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Abstract. The immersed boundary (IB) method is an approach to problems of fluid-struc-
ture interaction in which an elastic structure is immersed in a viscous incompress-
ible fluid. The IB formulation of such problems uses a Lagrangian description of the
structure and an Eulerian description of the fluid. It is well known that some ver-
sions of the IB method can suffer from poor volume conservation. Methods have
been introduced to improve the volume-conservation properties of the IB method, but
they either have been fairly specialized, or have used complex, nonstandard Eulerian
finite-difference discretizations. In this paper, we use quasi-static and dynamic bench-
mark problems to investigate the effect of the choice of Eulerian discretization on the
volume-conservation properties of a formally second-order accurate IB method. We
consider both collocated and staggered-grid discretization methods. For the tests con-
sidered herein, the staggered-grid IB scheme generally yields at least a modest im-
provement in volume conservation when compared to cell-centered methods, and in
many cases considered in this work, the spurious volume changes exhibited by the
staggered-grid IB method are more than an order of magnitude smaller than those of
the collocated schemes. We also compare the performance of cell-centered schemes
that use either exact or approximate projection methods. We find that the volume-
conservation properties of approximate projection IB methods depend strongly on the
formulation of the projection method. When used with the IB method, we find that
pressure-free approximate projection methods can yield extremely poor volume con-
servation, whereas pressure-increment approximate projection methods yield volume
conservation that is nearly identical to that of a cell-centered exact projection method.
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1 Introduction

The immersed boundary (IB) method for fluid-structure interaction [1] is a mathematical for-
mulation and numerical scheme for problems in which an elastic structure is immersed
in a viscous incompressible fluid. In the IB formulation of such problems, the elasticity
of the structure is described in Lagrangian form, and the momentum, velocity, and in-
compressibility of the coupled fluid-structure system are described in Eulerian form. In
the continuous IB formulation, coupling between Lagrangian and Eulerian variables is
mediated by integral equations with Dirac delta function kernels. The discrete version
of the IB method employs approximations to these integral equations in which a regular-
ized version of the delta function is used in place of the singular delta function kernels.
The discretized integral equations are used to spread the Lagrangian forces generated by
the immersed elastic structure to the Eulerian grid, and to interpolate the Eulerian velocity
field to the nodes of the Lagrangian mesh.

It is well known that some versions of the IB method can suffer from poor volume
conservation [2,3]. This lack of volume conservation manifests itself as an apparent fluid
“leak” at fluid-structure interfaces, which occurs even though the Lagrangian structure
moves at the local fluid velocity. Peskin and Printz [2] recognized that one cause of this
lack of volume conservation is that the interpolated velocity field that determines the
motion of the Lagrangian structure is not generally divergence free, even if the Eulerian
velocity is divergence free with respect to the discrete divergence operator used in the nu-
merical solution of the incompressible Navier-Stokes equations. To obtain a Lagrangian
velocity field that is more nearly incompressible, Peskin and Printz constructed a modi-
fied finite-difference approximation to the Eulerian divergence operator that ensures that
the interpolated velocity field is divergence free in an average sense. Their improved vol-
ume conservation IB method [2] uses this modified discretization to dramatically reduce the
volume losses exhibited by the standard IB method. Despite the improvements in accu-
racy offered by this method, it does not appear to be widely used in practice. (See [4–6],
however, for recent applications of the method.) A drawback of the improved volume
conservation IB method that may have slowed its adoption is that it uses a complex, non-
standard finite-difference discretization of the incompressible Navier-Stokes equations.
The coefficients of this modified finite-difference scheme must be derived from the form
of the regularized delta function, and the resulting finite-difference operators possess
broad stencils that can increase the computational expense of the method. Other, more
specialized approaches to improving the volume conservation of the IB method have also
been introduced, including by Newren [7] and by Stockie [8], but these methods may not
be well-suited for general use.

Herein, we study the effect of the Eulerian spatial discretization on the volume conser-
vation of a formally second-order accurate IB method in two spatial dimensions, restrict-
ing our attention to standard finite-difference schemes that are similar to discretization
methods commonly used in implementations of the IB method. To minimize the differ-
ences between the discretization approaches, the Eulerian domain is taken to be periodic
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and is discretized using a uniform Cartesian grid. We consider a collocated Eulerian
discretization that approximates the pressure and the components of the velocity at the
centers of the Cartesian grid cells, and a staggered-grid (i.e., marker-and-cell or MAC [9])
discretization that approximates the pressure at the centers of the Cartesian grid cells,
and that approximates the velocity at the centers of the edges of the grid cells. We em-
ploy the same second-order accurate, semi-implicit time stepping scheme for both spatial
discretizations, and we use nearly identical higher-order upwind discretizations for the
convective acceleration term that are based on a version [10] of the piecewise-parabolic
method [11].

For the collocated discretization, we solve the incompressible Navier-Stokes equa-
tions by either an exact [12–15] or an approximate [16–21] projection method. Exact pro-
jection methods ensure that the discrete divergence of the Eulerian velocity field is zero to
machine accuracy (when direct solvers are used) or to within the tolerance of the linear
solver (when iterative solvers are used). By contrast, approximate projection methods
only ensure that the discrete divergence of the Eulerian velocity field is zero to the trun-
cation error of the finite-difference discretization. In practice, exact collocated projection
methods may be implemented easily and efficiently only for relatively simple problems,
such as those involving uniform grids and periodic boundary conditions, because the ex-
act cell-centered projection operator requires the solution of a discrete Poisson problem
with an extended finite-difference stencil and a nontrivial nullspace composed of the so-
called checkerboard modes. Approximate projection methods alleviate many of the dif-
ficulties of exact projection methods, although they do so at the price of yielding velocity
fields that generally are not discretely divergence free. Approximate projection methods
have been used with the IB method previously [22–26]; however, to date, there appear
to have been few detailed comparisons between IB methods based on exact and approx-
imate projections. Herein, we seek to quantify the extent to which using an approximate
projection method affects the volume-conservation properties of the IB method.

Many of the difficulties of exact projection methods for collocated discretizations
are not shared by staggered-grid methods. Specifically, exact staggered-grid projection
methods require the solution of standard discrete Poisson problems with compact finite-
difference stencils. Consequently, unlike collocated schemes, staggered-grid discretiza-
tions do not suffer from spurious pressure modes. Moreover, it is straightforward to use
staggered-grid schemes for problems with nontrivial physical boundary conditions [27],
to develop adaptive staggered discretizations that yield discretely divergence-free veloc-
ity fields [28, 29], and to solve the discrete equations via efficient methods like multi-
grid [27, 29].

To assess the volume-conservation properties of collocated and staggered-grid IB
schemes, we perform quasi-static and dynamic simulations in two spatial dimensions.
We consider problems in which a thin interface is immersed in a viscous incompressible
fluid, and problems in which a thick elastic body is immersed in fluid. A key contri-
bution of this paper is that it demonstrates that the magnitude of the spurious volume
changes generated by the staggered-grid scheme are generally smaller than that of the
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collocated methods. For the problems considered in this study that involve sharp jumps
in the pressure at fluid-structure interfaces, the staggered-grid IB method yields spurious
volume changes that are generally at least one order of magnitude smaller than those gen-
erated by the collocated solution methods, and in some cases, the differences between the
schemes are even larger.

We also examine the effect on volume conservation of the form of the approximate
projection method. We find that pressure-free approximate projection methods, which
do not include an approximation to the pressure gradient when solving the momen-
tum equation for an intermediate velocity, can yield extremely poor volume conservation
when used with the IB method. By contrast, pressure-increment approximate projection
methods, which include a time step-lagged approximation to the pressure gradient when
solving the momentum equation, yield volume conservation that is essentially identical
to an exact cell-centered projection method.

