θi(t0)) for each i. This breaks down when the wavefront
bounces or runs outside of the domain. Addressing that case is set aside for future work.

5. If t1>∆t, set

A(x1
i)=A(x0

i)
ri

0

ri
0+∆tc(x0

i)
.

Otherwise, set

A(x1
i)=Asource

1

si
.

6. Step forward in time and repeat.

3.2.4 Remark

The proposed approach to computing the amplitude has very nice stability properties.
Assuming that a linear (or other well-behaved) interpolation scheme is applied to the
amplitudes at time t−∆t, the result A(x(t))≤ A(x(t−∆t)) holds for any ∆t. This is a
standard result for semi-Lagrangian type methods. However if ∆t is allowed to be too
large, the accuracy will suffer from the constant wave speed approximation. This result
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will not apply when A blows up due to a caustic; handling of caustics is a challenge left
to future work, possibly by adapting the approaches of [24] or [25]. Both of these works
use a Gaussian beam model to propagate the spreading loss; the GRAB (Gaussian Ray
Bundles) [25] approach applies an empirically derived threshold to prevent blow-up at
caustics. Since the proposed method is based on the Lagrangian form, these approaches
could be applied directly as an enhancement. Caustics do not represent a numerical
instability, but a consequence of the high frequency limit in the geometric optics approx-
imation. By construction, this method will not lead to infinite amplitudes, but special
treatment will be necessary to produce accurate approximations in the vicinity of and
beyond caustics.

4 Results

In this section, some computational results are presented to show convergence of the
wavefronts computed using the level set method, and compare the solutions to those of
the full wave equation.

4.1 Comparison to exact solutions

The examples in this section are test cases for which analytical solutions are available to
study convergence. Results for two sound speed profiles are presented in the absence
of reflections from surface or bottom. The results are based on implementation of a fifth
order WENO scheme coupled with third order TVD Runge-Kutta time integration on
an N×N×N grid. Comparison is made with the exact solutions after 0.1 seconds and
errors are reported in the max norm, evaluated in a fixed neighborhood of the wavefront
(and for the linear profile example, away from vertical angles where the exact solution is
poorly behaved). The theoretical convergence rate is not observed immediately, but even
for comparatively sparse grids, observed convergence is faster than first order.

4.1.1 Isovelocity profile

This example uses c= 1.0 km/s, independent of location in space, and a point source at
z=zs=0.5 km with x∈[−1,1] and z∈[0,1]. In this case the characteristics are straight lines
so θ(t)=θ0 and the solutions to the level set equations are given as φ1(t,x,z,θ)=x−tcos(θ),
and φ2(t,x,z,θ)=z−zs−tsin(θ). The results, evaluated at t=0.1 s and without reflection,
are presented in Table 1.

Initially, the solution appears to be converging like 1
N2 . The expected fifth order con-

vergence is observed at N = 160, then the error decreases even more rapidly as N is
increased to 320.
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Table 1: Accuracy analysis 1: c = constant.

N Error (max norm) Effective Order
20 3.306945E-03 –
40 8.509789E-04 1.96
80 1.164058E-04 2.87
160 2.695106E-06 5.43
320 2.312644E-09 10.19

4.1.2 Linear profile

An exact solution to the level set equations is available for the case of a profile linear in
depth: c(z)=αz+β, where α and β are constants. For this example, α=0.5 and β=1.0 are
chosen, where units are again in km/s. The initial condition is a point source at z=zs=0.5
km with x∈[−1,1] and z∈[0,1]. The exact solution for this case is given (away from θ= π

2 )
by

φ1(t,x,z,θ)= x+γ̂

(

z+
β

α

)

1−e2αt

1+γ̂2e2αt
, (4.1)

φ2(t,x,z,θ)=

(

z+
β

α

)

(

1+γ̂2
)

eαt

1+γ̂2e2αt
− β

α
−zs, (4.2)

where

γ̂= tan

(

θ

2
+

π

4

)

. (4.3)

The results of this investigation are presented in Table 2.

Table 2: Accuracy analysis 2: c(z) linear.