2 Continuous formulation and numerical methods

2.1 Equations of motion

We provide only a brief overview of the IB method; see [1] for further details. Let
x = (x1,x2) ∈ V denote Cartesian physical coordinates, with V denoting the physical
domain; let s ∈ Ω denote Lagrangian (material) coordinates attached to the immersed
elastic boundary, with Ω denoting the Lagrangian coordinate domain; and let X(s,t) =
(X1(s,t),X2(s,t))∈V denote the physical position of material point s at time t. We con-
sider both problems in which the immersed structure is a thin interface, in which case
Ω⊂R and s= s, and also problems in which the immersed structure is a thick body, in
which case Ω ⊂R

2 and s = (s1,s2). The viscosity ν of the fluid is taken to be constant,
and the immersed structure is assumed to be massless (in the case of a thin interface) or
neutrally buoyant (in the case of a thick body). We remark that although we present the
IB equations in dimensional form, our numerical simulations are performed in arbitrary
nondimensional units.

The continuous equations of motion for the fluid-structure system are

∂u

∂t
(x,t)+u(x,t)·∇u(x,t)=−∇p(x,t)+ν∇2u(x,t)+f(x,t), (2.1)

∇·u(x,t)=0, (2.2)

f(x,t)=
∫

Ω
F(s,t)δ(x−X(s,t))ds, (2.3)

U(s,t)=
∫

V
u(x,t)δ(x−X(s,t))dx, (2.4)

∂X

∂t
(s,t)=U(s,t), (2.5)

F(s,t)=F [X(·,t);s], (2.6)
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(a) (b)

Figure 1: Two Eulerian spatial discretizations. (a) A collocated discretization in which the pressure and
the components of the velocity are all defined at the centers of the Cartesian grid cells, i.e., at positions
xi,j =((i+ 1

2 )h,(j+ 1
2 )h). (b) A staggered-grid discretization in which the pressure is defined at the centers of

the Cartesian grid cells, and the edge-normal components of the velocity are defined at the centers of the edges
of the Cartesian grid cells, i.e., at positions xi−1/2,j=(ih,(j+ 1

2 )h) and xi,j−1/2=((i+ 1
2 )h, jh).

in which u(x,t) = (u1(x,t),u2(x,t)) is the Eulerian velocity field, p(x,t) is the Eulerian
pressure, f(x,t)=( f1(x,t), f2(x,t)) is the Eulerian elastic force density (i.e., the elastic force
density with respect to the physical coordinate system, so that f(x,t)dx has units of force),
F(s,t)=(F1(s,t),F2(s,t)) is the Lagrangian elastic force density (i.e., the elastic force den-
sity with respect to the material coordinate system, so that F(s,t)ds has units of force),
U=(U1,U2) is the Lagrangian velocity field, and δ(x)=δ(x1)δ(x2) is the two-dimensional
Dirac delta function. We shall describe the form of the Lagrangian elastic force density
functional F : (X(·,t),s) 7→F(s,t) when we introduce the particular benchmark problems
considered in this study.

2.2 Eulerian and Lagrangian spatial discretizations

In our computations, the physical domain V is chosen to be the unit square with periodic
boundaries and is discretized using a uniform N×N Cartesian grid, so that the Cartesian
grid spacings are ∆x1=∆x2=h= 1

N . The Cartesian grid cells are indexed i, j=0,1,··· ,N−1.

The positions of the centers of the Cartesian grid cells are xi,j=
((

i+ 1
2

)

h,
(

j+ 1
2

)

h
)

, and the
positions of the centers of the x1- and x2-edges of the Cartesian grid cells (i.e., the edges
x1 = constant and x2 = constant) are, respectively, xi−1/2,j =

(

ih,
(

j+ 1
2

)

h
)

and xi,j−1/2 =
((

i+ 1
2

)

h, jh
)

. The collocated schemes approximate the pressure and the components of
the velocity at the centers of the Cartesian grid cells, whereas the staggered-grid scheme
approximates the pressure at the centers of the Cartesian grid cells and approximates the
edge-normal components of the velocity at the centers of the edges of the Cartesian grid
cells. See Fig. 1.

Let ∇h ·, ∇h, and ∇2
h denote standard compact second-order accurate finite-difference
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approximations to the divergence, gradient, and Laplace operators, respectively (see,
e.g., [22, 27] for explicit formulæ for these discrete operators). Notice that in the cell-
centered case, ∇h ·∇h 6=∇2

h, whereas in the staggered-grid case, ∇h ·∇h=∇2
h. Specifically,

in the cell-centered case, ∇h ·∇h is similar to the standard five-point finite-difference dis-
cretization of the Laplacian, except that it has a broadened stencil that gives rise to a
four-dimensional nullspace spanned by the four checkerboard modes. In the staggered-
grid case, by contrast, ∇h ·∇h corresponds to the usual compact five-point Laplacian and
possesses a trivial one-dimensional nullspace consisting of grid functions that are con-
stant on the Eulerian grid.

For thin-interface problems, the Lagrangian coordinate space is discretized using a
uniform one-dimensional mesh with nodes sk = sk and mesh spacing ∆s. For thick-
body problems, the Lagrangian coordinate space is discretized using a uniform two-
dimensional mesh with nodes sk,l and mesh spacings ∆s1 and ∆s2. For simplicity, we
shall generally use the two-dimensional Lagrangian notation except when specifically
discussing thin-interface examples.

The values Fk,l of the discrete Lagrangian force density associated with node sk,l are
computed from the physical positions Xk,l of the nodes of the Lagrangian mesh via a
second-order finite-difference approximation to the Lagrangian force functional F . In the
cell-centered case, the Eulerian force density is determined at the centers of the Cartesian
grid cells via

fi,j=∑
k,l

Fk,l δh(xi,j−Xk,l)∆s1 ∆s2, (2.7)

and in the staggered-grid case, the Eulerian force density is determined at the centers of
the edges of the Cartesian grid cells via

( f1)i− 1
2 ,j=∑

k,l

(F1)k,l δh(xi− 1
2 ,j−Xk,l)∆s1 ∆s2, (2.8)

( f2)i,j− 1
2
=∑

k,l

(F2)k,l δh(xi,j− 1
2
−Xk,l)∆s1 ∆s2. (2.9)

Here, δh(x)= δh(x1)δh(x2) is the two-dimensional regularized delta function, which we
define as the tensor product of one-dimensional regularized delta functions. In our com-
putations, we take the one-dimensional delta function δh(x) to be the four-point delta
function of Peskin [1]. The motion of the Lagrangian mesh nodes is determined in the
cell-centered case via

Uk,l =∑
i,j

ui,j δh(xi,j−Xk,l)h2, (2.10)

and in the staggered-grid case via

(U1)k,l =∑
i,j

(u1)i− 1
2 ,j δh(xi− 1

2 ,j−Xk,l)h2, (2.11)

(U2)k,l =∑
i,j

(u2)i,j− 1
2
δh(xi,j− 1

2
−Xk,l)h2. (2.12)
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We let S [X] denote the discrete force-spreading operator, so that f=S [X]F. The correspond-
ing discrete velocity-interpolation operator is the adjoint of S [X], so that U=S [X]∗u. In the
semi-discretized case, choosing the velocity-interpolation operator to be the adjoint of
the force-spreading operator ensures that energy is not spuriously created or destroyed
during Lagrangian-Eulerian interaction [1].

2.3 Solution methodology

2.3.1 Basic time stepping scheme

We solve the collocated and staggered-grid discretizations of the IB equations of motion
via the same semi-implicit, second-order accurate time stepping scheme. Let Xn, un, and
pn−1/2 denote the approximations to the values of X and u at time tn = n∆t, and to the
value of p at time tn−1/2 = (n− 1

2)∆t. To advance X, u, and p forward in time by the

increment ∆t, we first compute Xn+1 by a second-order Adams-Bashforth scheme, so that

Xn+1−Xn

∆t
= Ũ

n+ 1
2 , (2.13)

in which

Ũ
n+ 1

2 =
3

2
Un−

1

2
Un−1 and Un =S [Xn]∗un. (2.14)

We then compute Fn+1/2 =F [Xn+1/2], the intermediate Lagrangian elastic force density
corresponding to the intermediate structure configuration

Xn+ 1
2 =

1

2

(

Xn+1+Xn
)

. (2.15)

The corresponding intermediate Eulerian elastic force density is fn+1/2=S [Xn+1/2]Fn+1/2.
Next, we solve the momentum equation,

un+1,⋆−un

∆t
+Ñ

n+ 1
2 =−∇hqn+ 1

2 +ν∇2
h

un+1,⋆+un

2
+fn+ 1

2 , (2.16)

for un+1,⋆. Here, Ñ
n+1/2

is an explicit, time step-centered approximation to the convective
acceleration term u·∇u, and qn+1/2 is an explicit approximation to the true time step-
centered pressure pn+1/2. We describe in Section 2.3.2 the particular choices of qn+1/2

used in our numerical experiments. In our computations, Ñ
n+1/2

is determined by a
second-order Adams-Bashforth method, so that

Ñ
n+ 1

2 =
3

2
Nn−

1

2
Nn−1, (2.17)

with Nn=N[un]. Similar methods are used to compute Nn=N[un] for the collocated and
staggered-grid discretizations, as detailed in Section 2.3.3.
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In general, un+1,⋆ will not satisfy the discrete divergence-free condition. To obtain
an approximation to u at time tn+1 that satisfies (or approximately satisfies) the discrete
divergence-free condition, we project (or approximately project) un+1,⋆ onto the space
of discretely divergence-free vector fields. Specifically, in the case of an exact projection
method, we define

un+1 :=
(

I−∇h(∇h ·∇h)
−1∇h ·

)

un+1,⋆, (2.18)

and in the case of an approximate cell-centered projection method, we define

un+1 :=
(

I−∇h

(

∇2
h

)−1
∇h ·

)

un+1,⋆. (2.19)

Notice that the discrete operators ∇h ·∇h and ∇2
h are the same only for the staggered-grid

discretization. When these operators differ, the values of un+1 defined by (2.18) and (2.19)
will also generally differ.

For a staggered-grid discretization, the operator ∇h ·∇h =∇2
h is the usual five-point

discrete Laplacian. Thus, the updated velocity fields defined by (2.18) and (2.19) are
identical. We refer to the staggered-grid exact projection operator implicitly defined by
(2.18) (or, equivalently, by (2.19)) as the MAC projection operator. This operator, which
maps staggered-grid (MAC) vector fields onto staggered-grid vector fields, is defined by

P
MAC
h = I−∇h

(

∇2
h

)−1
∇h ·. (2.20)

For a collocated discretization, ∇h ·∇h 6=∇2
h. This leads us to distinguish the exact cell-

centered projection operator,

P
cc
h = I−∇h(∇h ·∇h)

−1∇h ·, (2.21)

from the approximate cell-centered projection operator,

P
cc,†
h = I−∇h

(

∇2
h

)−1
∇h ·. (2.22)

Both P
cc
h and P

cc,†
h map cell-centered vector fields onto cell-centered vector fields. Notice,

however, that whereas ∇h ·P
cc
h un+1,⋆ = 0, in general, ∇h ·P

cc,†
h un+1,⋆ 6= 0. Instead, P

cc,†
h

enforces discrete incompressibility to the truncation error of the finite-difference scheme,

i.e., for smooth un+1,⋆, ∇h ·P
cc,†
h un+1,⋆ =O(h2). See, e.g., [16–23] for further details on

approximate projection methods.

The application of the MAC projection operator P
MAC
h , the exact cell-centered projec-

tion operator P
cc
h , or the approximate cell-centered projection operator P

cc,†
h requires the

solution of a discrete Poisson problem that is of the form

Lϕ=
1

∆t
∇h ·u

n+1,⋆, (2.23)
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in which L is either the operator ∇h ·∇h for the staggered-grid or exact collocated pro-
jection schemes, or the operator ∇2

h for the approximate collocated projection schemes.
In any case, the solution ϕ to this discrete Poisson problem is a cell-centered scalar grid
function that we use to determine the time step-centered pressure via

pn+ 1
2 =qn+ 1

2 +
(

I−∆t
ν

2
∇2

h

)

ϕ. (2.24)

This pressure-update formula is the second-order accurate pressure update described by
Brown, Cortez, and Minion [20].

2.3.2 Choosing qn+ 1
2

Choices for qn+1/2 that are commonly used with projection methods include setting
qn+1/2= pn−1/2, and setting qn+1/2=0. With the former choice, (2.24) becomes

pn+ 1
2 = pn− 1

2 +
(

I−∆t
ν

2
∇2

h

)

ϕ, (2.25)

so that ϕ ≈ pn+1/2−pn−1/2. This choice therefore yields a pressure-increment projection
method. The latter choice results in a pressure-free projection method. Our pressure-
increment projection method (qn+1/2= pn−1/2) is a version of the method of Bell, Colella,
and Glaz [15]. In our numerical tests, we use BCG to indicate a pressure-increment pro-
jection method. Our pressure-free projection method (qn+1/2=0) is similar to the method
of Kim and Moin [14], and we use KM to identify this solution algorithm.

We remark that for uniform periodic Cartesian grids, because the discrete Eulerian
operators commute, it can be shown [27] that the staggered-grid or exact collocated pro-
jection method with the second-order pressure update (2.24) is an exact solution method
for the coupled system,

un+1−un

∆t
+Ñ

n+ 1
2 =−∇h pn+ 1

2 +ν∇2
h

un+1+un

2
+fn+ 1

2 , (2.26)

∇h ·u
n+1=0. (2.27)

In this case, the values of un+1 and pn+1/2 that are determined by the projection method
are independent of the choice of qn+1/2. In practice, for the exact collocated projection
method, we set qn+1/2 = pn−1/2. For the staggered-grid case, our implementation actu-
ally solves (2.26) and (2.27) simultaneously by an iterative Krylov method that uses a
version of the staggered-grid projection method as a preconditioner [27]. We empha-
size, however, that for uniform periodic grids, like those considered in the present work,
this staggered-grid solution methodology yields results that are identical to those of a
staggered-grid exact projection method. It is important to note that for the collocated ap-
proximate projection method, different choices of qn+1/2 will yield different approxima-
tions to un+1 and pn+1/2 [18]. We examine the effects of these differences on the accuracy
of the IB method in Section 4.
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2.3.3 Approximating the convective acceleration term u·∇u

We compute N ≈ u·∇u in a similar manner for both spatial discretizations. In either
case, we define systems of nonoverlapping control volumes that are centered about the
components of u = (u1,u2). To compute the mth component of N = (N1,N2), we first
determine a staggered-grid advection velocity field uADV,m that is defined on the edges
of the control volumes associated with component m of the velocity field u. Next, we use
the xsPPM7 variant [10] of the piecewise-parabolic method (PPM) [11] to determine uPPM

m ,
an upwind-biased interpolation of um, on the edges of the control volumes, using uADV,m

to determine the upwind direction. Finally, for each component m of the velocity field, we
evaluate Nm =uADV,m ·∇huPPM

m using second-order compact finite differences. Different
control volumes are required for the collocated and staggered-grid discretizations, and
this in turn necessitates the use of different advection velocity fields in the two cases.

For the collocated discretization, the control volumes used to compute N are coinci-
dent with the Cartesian grid itself, and the same advection velocity field is used for each
component of u. The single advection velocity field uADV is determined by computing
the MAC projection of the linear interpolation of u from the cell centers to the edges of
the grid cells. Specifically, we compute

(uADV,⋆
1 )i+ 1

2 ,j =
(u1)i,j+(u1)i+1,j

2
, (2.28)

(uADV,⋆
2 )i,j+ 1

2
=

(u2)i,j+(u2)i,j+1

2
, (2.29)

uADV =P
MAC
h uADV,⋆. (2.30)

Notice that, in general, uADV 6=uADV,⋆, i.e., the linear interpolation of u is not generally
discretely divergence free, even if ∇h ·u≡0. We remark that the discrete Poisson problem
that must be solved to compute uADV =P

MAC
h uADV,⋆ is precisely the same Poisson prob-

lem that must be solved to compute the approximate projection of u⋆. Consequently, for
the collocated approximate projection IB method, it is possible to compute uADV with-
out solving any additional systems of equations. For the collocated exact-projection IB
scheme, however, it is necessary to solve one discrete Poisson problem to obtain u, and
to solve a different discrete Poisson problem to obtain uADV.