N Error (max norm) Effective Order
20 5.253662E-03 –
40 3.423236E-03 0.62
80 4.712438E-04 2.86
160 1.382231E-05 5.09
320 5.375073E-08 8.01

The observed convergence rate is somewhat slower in this case than for the isove-
locity profile, but still fifth order convergence is observed at N=160 and rapidly begins
to approach the true solution for larger N. The slower convergence in this case is likely
due to the fact that the isovelocity problem is actually a two-dimensional problem in the
phase space, since the direction of travel, θ, is constant and hence the θ component of the
velocity field is zero. When a variable sound speed is introduced, the problem is fully
three-dimensional.
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4.2 Examples involving reflection

This section presents computational results for profiles with reflecting boundaries. The
examples with grid-conforming boundaries were computed using a 50 x 50 x 50 grid. The
examples with sloping boundaries use an 80 x 80 x 80 grid. The format for presenting the
results in Figures 4 to 6 is time snapshots of the wavefront superimposed on contours
from a full wave equation result for the same profile and ocean geometry. Including
the amplitude contours from a finite frequency full wave solver serves as a check on the
accuracy of the solutions. The profiles used were selected for theoretical illustration and
are not realistic ocean profiles.

4.2.1 Linear in depth and range profile with flat, reflecting bottom

Fig. 4 applies a profile linear in both x and z: c(x,z)=0.5x+0.5z+c0 to the same scenario.
This example serves to illustrate that sound speed range dependence is a natural feature
of this algorithm. The full wave equation solver is a finite frequency solution so it does
not produce wavefronts exactly, but the wavefront is located where the contours appear
to be converging together, corresponding to a rapid change in amplitude. The thick,
black line representing the wavefront computed at each specified time step is seen to lie
right on the leading edge of the converging contours, as expected, even after multiple
reflections.
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Figure 4: Time snapshots of wavefronts (thick, black curve) computed using level sets, superimposed on full
field amplitude contours: c(x,z)=0.5x+0.5z+c0 km/s.

4.2.2 Isovelocity profile with sloping bottom

The next two examples are included to illustrate the handling of a bottom geometry that
is dependent on the x variable. The simplest such type of domain incorporates a slop-
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Figure 5: Time snapshots of wavefronts (thick, black curve) computed using level sets, superimposed on full
field amplitude contours: 9◦ upslope.
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Figure 6: Time snapshots of wavefronts (thick, black curve) computed using level sets, superimposed on full
field amplitude contours: 9◦ downslope.

ing bottom. Fig. 5 shows the results with an upslope of 9◦ from horizontal, while Fig. 6
was produced with a downslope of 9◦ from horizontal. The computational challenge
presented by this case is the representation of a boundary that does not conform to the
Cartesian grid employed to extract the desired convergence rate from the WENO method
which is heavily dependent on uniform grid spacing, or equivalently, a smooth mapping
to a uniform grid. Through experimentation, it was discovered that greater stability was
achieved by implementing the boundary condition at the nearest grid point to the physi-
cal boundary location, rather than modifying the grid to include the boundary. Although
this results in some irregularity in the extracted wavefronts post-reflection, the figures in-
dicate a very nice match with the apparent true wavefront location. The boundary effects
have been shown to be reduced as the grid is resolved. Both examples use the sound
speed c=1.5 km/s, a reasonable value for a shallow water ocean environment [26].
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4.3 Example with variable sound speed profile

4.3.1 Propagation in a channel

In this example, a profile that simulates a waveguide presents an interesting compari-
son between the ray trace and wavefront models. The model is an acoustic analog of
the quantum harmonic oscillator, discussed in more detail by Foreman [27]. This profile
yields a normal mode solution that is tractable at low frequencies, but the behavior be-
comes more complicated in the high frequency limit. A source is placed at zs =0.5 km in
a field with

c(z)=
c0

√

1−
(

1− z
zs

)2
,

and a sound speed of c0=1.5 km/s (Fig. 7) at the source depth. This scenario represents a
waveguide, symmetric about the sound channel axis at z=zs, as c(z) approaches infinity
at the channel boundaries z=0 km and z=1 km. The rays are oscillating functions about
the sound channel axis. In the wavefront model, this corresponds to a periodically self-
crossing wavefront. Fig. 8 shows snapshots of the wavefront computed using the level
set technique with wavefronts extracted from a ray trace superimposed for validation.
The match is very good away from the source. The errors are greater closer to the source,
but this can be resolved by using a finer grid in the level set implementation.
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Figure 7: Sound speed as a function of depth for harmonic oscillator profile.

4.4 Examples with scattering

4.4.1 Scattering off bottom features

The following examples explore range dependence a little further by introducing rectan-
gular (grid-conforming) features in the domain. In order to avoid overcomplicating the
scenarios, the sound speed profile was held constant at c=1.5 km/s. In Fig. 9, a rectan-
gular scatterer is placed on the ”ocean” bottom. As would be expected from a pure geo-
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Figure 8: A subset of the time snapshots of wavefronts computed using level sets: c(z)=c0/
(

√

1−(1−z/zs)
2),

with wavefronts extracted from an analogous ray trace appearing as circles superimposed on the level sets
wavefronts.

metric optics approximation, the diffraction at the corner is not represented by the level
set method. Away from the corner, the results agree nicely with the full wave equation
model, however a spurious zero level set appears in the phase space when the wavefront
reflects off of the object. This can be understood more easily by considering a plane wave
source. Recall that the wavefront is represented in the model as the intersection of zero
level sets of two functions. Thus the function is positive on one side of the front, say the
leading part and negative on the other (lagging). When part of the wavefront reflects off
the object, the positive values reflect back in the opposite direction in the phase space,
but the part that does not encounter the object retains the same sign in that direction,
creating a discontinuity. Because there is a change of sign over this discontinuity, a zero
level set exists as an artifact. One could apply edge detection to remove this artifact, but
that is not terribly reliable as an approach because it is difficult to distinguish numerically
between a discontinuity and a steep gradient in a smooth function. Instead, since this is a
non-physical effect, a proper computation of the amplitude, when incorporated, should
assign negligible weight to those locations along the computed wavefront.

4.4.2 Scattering from an obstacle

This final example, in Fig. 10, is included to demonstrate a potentially useful application
for an acoustic level set method. The rectangular geometry is kept for the sake of con-
forming to the grid, but this time the scatterer is an object in a domain with absorbing
boundaries, which could represent an object in the deep ocean. The point source is lo-
cated at zs =0.5 km and the sound speed is again c=1.5 km/s. This example also suffers
from the same effects as the above examples (i.e., the spurious zero level sets upon reflec-
tion). However this example really demonstrates how this method changes the point of
view for a scattering problem from the ray-based situation to having the ability to fully
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Figure 9: Time snapshots of wavefronts (thick, black curve) computed using level sets in the presence of a
rectangular bottom scatterer.
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Figure 10: Time snapshots of wavefronts computed using level sets in the presence of a scattering obstacle in
the domain.

capture shape information from acoustic reflection off an object. A ray-based model in-
volves the specification of locations on the object, dependent upon its orientation if it’s
not spherically symmetric, to which to trace eigenrays in order to simulate a response.
Using a wavefront model, one can fully utilize the object’s shape information and avoid
having to compute eigenrays.

4.5 Validation of the spreading loss

In this subsection, some computational results are presented to show convergence of the
wavefronts computed using the level set method, and compare the solutions to those of
the full wave equation. A few test cases have been prepared to validate that the proposed
algorithm for computing the spreading loss from the wavefronts resulting from the level
set method procedure produces an acceptable result. A comparison with the theoretical
spreading loss in an isovelocity environment (Fig. 11) with c=1.5 km/s shows excellent
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Figure 11: Level set method wavefront amplitude as a function of range compared to theoretical result.

agreement from the method outlined in Section 3.2. The agreement is expected in this
case since the constant sound speed assumption holds everywhere.