For the staggered-grid discretization, a different set of control volumes must be used
for each component of the velocity field [27]. Specifically, the control volumes associated
with the u1 component of the velocity are obtained by shifting the Cartesian grid by
1
2 ∆x1 =

1
2 h in the x1-coordinate direction, and the control volumes associated with the u2

component of the velocity are obtained by shifting the Cartesian grid cells by 1
2 ∆x2 =

1
2 h

in the x2 direction. A different advection velocity field is employed for each system of
control volumes. In either case, the advection velocity is simply the linear interpolation
of the original staggered-grid velocity field u to the centers of the edges of the control
volumes. For the u1 component of the velocity, for instance, the corresponding advection
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velocity uADV,1 is determined by

(uADV,1
1 )i,j=

(u1)i+ 1
2 ,j+(u1)i− 1

2 ,j

2
, (2.31)

(uADV,1
2 )i+ 1

2 ,j+ 1
2
=

(u2)i,j+ 1
2
+(u2)i+1,j+ 1

2

2
. (2.32)

The advection velocity uADV,2 corresponding to the u2 component of the velocity is com-
puted similarly. It is not hard to show that because the staggered-grid velocity field u

is discretely divergence free, the advection velocity field uADV,1 defined by (2.31) and
(2.32) is discretely divergence free with respect to the staggered-grid divergence operator
associated with the system of control volumes. In particular,

(

∇h ·u
ADV,1

)

i+ 1
2 ,j
=

(uADV,1
1 )i+1,j−(uADV,1

1 )i,j

h
+
(uADV,1

2 )i+ 1
2 ,j+ 1

2
−(uADV,1

2 )i+ 1
2 ,j− 1

2

h

=
1

2

(

(∇h ·u)i,j+(∇h ·u)i+1,j

)

=0. (2.33)

A similar argument also shows that uADV,2 is discretely divergence-free in an analogous
sense. Consequently, it is not necessary to solve any additional systems of equations to
determine a divergence-free advection velocity field for the staggered-grid scheme.

2.3.4 Initial time step

In the initial time step, we lack values for the time step-lagged quantities Un−1, Nn−1,
and pn−1/2 that are needed by our basic time stepping scheme. Consequently, during
that initial step, we cannot employ that scheme exactly as described in Section 2.3.1. To
obtain a second-order accurate time stepping scheme for the initial time step, we in-
stead solve the equations of motion twice during that time step. For the initial solve,
we set Un−1 =Un, Nn−1 =Nn, and pn−1/2 = 0, and we use the time stepping scheme de-

scribed previously to compute preliminary approximations X̃
n+1

, ũn+1, and p̃n+1/2 to the
updated structure configuration, velocity, and pressure. Notice that this first solve is es-
sentially a pressure-free projection method along with forward Euler for the nonlinear
terms. We then compute final approximations to X, u, and p using the time stepping
scheme detailed previously, except that we now set

Ũ
n+1

=S [X̃
n+1

]∗ ũn+1, Ũ
n+ 1

2 =
Ũ

n+1
+Un

2
, (2.34)

ũn+ 1
2 =

ũn+1+un

2
, Ñ

n+ 1
2 =N[ũn+ 1

2 ], qn+ 1
2 = p̃n+ 1

2 . (2.35)

Notice that this second solve is analogous to using a pressure-increment projection
method along with the explicit midpoint rule for the nonlinear terms.
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2.4 Implementation

Implementations of the collocated and staggered-grid IB methods are provided by the
open-source IBAMR software framework [30], which makes use of the SAMRAI [31–33],
PETSc [34–36], and hypre [37, 38] libraries. All linear systems of equations are solved via
preconditioned Krylov methods with relative convergence thresholds of 1.0e-8.

3 Test problems

We consider both quasi-static and dynamic test problems. For static tests, we use struc-
ture configurations and elastic force density functionals that, in the continuous setting,
are in static equilibrium. When discretized, these configurations are no longer in equilib-
rium and therefore induce motion of the fluid-structure system, although the magnitude
of these spurious motions converges to zero as we refine the computational grid. The
dynamic test problems that we use are perturbed versions of the static cases.

3.1 Thin elastic interfaces

To test the performance of the IB method for problems involving thin elastic interfaces,
we set Ω= [0,2π] with periodic boundary conditions, and we use initial configurations
of the form

X(s,t)|t=0=

(

1

2
+αcos(s),

1

2
+βsin(s)

)

, (3.1)

which corresponds to a circular or elliptical interface. For the thin-interface tests, we use
a Lagrangian elastic force density of the form

F(s,t)=F [X(·,t);s]=κ
∂2X

∂s2
(s,t), (3.2)

in which κ is a uniform elastic stiffness parameter.
In the static case, we set α= β= 1

4 , and in the dynamic case, we set α= 5
28 and β= 7

20 .
In either case, the initial configuration of the elastic structure encloses a region with area
π
16 . At equilibrium, the structure will enclose a disc of radius R= 1

4 .

We use a uniform Lagrangian mesh with M= 19
4

1
h nodes, so that the Lagrangian nodes

are physically separated by a distance of approximately h
3 in the equilibrium configura-

tion. We approximate the Lagrangian force density function using second-order finite
differences, which is equivalent to describing the elasticity of the structure in terms of
systems of linear springs with zero resting lengths.

3.2 Thick elastic bodies

To test the performance of the IB method for problems involving thick elastic bodies, we
set Ω= [0,2π]×[0,w] with periodic boundary conditions in the s1 direction, and we use
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initial configurations of the form

X(s,t)|t=0=

(

1

2
+(α+s2)cos(s1),

1

2
+(β+s2)sin(s1)

)

, (3.3)

which corresponds to a thick circular or elliptical shell. For these tests, we use either a
Lagrangian elastic force density that is of the form

F(s,t)=F [X(·,t);s]=κ
∂2X

∂s2
1

(s,t), (3.4)

or one that is of the form

F(s,t)=F [X(·,t);s]=κ

(

∂2X

∂s2
1

(s,t)+
∂2X

∂s2
2

(s,t)

)

, (3.5)

in which κ is again a uniform elastic stiffness parameter. The former elastic force density
corresponds to an elastic shell that is composed of a continuum of circumferential elastic
fibers [22,23,39,40], whereas the latter elastic force density corresponds to an elastic shell
that is composed of both circumferential and radial fibers [39, 40].

In all cases, we set w=0.0625. In the static case, we set α= β= 1
4 , and in the dynamic

case, we set α= 5
28 and β= 7

20 . In either case, the initial configuration of the elastic structure
encloses a region with area π

16 , and at equilibrium, the structure will enclose a disc of

radius R= 1
4 .

We use a uniform Lagrangian mesh with M1=
19
4

1
h nodes in the s1 coordinate direction

and M2 =
3
16

1
h +1 nodes in the s2 coordinate direction, so that the Lagrangian nodes are

physically separated by a distance of approximately h
3 in the equilibrium configuration.

We again approximate the Lagrangian force density function using second-order finite
differences, which is equivalent to describing the elasticity of the structure in terms of
systems of linear springs with zero resting lengths.

It is interesting to note that the IB method is able to attain second-order convergence
rates for the shell that is composed exclusively of circumferential fibers [22,23,39,40], but
not for the shell that is composed of both circumferential and radial fibers [39, 40].

4 Numerical experiments

We perform two sets of numerical experiments. In the first set of tests, we use initial
configurations that are discretizations of stable equilibrium solutions of the continuous
equations. In the second set of computations, we use the same elastic force functions of
the quasi-static tests, but we use initial structure configurations that are far from equilib-
rium. This second set of tests therefore allow us to assess the effects of large nonlinear
deformations on volume conservation.
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4.1 Quasi-static tests

4.1.1 Thin elastic interface

Our first set of tests uses the equilibrium configuration of the thin elastic interface with
the various versions of the IB method. We consider a single value of the boundary stiff-
ness κ along with several choices for the fluid viscosity ν. The Eulerian domain is dis-
cretized using a uniform Cartesian grid with N =64, 128, 256, or 512 cells in each coor-
dinate direction, the Lagrangian domain is discretized using a corresponding curvilinear
mesh, and the time step size is ∆t=6.25e-3h. This choice of time step was approximately

Table 1: Maximum percent area loss for the quasi-static thin-interface test of Section 4.1.1 with κ=1. The
maximum percent area loss is reported for N =64, 128, 256, and 512 for the staggered-grid (MAC), cell-
centered pressure-increment exact projection (BCG-exact), cell-centered pressure-increment approximate projec-
tion (BCG-approx), and cell-centered pressure-free approximate projection (KM-approx) solvers. The minimum
and maximum ratios of the cell-centered and staggered-grid results for each value of N are reported in the right
two columns. Notice that the staggered-grid scheme yields area losses that are at least a factor of 20 smaller
than those yielded by the cell-centered solution methods.

κ=1

ν=1.0

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 6.67e-4 1.10 1.42e-2 1.01 1.43e-2 1.01 4.96e-1 0.42 2.13e+1 7.44e+2

128 3.12e-4 0.89 7.09e-3 0.98 7.12e-3 0.99 3.71e-1 0.51 2.27e+1 1.19e+3

256 1.68e-4 0.83 3.58e-3 0.98 3.59e-3 0.98 2.61e-1 0.59 2.13e+1 1.55e+3

512 9.45e-5 — 1.82e-3 — 1.82e-3 — 1.73e-1 — 1.93e+1 1.83e+3

ν=1.0e-1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 5.29e-3 0.95 1.33e-1 0.98 1.33e-1 0.98 9.43e-1 0.24 2.52e+1 1.78e+2

128 2.73e-3 0.91 6.76e-2 0.96 6.76e-2 0.96 8.00e-1 0.26 2.47e+1 2.93e+2

256 1.45e-3 0.98 3.48e-2 0.97 3.48e-2 0.97 6.68e-1 0.32 2.39e+1 4.59e+2

512 7.35e-4 — 1.77e-2 — 1.77e-2 — 5.36e-1 — 2.41e+1 7.30e+2

ν=1.0e-2

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 4.57e-2 0.85 1.21e+0 0.93 1.21e+0 0.93 2.13e+0 0.47 2.64e+1 4.65e+1

128 2.54e-2 0.92 6.34e-1 0.95 6.34e-1 0.95 1.53e+0 0.36 2.49e+1 6.03e+1

256 1.35e-2 0.99 3.27e-1 1.02 3.27e-1 1.02 1.20e+0 0.28 2.43e+1 8.87e+1

512 6.78e-3 — 1.62e-1 — 1.62e-1 — 9.88e-1 — 2.39e+1 1.46e+2

ν=1.0e-3

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 2.60e-1 0.49 6.40e+0 0.50 6.40e+0 0.50 7.27e+0 0.40 2.46e+1 2.80e+1

128 1.85e-1 0.91 4.54e+0 0.82 4.54e+0 0.82 5.50e+0 0.62 2.45e+1 2.97e+1

256 9.86e-2 1.13 2.57e+0 1.05 2.57e+0 1.05 3.58e+0 0.67 2.61e+1 3.63e+1

512 4.50e-2 — 1.24e+0 — 1.24e+0 — 2.24e+0 — 2.76e+1 4.99e+1
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Table 2: Rate of area loss for the quasi-static thin-interface test of Section 4.1.1 with κ=1. The rate of area
loss is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC), cell-centered pressure-increment
exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx), and cell-
centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios of the
cell-centered and staggered-grid results for each value of N are reported in the right two columns. Notice that
the staggered-grid scheme yields rates of area loss that are at least a factor of 20 smaller than those yielded by
the cell-centered solution methods.

κ=1

ν=1.0

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 2.08e-6 0.92 5.09e-5 1.01 5.09e-5 1.01 1.77e-3 0.42 2.44e+1 8.50e+2
128 1.10e-6 1.06 2.53e-5 0.98 2.53e-5 0.98 1.32e-3 0.51 2.29e+1 1.20e+3
256 5.30e-7 0.91 1.28e-5 0.99 1.28e-5 0.99 9.32e-4 0.59 2.42e+1 1.76e+3
512 2.82e-7 — 6.45e-6 — 6.45e-6 — 6.18e-4 — 2.28e+1 2.19e+3

ν=1.0e-1

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 1.86e-5 0.93 4.74e-4 0.98 4.74e-4 0.98 3.36e-3 0.24 2.55e+1 1.81e+2
128 9.77e-6 0.93 2.41e-4 0.96 2.41e-4 0.96 2.86e-3 0.26 2.46e+1 2.92e+2
256 5.14e-6 0.97 1.24e-4 0.97 1.24e-4 0.97 2.39e-3 0.32 2.41e+1 4.64e+2
512 2.62e-6 — 6.31e-5 — 6.31e-5 — 1.91e-3 — 2.41e+1 7.30e+2

ν=1.0e-2

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 1.68e-4 0.87 4.42e-3 0.95 4.42e-3 0.95 7.70e-3 0.48 2.63e+1 4.58e+1
128 9.21e-5 0.92 2.29e-3 0.96 2.29e-3 0.96 5.50e-3 0.36 2.49e+1 5.98e+1
256 4.85e-5 1.00 1.18e-3 1.02 1.18e-3 1.02 4.28e-3 0.28 2.42e+1 8.81e+1
512 2.42e-5 — 5.78e-4 — 5.78e-4 — 3.52e-3 — 2.39e+1 1.45e+2

ν=1.0e-3

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 9.89e-4 0.51 2.45e-2 0.54 2.45e-2 0.54 2.77e-2 0.45 2.48e+1 2.80e+1
128 6.95e-4 0.95 1.68e-2 0.86 1.68e-2 0.86 2.02e-2 0.65 2.42e+1 2.91e+1
256 3.59e-4 1.18 9.27e-3 1.07 9.27e-3 1.07 1.29e-2 0.68 2.59e+1 3.59e+1
512 1.58e-4 — 4.42e-3 — 4.42e-3 — 8.02e-3 — 2.80e+1 5.07e+1

the largest that resulted in stable computations for the range of material and numerical
parameters considered in this study.

Because the immersed structure is initialized in a configuration that is a discretization
of an equilibrium configuration of the continuous equations, we consider any motion
of the structure or change in the area enclosed by the structure to constitute an error
in the computed solution. To assess such errors in volume conservation, we track the
area enclosed by the interface over the time interval t ∈ [0,0.55], which corresponds to
approximately a single period in the dynamic case. The maximum percent change in
area is reported in Table 1 for the various solution algorithms and material and numerical
parameters. The rates of area loss are also computed by linear regression from these time-
dependent data, and the results are reported in Table 2.
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For these tests, the staggered-grid scheme yields area losses that are generally at least
a factor of 20 smaller than those produced by the exact or pressure-increment approx-
imate projection methods, and that are one to two orders of magnitude smaller than
those generated by the pressure-free approximate projection scheme. Similar differences
are seen in the rate of area loss, with the staggered-grid scheme yielding significantly
smaller rates of area change than the collocated schemes. Notice that the staggered-grid
and pressure-increment collocated projection schemes all appear to be converging at a
first-order rate, whereas the pressure-free collocated projection method appears to be
converging at a sublinear rate. Also notice that the exact and approximate pressure-
increment projection methods yield essentially identical results.

4.1.2 Elastic shell composed of circumferential fibers

Our next set of tests uses the equilibrium configuration of the thick elastic shell that is
composed of only circumferential fibers. Unlike the test of Section 4.1.1, in this case, the
immersed structure is a thick elastic body, and because all of the fibers that compose the
structure are periodic, the elastic forces generated by the structure do not produce any
discontinuities in the pressure.

We consider a single value of the boundary stiffness κ along with several choices
for the fluid viscosity ν. The Eulerian domain is discretized using a uniform Cartesian
grid with N =64, 128, 256, or 512 cells in each coordinate direction, the Lagrangian do-
main is discretized using a corresponding curvilinear mesh, and the time step size is
∆t=2.34375e-2h. This choice of time step was approximately the largest that resulted in
stable computations for the range of material and numerical parameters considered in
this study.

Because the immersed structure is initialized in a configuration that is a discretization
of an equilibrium configuration of the continuous equations, we consider any motion of
the structure or change in the area enclosed by the structure to constitute an error in the
computed solution. To assess such errors, we track the area of the thick shell over the
time interval t∈ [0,0.703125], which corresponds to approximately a single period in the
dynamic problem. The maximum percent change in area is reported in Table 3 for the
various solution algorithms and material and numerical parameters. The rates of area
loss are also computed by linear regression from these time-dependent data, and the
results are reported in Table 4. Notice that in some cases, the staggered-grid scheme does
not yield a loss of area but rather a small gain in area.