Further comparisons were also performed using the amplitudes computed using the
RAY [28] software package. In each case, a point source is located at zs = 0.5 km with
z∈ [0,1] km. Under the assumptions of no surface or bottom bounces (deep water only)
and short time propagation (so no crossing rays), wavefront data were extracted and ac-
cumulated over time and the amplitudes interpolated to produce Figs. 12, 14, and 16.
Accompanying these figures, Figs. 13, 15, and 17 show good agreement in direct com-
parisons of the fields computed along a horizontal slice at the source depth. Figs. 12 and
13 were generated with an isovelocity environment (c=1.5 km/s). Figs. 14 and 15 result
from a linear (in z) sound velocity given by c(z)= 0.5z+c0, with c0 = 1.5 km/s. Figs. 16
and 17 display results using the sound velocity profile

c(z)=
c0√

1+2.4z/c0

,

with c0=1.55 km/s.

5 Conclusion

Level set methods provide an alternative framework for numerical solutions to the high
frequency approximation to the wave equation. A fixed-grid point of view is advanta-
geous for medium range (about 1 kilometer), high frequency modeling. In particular, it
is very difficult to compute accurate eigenray solutions for active sonar in shallow wa-
ter environments with range-dependent bathymetric features. Another situation where
level set methods will hold an advantage is when multiple sound sources and receivers
are present. To find the arrival times or amplitudes at a location using rays, one would
have to trace two-way ray paths (eigenrays) between each possible source/receiver pair.
With an Eulerian approach, the sources can be embedded into a single level set function
and the wavefronts propagated together. Time arrivals are identified with the times of
simultaneous zero crossings of the components of the level set function at the receiver
location(s).
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RAY (right) for a constant sound speed.
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Figure 14: Spreading loss computed using Level Set
Method (left) compared to extracted loss from RAY
(right) for a sound speed function varying linearly in
depth.
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Figure 15: Spreading loss validation – horizontal
slices through the fields shown in Fig. 14 at source
depth.
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Figure 16: Spreading loss computed using Level Set
Method (left) compared to extracted loss from RAY
(right) for a sound speed function with square in-

verse varying linearly in depth (n2 linear).
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slices through the fields shown in Fig. 16 at source
depth.
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This work has introduced a method that applies a level set formulation to the high
frequency acoustics problem; the model was discussed in Section 2, its implementation
described in Section 3, and some basic examples provided in Section 4 to validate the
model and illustrate its capabilities. The effects of reflecting boundary conditions have
been studied and appropriate methods employed to improve computational results in
such domains. A limitation of the method was exposed wherein discontinuities in the
level set function resulting from reflections off of an object in the domain leads to the
detection of spurious zero level sets by the graphics processing routines. Reflections are
an important consideration for shallow water acoustics, and a reasonable approxima-
tion at high frequencies where the amount of energy transmitted into the sea bottom is
negligible. An efficient, ray-based approach to computing the spreading loss from the
wavefront data has also been presented and validated in the absence of boundary reflec-
tions. There are several open issues left to future work. Certainly the computation of
amplitude needs to be extended to handle reflections and also to incorporate scattering
and attenuation losses to fully represent the pressure field. A fully three-dimensional
propagation implementation would be useful and interesting. It would also be interest-
ing to consider incorporating higher order effects (e.g., diffraction) into the model. Since
the level set method and ray tracing are both based on the geometric optics approxima-
tion, the level set method also leads to unbounded amplitudes at caustics, so it would
be worth investigating approaches to computing physically realistic amplitude values in
such situations.
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Appendix: Essentially Non-Oscillatory (ENO) and Weighted ENO

(WENO) interpolation

In ENO interpolation, introduced by Harten et al. [29] and later refined by Shu and Os-
her [30,31], one seeks to choose an a appropriate stencil on which to approximate a func-
tion, which may be only piecewise smooth, by Lagrange polynomials. The idea is to
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isolate points of discontinuity, using a measure of the function’s variation. That is, the
stencil is adaptive, versus using a fixed stencil as in a standard interpolation routine.
WENO interpolation, extends ENO by combining the results from all candidate sten-
cils to achieve O(∆x2k−1) accuracy, where k is the accuracy order of the underlying ENO
method. Only the one-dimensional problem is discussed here, but the extension to multi-
ple dimensions for implementation of a level set method is straightforward. In particular,
on the Cartesian grid, the same operations are performed in each dimension.

A.1 ENO finite difference reconstruction

As in Shu’s comprehensive report [21], for polynomial reconstruction in one dimension,
establish a uniform grid {xi− 1

2
}N

i=0, with ∆x=x 1
2
−x− 1

2
. That the grid is uniform is critical

for the finite difference formulation, but this requirement can be relaxed if a finite volume
scheme is employed instead, or if a smooth transformation to a uniform grid is available.
The present implementation is built on finite differences, so a uniform grid is assumed.
Define the cells Ii=

[

xi− 1
2
,xi+ 1

2

]

for i=0,··· ,N−1. Assume the values of the function f (x)

are available at the cell centers, { f (xi)≡ fi}N−1
i=0 . The goal of ENO is to use these values to

construct an approximation, f̂i+ 1
2
, such that

∂ f

∂x

∣

∣

∣

xi

=
f̂i+ 1

2
− f̂i− 1

2

∆x
+O(∆xk). (A.1)

In the context of the simple conservation law ut+ux=0, f̂i+ 1
2

can be viewed as a numerical

flux function for f (u)=u.
For each cell Ii, define the k-point stencil Sr(i):

Sr(i)={xi−r ,··· ,xi+s}, (A.2)

where r+s+1 = k. In ENO, one begins with a single cell stencil then adaptively adds
points depending upon the value of some smoothness measure, e.g., the divided differ-
ence, so that r depends on the cell i. The function values fi are viewed as the cell averages
of some unknown function, h(x):

f (x)=
1

∆x

∫ x+ ∆x
2

x− ∆x
2

h(ξ)dξ. (A.3)

Take H(x)=
∫ x
−∞

h(ξ)dξ. Rather than directly approximating f (x), the relationship of the
implicitly defined function h(x) to f (x) is

f ′(x)=
1

∆x

(

h(x+
∆x

2
)−h(x−∆x

2
)

)

,

which allows one to define a flux function in terms of the reconstructed values of h at the
cell edges,

{

h−
i+ 1

2

}N−1

i=0
and

{

h+
i− 1

2

}N−1

i=0
. The − and + superscripts indicate the limits from
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the left and right, respectively. To find these approximations, seek a polynomial pi(x)
defined on Sr(i) such that pi approximates h in the sense that

1

∆x

∫ x
i+ 1

2

x
i− 1

2

pi(ξ)dξ= fi . (A.4)

To achieve an estimate satisfying (A.1), require that the polynomial pi has degree at most
k−1. Now define the primitive of pi as Pi(x)=

∫ x
−∞

pi(ξ)dξ. Then, Pi(x) is related to f as

1

∆x

(

Pi(xi+ 1
2
)−Pi(xi− 1

2
)
)

= fi.

There is also the relationship

h−
i+ 1

2

= pi(xi+ 1
2
)=P′

i (xi+ 1
2
),

h+
i− 1

2

= pi(xi− 1
2
)=P′

i (xi− 1
2
).

Take Pi(x) to be the Lagrange polynomial interpolating the function H(x) over the k+1
points xi−r−1/2,··· ,xi+s+1/2, so Pi satisfies

Pi(x)=
k

∑
m=0

H(xi−r+m−1/2)ℓ
k
i,r,m(x).

The form of the Lagrange polynomial can be found in any basic numerical analysis text-
book, and is represented here as

ℓ
k
i,r,m(x)=

k

∏
l=0
l 6=m

x−xi−r+l−1/2

xi−r+m−1/2−xi−r+l−1/2
.