This test yields essentially second-order convergence rates for each of the numeri-
cal methods in most cases. All methods yield area changes of less than 1%, and the
staggered-grid scheme yields area changes of less than 0.01%. Except for the case in
which ν=1.0, the staggered-grid scheme yields area changes that are at least a factor of
10–20 smaller than those produced by the exact or pressure-increment approximate pro-
jection methods. The comparatively slow convergence rates observed for ν=1.0 are the
result of finite-precision effects. Higher-order convergence rates are observed when we
use linear solvers with tighter convergence thresholds (data not shown). Notice, how-
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Table 3: Maximum percent area loss for the quasi-static elastic-shell test of Section 4.1.2 with κ=1. The
maximum percent area loss is reported for N =64, 128, 256, and 512 for the staggered-grid (MAC), cell-
centered pressure-increment exact projection (BCG-exact), cell-centered pressure-increment approximate projec-
tion (BCG-approx), and cell-centered pressure-free approximate projection (KM-approx) solvers. The minimum
and maximum ratios of the cell-centered and staggered-grid results for each value of N are reported in the right
two columns. Except for the case in which ν=1.0, the staggered-grid scheme yields area losses that are at least
a factor of 10-20 smaller than those produced by the cell-centered schemes. For ν=1.0, finite-precision effects
are dominating the results. Higher-order convergence rates can be obtained by using a tighter convergence
threshold for the iterative linear solvers.

κ=1

ν=1.0

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 6.79e-5 1.96 1.17e-3 2.75 1.26e-3 2.78 2.51e-1 2.12 1.73e+1 3.70e+3

128 1.74e-5 2.51 1.74e-4 2.93 1.83e-4 2.94 5.80e-2 2.24 1.00e+1 3.33e+3

256 -3.05e-6 0.41 2.29e-5 2.91 2.39e-5 2.95 1.23e-2 2.31 7.54e+0 4.03e+3

512 -2.29e-6 — 3.05e-6 — 3.08e-6 — 2.47e-3 — 1.33e+0 1.08e+3

ν=1.0e-1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 4.24e-4 2.36 8.24e-3 2.54 8.35e-3 2.54 3.70e-1 2.00 1.94e+1 8.72e+2

128 8.24e-5 2.72 1.42e-3 2.74 1.43e-3 2.75 9.21e-2 2.10 1.72e+1 1.12e+3

256 1.25e-5 2.65 2.12e-4 2.86 2.13e-4 2.86 2.16e-2 2.17 1.70e+1 1.72e+3

512 -1.99e-6 — 2.92e-5 — 2.94e-5 — 4.80e-3 — 1.47e+1 2.42e+3

ν=1.0e-2

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 2.44e-3 2.22 5.15e-2 2.32 5.16e-2 2.32 4.52e-1 1.96 2.11e+1 1.85e+2

128 5.25e-4 2.52 1.03e-2 2.56 1.04e-2 2.56 1.16e-1 2.03 1.97e+1 2.22e+2

256 9.15e-5 2.86 1.75e-3 2.75 1.75e-3 2.75 2.86e-2 2.07 1.92e+1 3.12e+2

512 1.26e-5 — 2.61e-4 — 2.61e-4 — 6.81e-3 — 2.07e+1 5.41e+2

ν=1.0e-3

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 8.44e-3 1.98 1.62e-1 2.01 1.62e-1 2.01 5.79e-1 1.94 1.92e+1 6.86e+1

128 2.14e-3 2.21 4.04e-2 2.22 4.05e-2 2.22 1.51e-1 2.03 1.89e+1 7.08e+1

256 4.62e-4 2.43 8.70e-3 2.47 8.70e-3 2.47 3.71e-2 2.09 1.88e+1 8.04e+1

512 8.57e-5 — 1.57e-3 — 1.57e-3 — 8.72e-3 — 1.83e+1 1.02e+2

ever, that for ν=1.0, the staggered-grid scheme yields area losses that are smaller than
0.0001%. For all values of ν considered, the staggered-grid scheme also yields volume
changes that are one to three orders of magnitude smaller than those generated by the
pressure-free approximate projection scheme. The differences in the rate of area change
are similar, with the staggered-grid scheme yielding superior results in all cases consid-
ered. As before, the exact and approximate pressure-increment projection methods yield
essentially identical results.
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Table 4: Rate of area loss for the quasi-static elastic-shell test of Section 4.1.2 with κ=1. The rate of area
loss is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC), cell-centered pressure-increment
exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx), and cell-
centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios of
the cell-centered and staggered-grid results for each value of N are reported in the right two columns. The
staggered-grid scheme yields rates of area loss that are generally at least a factor of 10-20 smaller than those
produced by the cell-centered schemes.

κ=1

ν=1.0

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 3.07e-6 1.24 5.38e-5 1.84 5.37e-5 1.84 1.16e-2 1.17 1.75e+1 3.78e+3

128 1.30e-6 1.75 1.50e-5 1.97 1.50e-5 1.96 5.15e-3 1.27 1.15e+1 3.96e+3

256 3.85e-7 1.36 3.85e-6 1.16 3.86e-6 1.17 2.13e-3 1.33 9.98e+0 5.54e+3

512 1.50e-7 — 1.73e-6 — 1.72e-6 — 8.51e-4 — 1.15e+1 5.67e+3

ν=1.0e-1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 1.84e-5 1.46 3.71e-4 1.58 3.72e-4 1.58 1.71e-2 1.06 2.02e+1 9.29e+2

128 6.67e-6 1.48 1.25e-4 1.78 1.24e-4 1.78 8.18e-3 1.13 1.87e+1 1.23e+3

256 2.39e-6 2.62 3.62e-5 1.84 3.62e-5 1.84 3.75e-3 1.18 1.51e+1 1.57e+3

512 3.90e-7 — 1.01e-5 — 1.01e-5 — 1.65e-3 — 2.59e+1 4.24e+3

ν=1.0e-2

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 1.14e-4 1.30 2.41e-3 1.38 2.41e-3 1.38 2.09e-2 1.02 2.11e+1 1.83e+2

128 4.65e-5 1.52 9.25e-4 1.59 9.25e-4 1.59 1.03e-2 1.06 1.99e+1 2.22e+2

256 1.62e-5 1.97 3.07e-4 1.77 3.07e-4 1.77 4.97e-3 1.08 1.90e+1 3.07e+2

512 4.14e-6 — 8.98e-5 — 8.98e-5 — 2.34e-3 — 2.17e+1 5.65e+2

ν=1.0e-3

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 4.20e-4 1.10 7.96e-3 1.12 7.96e-3 1.12 2.72e-2 1.01 1.90e+1 6.48e+1

128 1.96e-4 1.26 3.65e-3 1.27 3.65e-3 1.27 1.35e-2 1.06 1.86e+1 6.88e+1

256 8.17e-5 1.48 1.52e-3 1.49 1.52e-3 1.49 6.47e-3 1.11 1.86e+1 7.92e+1

512 2.92e-5 — 5.39e-4 — 5.39e-4 — 3.00e-3 — 1.84e+1 1.03e+2

4.1.3 Elastic shell composed of circumferential and radial fibers

Our final set of quasi-static tests uses the equilibrium configuration of the thick elastic
shell that is composed of both circumferential and radial fibers. An important difference
between this case and that of Section 4.1.2 is that the radial fibers that terminate at the
fluid-structure interface generate a discontinuity in the pressure at that interface.

We consider a single value of the boundary stiffness κ along with several choices
for the fluid viscosity ν. The Eulerian domain is discretized using a uniform Cartesian
grid with N =64, 128, 256, or 512 cells in each coordinate direction, the Lagrangian do-
main is discretized using a corresponding curvilinear mesh, and the time step size is
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Table 5: Maximum percent area loss for the quasi-static elastic-shell test of Section 4.1.3 with κ=1. The
maximum percent area loss is reported for N =64, 128, 256, and 512 for the staggered-grid (MAC), cell-
centered pressure-increment exact projection (BCG-exact), cell-centered pressure-increment approximate projec-
tion (BCG-approx), and cell-centered pressure-free approximate projection (KM-approx) solvers. The minimum
and maximum ratios of the cell-centered and staggered-grid results for each value of N are reported in the right
two columns. The staggered-grid scheme yields area losses that are at least a factor of 10-30 smaller than those
produced by the cell-centered schemes.

κ=1

ν=1.0

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 1.37e-2 0.99 3.96e-1 1.16 4.07e-1 1.17 3.86e+1 0.95 2.90e+1 2.83e+3

128 6.88e-3 0.90 1.78e-1 0.98 1.81e-1 0.99 2.00e+1 0.81 2.58e+1 2.90e+3

256 3.70e-3 0.96 9.02e-2 0.98 9.12e-2 0.99 1.14e+1 0.75 2.44e+1 3.08e+3

512 1.91e-3 — 4.57e-2 — 4.60e-2 — 6.76e+0 — 2.40e+1 3.55e+3

ν=1.0e-1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 7.03e-2 0.86 1.89e+0 1.00 1.91e+0 1.01 6.85e+1 0.71 2.69e+1 9.75e+2

128 3.87e-2 0.93 9.43e-1 1.04 9.52e-1 1.04 4.19e+1 0.72 2.43e+1 1.08e+3

256 2.04e-2 0.94 4.59e-1 0.99 4.63e-1 0.99 2.54e+1 0.58 2.25e+1 1.25e+3

512 1.06e-2 — 2.31e-1 — 2.32e-1 — 1.70e+1 — 2.18e+1 1.61e+3

ν=1.0e-2

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 2.13e-1 0.79 3.31e+0 0.84 3.34e+0 0.84 7.95e+1 0.44 1.56e+1 3.73e+2

128 1.23e-1 0.93 1.85e+0 0.98 1.87e+0 0.98 5.84e+1 0.71 1.50e+1 4.73e+2

256 6.47e-2 0.96 9.43e-1 1.00 9.49e-1 1.00 3.58e+1 0.44 1.46e+1 5.53e+2

512 3.33e-2 — 4.70e-1 — 4.73e-1 — 2.63e+1 — 1.41e+1 7.91e+2

ν=1.0e-3

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 4.22e-1 0.95 4.52e+0 1.09 4.54e+0 1.09 8.49e+1 0.34 1.07e+1 2.01e+2

128 2.19e-1 0.97 2.12e+0 0.96 2.13e+0 0.96 6.72e+1 0.71 9.68e+0 3.07e+2

256 1.12e-1 0.98 1.09e+0 0.99 1.10e+0 0.99 4.10e+1 0.39 9.76e+0 3.67e+2

512 5.66e-2 — 5.48e-1 — 5.51e-1 — 3.13e+1 — 9.68e+0 5.53e+2

∆t=2.34375e-2h. This choice of time step was approximately the largest that resulted in
stable computations for the range of material and numerical parameters considered in
this study.

Because the immersed structure is initialized in a configuration that is a discretization
of an equilibrium configuration of the continuous equations, we consider any motion of
the structure or change in the area enclosed by the structure to constitute an error in the
computed solution. To assess such errors, we track the area of the thick shell over the
time interval t∈ [0,1.40625], which corresponds to approximately a single period in the
dynamic problem. The maximum percent change in area is reported in Table 5 for the
various solution algorithms and material and numerical parameters. The rates of area
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Table 6: Rate of area loss for the quasi-static elastic-shell test of Section 4.1.3 with κ=1. The rate of area
loss is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC), cell-centered pressure-increment
exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx), and cell-
centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios of
the cell-centered and staggered-grid results for each value of N are reported in the right two columns. The
staggered-grid scheme yields rates of area loss that are at least a factor of three smaller than those produced
by the cell-centered schemes, with the smallest differences occurring for the smallest viscosities. For larger
viscosities, the staggered-grid scheme yields rates of area loss that are at least a factor of 10 smaller than those
of the cell-centered methods.

κ=1

ν=1.0

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 1.03e-5 0.99 3.02e-4 1.16 3.02e-4 1.16 3.03e-2 0.97 2.94e+1 2.95e+3

128 5.19e-6 0.90 1.35e-4 0.97 1.35e-4 0.97 1.54e-2 0.81 2.60e+1 2.97e+3

256 2.78e-6 0.94 6.89e-5 0.98 6.90e-5 0.98 8.78e-3 0.75 2.48e+1 3.16e+3

512 1.45e-6 — 3.51e-5 — 3.51e-5 — 5.20e-3 — 2.43e+1 3.60e+3

ν=1.0e-1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 5.14e-5 0.84 1.37e-3 0.98 1.37e-3 0.98 5.44e-2 0.81 2.66e+1 1.06e+3

128 2.88e-5 0.94 6.94e-4 1.06 6.93e-4 1.06 3.10e-2 0.74 2.41e+1 1.08e+3

256 1.50e-5 0.95 3.33e-4 0.99 3.33e-4 0.99 1.86e-2 0.59 2.23e+1 1.24e+3

512 7.77e-6 — 1.68e-4 — 1.68e-4 — 1.24e-2 — 2.16e+1 1.59e+3

ν=1.0e-2

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 1.37e-4 0.79 1.45e-3 0.72 1.45e-3 0.72 6.19e-2 0.53 1.06e+1 4.52e+2

128 7.90e-5 0.94 8.77e-4 0.92 8.77e-4 0.92 4.28e-2 0.75 1.11e+1 5.42e+2

256 4.11e-5 0.97 4.62e-4 1.02 4.63e-4 1.02 2.54e-2 0.45 1.12e+1 6.18e+2

512 2.10e-5 — 2.28e-4 — 2.28e-4 — 1.86e-2 — 1.09e+1 8.84e+2

ν=1.0e-3

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 2.55e-4 1.29 1.39e-3 2.01 1.39e-3 2.00 6.46e-2 0.40 5.43e+0 2.53e+2

128 1.04e-4 1.10 3.46e-4 1.05 3.46e-4 1.05 4.90e-2 0.78 3.31e+0 4.70e+2

256 4.86e-5 1.06 1.67e-4 1.01 1.67e-4 1.01 2.86e-2 0.39 3.43e+0 5.88e+2

512 2.34e-5 — 8.28e-5 — 8.28e-5 — 2.17e-2 — 3.54e+0 9.30e+2

loss are also computed by linear regression from these time-dependent data, and the
results are reported in Table 6. Notice that in some cases, the staggered-grid scheme does
not yield a loss of area but rather a small gain in area.

This test yields essentially first-order convergence rates for the staggered-grid and
pressure-increment projection methods, whereas the pressure-free approximate projec-
tion method yields sublinear convergence rates. Although the staggered-grid and col-
located pressure-increment schemes yield area changes that are relatively small, the
pressure-free approximate projection method generates a large loss of area, with area



B. E. Griffith / Commun. Comput. Phys., 12 (2012), pp. 401-432 421

losses of nearly 90% in some cases. As before, the staggered-grid scheme yields the lowest
area losses and rates of area change, and the exact and approximate pressure-increment
projection methods yield essentially identical results.

4.2 Dynamic tests

4.2.1 Thin elastic interface

Our first set of dynamic tests uses the nonequilibrium configuration of the thin elastic
interface with the various versions of the IB method. Upon release at the beginning of

(a)

(b)

Figure 2: Results from the dynamic thin-interface test of Section 4.2.1. The top panels (a) show the pressure
generated by the staggered-grid scheme at equally spaced time intervals during the first oscillation. The bottom
panels (b) show the corresponding pressures generated by the pressure-increment approximate projection method.
In both cases, N=128, ν=1.0e-2, and κ=1.
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Figure 3: Pressure along x2=0.5 for the staggered-grid (a and c) and pressure-increment approximate projection
(b and d) IB methods for the dynamic thin-interface test of Section 4.2.1. Although both schemes regularize
discontinuities in the pressure, notice the comparatively sharp resolution of the pressure discontinuity produced
by the staggered-grid scheme. By contrast, the collocated scheme generates significant nonphysical pressure
oscillations in the vicinity of such discontinuities.
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Table 7: Maximum percent area loss (or gain) for the dynamic thin-interface test of Section 4.2.1 with ν=1.0e-2.
The maximum percent area loss (or gain) is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC),
cell-centered pressure-increment exact projection (BCG-exact), cell-centered pressure-increment approximate
projection (BCG-approx), and cell-centered pressure-free approximate projection (KM-approx) solvers. The
minimum and maximum ratios of the cell-centered and staggered-grid results for each value of N are reported
in the right two columns. The staggered-grid scheme yields changes in area that are generally at least a factor
of 10-20 smaller than those produced by the cell-centered schemes. The differences between the discretization
methods appear to increase with the elastic stiffness coefficient κ.