To eliminate the dependence on the unknown function H(x), write

Pi(x)−H(xi−r−1/2)=
k

∑
m=0

(H(xi−r+m−1/2)−H(xi−r−1/2))ℓ
k
i,r,m(x)

=
k

∑
m=1

(

m−1

∑
j=0

fi−r+j∆x

)

ℓ
k
i,r,m(x), (A.5)

so that Pi(x) is expressed in terms of the data, { f j}. Upon differentiating (A.5), rearrang-
ing terms, and substituting x= xi+1/2 and x= xi−1/2, one can see that the reconstructed
values on the stencil Sr(i) have the form

h−
i+ 1

2

=
k−1

∑
j=0

crj fi−r+j, h+
i− 1

2

=
k−1

∑
j=0

c̃rj fi−r+j, (A.6)
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where the constants crj and c̃rj are grid-dependent as derived from the derivatives of the
Lagrange polynomials. Furthermore, given the definitions of h−

i+ 1
2

and h+
i+ 1

2

and the sten-

cil Sr(i), it is apparent that c̃rj = cr−1,j. The values of crj as presented in [21] are provided
here for completeness in Table 3.

Table 3: Constants for reconstruction in (A.6), for k=1,2,3.

k r j=0 j=1 j=2

1 −1 1

0 1

2 −1 3
2 − 1

2

0 1
2

1
2

1 − 1
2

3
2

3 −1 11
6 − 7

6
1
3

0 1
3

5
6 − 1

6

1 − 1
6

5
6

1
3

2 1
3 − 7

6
11
6

A.2 WENO finite difference reconstruction

WENO is an extension of ENO, based on the observation that ENO adaptively selects
a single stencil for each cell and so effectively uses 2k−1 cells to obtain order k accu-
racy. Instead, Liu, Osher, and Chan [32] proposed that all candidate stencils be com-
bined into an order 2k−1 accurate reconstruction. This is accomplished by defining
weights on each stencil so that approximations on stencils where the function appears
to be smooth are given a significant weight and those in stencils containing a discontinu-

ity are given very small weight. Let h
(r)
i+1/2 represent the reconstruction on the rth stencil

Sr(i)={xi−r ,··· ,xi−r+k−1}, that is, using (A.6),

h
(r)
i+1/2 =

k−1

∑
j=0

crj fi−r+j, r=0,··· ,k−1. (A.7)

Then there are weights ωr satisfying ωr ≥0 and ∑
k−1
r=0 ωr =1 such that

hi+1/2=
k−1

∑
r=0

ωrh
(r)
i+1/2=h(xi+1/2)+O(∆x2k−1).

A Taylor expansion,

hi+1/2=
k−1

∑
r=0

drh
(r)
i+1/2, hi−1/2=

k−1

∑
r=0

dk−1−rh
(r)
i−1/2, (A.8)
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Table 4: Constants dr from (A.8), for k=1,2,3.

k d0 d1 d2

1 1 - -

2 2
3

1
3 -

3 3
10

3
5

1
10

approximates h(xi+1/2) and h(xi−1/2) (by symmetry) with error O(∆x2k−1). The con-
stants dr are repeated from [21] in Table 4 for completeness.

When the stencil contains a discontinuity, it is desired that the stencil be assigned a
weight ωr ≪1, and in smooth regions ωr ≈dr. The weights take the form

ωr =
αr

∑
k−1
s=0 αs

(A.9)

for r=0,··· ,k−1, where

αr =
dr

(ǫ+βr)
, α̃r =

dk−1−r

(ǫ+βr)
2

. (A.10)

Here βr is the smoothness factor, and ǫ is just a small constant to prevent division by
zero. A choice for βr is given in [33] that is based on the variation of the reconstruction
polynomial pr(x) defined by stencil Sr(i) in cell Ii:

βr =
k−1

∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1

(

∂pr(x)

∂x

)2

dx. (A.11)

The expressions for computing βr from the function values { fi}N−1
i=0 can be derived from

the form of the reconstruction polynomial, or refer to [21]. The WENO procedure is
summarized in Algorithm 1.

Algorithm 1 WENO Reconstruction of h+i−1/2, h−i+1/2

Require: i≥0, data { fi+r}k
r=−k, ǫ>0 {ǫ=10−6 as implemented}

for r=0,··· ,k−1 do

Compute h
(r)
i+1/2 and h

(r)
i−1/2 using (A.6), and Table 3

Compute βr using (A.11)
Compute αr and α̃r using Table 4 and (A.10)

end for

Compute ∑
k−1
s=0 αs and ∑

k−1
s=0 α̃s

for r=0,··· ,k−1 do

Set ωr =
αr

∑
k−1
s=0 αs

and ω̃r =
α̃r

∑
k−1
s=0 α̃s

end for

Construct h−i+1/2=∑
k−1
r=0 ωrh

(r)
i+1/2 and h+i−1/2=∑

k−1
r=0 ω̃rh

(r)
i+1/2
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The WENO procedure results in approximate function values at the cell edges. These
values are then available for substitution into an appropriate numerical flux to compute

the upwind spatial derivative,
∂ f
∂x , at the cell centers xi. The reader may refer to relevant

sections in [21] or [20], for examples of numerical flux functions.

A.3 WENO reconstruction at an arbitrary point

This section describes how the WENO procedure is adapted to reconstruct a function
f (x) at an arbitrary point x∗, where x∗∈ Ii for some i∈{0,1,··· ,N−1}. The WENO proce-
dure results in a degree k polynomial representation of the function h(x), denoted p(x),
which relates to f (x) as in (A.3),

p(x)=
k−1

∑
j=0

γjx
j,

with the constants γj, j=0,··· ,k−1 determined by the WENO procedure.
The goal is to approximate the value of f (x∗) using the values of f (x) at the cell cen-

ters, fi. In fact, for the approximation over the stencil Sr(i)={xi−r ,xi−r+1,··· ,xi−r+k−1}, if
p f (x) is the approximating polynomial to f (x) on cell Ii, then

p
(r)
f (x∗)=

k−1

∑
j=0

ĉrj fi−r+j, (A.12)

for r = 0,··· ,k−1. The constants ĉrj are computed to achieve an order k approximation
to the function f . To determine the constants, let Ii be the cell in which the point x∗ is
located, and define (on a uniform grid)

α=
x∗−xi−1/2

∆x
(A.13)

so that 0≤α<1 and
x∗= xi−1/2+α∆x. (A.14)

Given this expression, assume f is smooth in the cell Ii, expand f in a Taylor series about
the point xi−1/2 and substitute into the sum, matching terms to achieve the desired order
of accuracy. The constants ĉrj are listed in Table 5 for k=1,2,3.

Following the above procedure results in k approximations to the value f (x∗), de-

noted f ∗,(r)≡ p
(r)
f (x∗), r=0,··· ,k−1. As in the above development of WENO, if the func-

tion f (x) is smooth, there are constants d̂r such that

f ∗=
k−1

∑
r=0

d̂r f ∗,(r)= f (x∗)+O(∆x2k−1). (A.15)

To find these coefficients, expand f ∗,(r) about x∗ and match terms in the expansion. Con-
sistency always results in the condition ∑

k−1
r=0 d̂r =1. For k=1,2,3, the constants are listed

in Table 6.
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Table 5: Constants for interpolation in (A.12), for k=1,2,3.

k r j=0 j=1 j=2

1 0 1

2 0 3
2 −α α− 1

2

1 1
2 −α α+ 1

2

3 0 1− (α− 1
2 )(

7
2−α)

2 (α− 1
2 )(

5
2−α)

(α− 3
2 )(α− 1

2 )
2

1 1− (α+ 1
2 )(

5
2−α)

2 (α+ 1
2 )(

3
2−α)

(α+ 1
2 )(α− 1

2 )
2

2 1− (α+ 3
2 )(

3
2−α)

2 (α+ 3
2 )(

1
2−α)

(α+ 3
2 )(α+ 1

2 )
2

Table 6: Constants d̂r from (A.15), for k=1,2,3.

k d0 d1 d2

1 1 - -

2
α+ 1

2
2

3
2−α

2 -

3
(2α+3)(2α+1)

48
(2α+3)(5−2α)

24
(2α−3)(−5+2α)

48

The WENO procedure for approximating the value of f (x∗) is obtained by applying

Algorithm 1 directly to the values f ∗,(r) in place of h
(r)
i+1/2 and h

(r)
i−1/2.
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