ν=1.0e-2

κ=0.1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -7.25e-2 1.05 8.40e-1 0.90 8.40e-1 0.90 3.64e+0 0.22 1.16e+1 5.02e+1

128 -3.52e-2 1.06 4.49e-1 0.89 4.49e-1 0.89 3.13e+0 0.20 1.28e+1 8.91e+1

256 -1.69e-2 1.04 2.42e-1 0.93 2.42e-1 0.93 2.74e+0 0.22 1.43e+1 1.62e+2

512 -8.20e-3 — 1.27e-1 — 1.27e-1 — 2.35e+0 — 1.55e+1 2.87e+2

κ=1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -1.90e-1 1.01 2.22e+0 0.80 2.22e+0 0.80 4.97e+0 0.32 1.17e+1 2.62e+1

128 -9.40e-2 1.06 1.27e+0 0.84 1.27e+0 0.84 3.97e+0 0.25 1.35e+1 4.22e+1

256 -4.51e-2 1.05 7.12e-1 0.91 7.12e-1 0.91 3.33e+0 0.22 1.58e+1 7.39e+1

512 -2.17e-2 — 3.79e-1 — 3.79e-1 — 2.86e+0 — 1.74e+1 1.32e+2

κ=10

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -3.08e-1 0.70 4.89e+0 0.53 4.89e+0 0.53 7.48e+0 0.32 1.59e+1 2.43e+1

128 -1.90e-1 0.96 3.39e+0 0.73 3.39e+0 0.73 5.97e+0 0.37 1.78e+1 3.15e+1

256 -9.76e-2 1.05 2.04e+0 0.85 2.04e+0 0.85 4.62e+0 0.33 2.09e+1 4.73e+1

512 -4.73e-2 — 1.14e+0 — 1.14e+0 — 3.67e+0 — 2.41e+1 7.75e+1

κ=100

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -2.39e-1 0.20 8.18e+0 0.06 8.18e+0 0.06 1.05e+1 0.04 3.41e+1 4.40e+1

128 -2.08e-1 0.72 7.87e+0 0.48 7.87e+0 0.48 1.02e+1 0.34 3.78e+1 4.92e+1

256 -1.27e-1 1.05 5.65e+0 0.71 5.65e+0 0.71 8.07e+0 0.46 4.46e+1 6.37e+1

512 -6.12e-2 — 3.45e+0 — 3.45e+0 — 5.87e+0 — 5.64e+1 9.60e+1

the simulations, the elastic interface undergoes damped oscillations. We empirically de-

termined that the duration of the first oscillation is approximately 3.0625log10(κ)

κ 0.55 for the
range of boundary stiffnesses considered. We perform simulations similar to those of Sec-
tion 4.1.1, except that here we allow the perturbed structure to undergo approximately
three damped oscillations. Sample simulation results are shown in Figs. 2 and 3. Detailed
results for N=64, 128, 256, and 512 are reported in Tables 7 and 8 for ν=1.0e-2 and for
κ=0.1, 1, 10, and 100. Notice that an increase in the elastic stiffness coefficient also has the
effect of increasing the Reynolds number of the flow. The staggered-grid scheme yields
changes in area that are generally at least a factor of 10–20 smaller than those produced
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Table 8: Rate of area loss (gain) for the dynamic thin-interface test of Section 4.2.1 with ν=1.0e-2. The rate of
area loss (gain) is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC), cell-centered pressure-
increment exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx),
and cell-centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios
of the cell-centered and staggered-grid results for each value of N are reported in the right two columns. The
staggered-grid scheme yields rates of area change that are one to two orders of magnitude smaller than those
yielded by the cell-centered solution methods.

ν=1.0e-2

κ=0.1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 1.58e-6 -0.39 3.80e-4 0.91 3.80e-4 0.91 1.40e-3 0.25 2.40e+2 8.85e+2

128 2.08e-6 0.37 2.03e-4 0.91 2.03e-4 0.91 1.18e-3 0.22 9.75e+1 5.68e+2

256 1.61e-6 0.68 1.08e-4 0.94 1.08e-4 0.94 1.02e-3 0.23 6.71e+1 6.31e+2

512 1.01e-6 — 5.63e-5 — 5.63e-5 — 8.66e-4 — 5.59e+1 8.61e+2

κ=1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -9.41e-5 1.62 3.05e-3 0.82 3.05e-3 0.82 6.31e-3 0.35 3.25e+1 6.71e+1

128 -3.06e-5 1.75 1.73e-3 0.85 1.73e-3 0.85 4.94e-3 0.28 5.65e+1 1.61e+2

256 -9.08e-6 1.88 9.59e-4 0.92 9.59e-4 0.92 4.07e-3 0.23 1.06e+2 4.48e+2

512 -2.47e-6 — 5.07e-4 — 5.08e-4 — 3.46e-3 — 2.06e+2 1.40e+3

κ=10

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -7.74e-4 0.88 2.06e-2 0.54 2.06e-2 0.54 3.07e-2 0.35 2.67e+1 3.97e+1

128 -4.20e-4 1.20 1.41e-2 0.74 1.41e-2 0.74 2.42e-2 0.39 3.37e+1 5.76e+1

256 -1.82e-4 1.18 8.47e-3 0.86 8.47e-3 0.86 1.85e-2 0.35 4.64e+1 1.01e+2

512 -8.04e-5 — 4.68e-3 — 4.68e-3 — 1.45e-2 — 5.82e+1 1.80e+2

κ=100

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -4.77e-4 -0.71 1.11e-1 0.09 1.11e-1 0.09 1.41e-1 0.07 2.33e+2 2.95e+2

128 -7.81e-4 0.12 1.04e-1 0.49 1.04e-1 0.49 1.34e-1 0.36 1.34e+2 1.72e+2

256 -7.21e-4 1.27 7.42e-2 0.73 7.42e-2 0.73 1.05e-1 0.47 1.03e+2 1.45e+2

512 -3.00e-4 — 4.47e-2 — 4.47e-2 — 7.54e-2 — 1.49e+2 2.52e+2

by the cell-centered schemes, and these differences appear to increase with increases in
the elastic stiffness coefficient. The rates of area change of the staggered discretization are
also one to two orders of magnitude smaller than those of the collocated discretizations,
although in this case, there is a less clear relationship between the relative performance
of the discretizations and the stiffness of the elastic structure.

4.2.2 Elastic shell composed of circumferential fibers

Our next set of tests uses the nonequilibrium configuration of the thick elastic shell com-
posed of circumferential fibers. Upon release at the beginning of the simulations, the
elastic body undergoes damped oscillations. We empirically determined that the dura-
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Table 9: Maximum percent area loss (gain) for the dynamic elastic-shell test of Section 4.2.2 with ν=1.0e-2.
The maximum percent area loss (gain) is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC),
cell-centered pressure-increment exact projection (BCG-exact), cell-centered pressure-increment approximate
projection (BCG-approx), and cell-centered pressure-free approximate projection (KM-approx) solvers. The
minimum and maximum ratios of the cell-centered and staggered-grid results for each value of N are reported
in the right two columns. For this test, the discrepancies between the solution methods are relatively small,
although the staggered-grid scheme still yields at least modestly improved volume conservation compared to
the collocated discretizations.

ν=1.0e-2

κ=0.1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -3.50e-2 1.78 -1.28e-1 1.75 -1.28e-1 1.75 1.17e+0 1.97 3.67e+0 3.35e+1

128 -1.02e-2 1.88 -3.83e-2 1.85 -3.83e-2 1.85 3.00e-1 2.06 3.76e+0 2.94e+1

256 -2.78e-3 1.95 -1.06e-2 1.92 -1.06e-2 1.92 7.18e-2 2.13 3.83e+0 2.59e+1

512 -7.20e-4 — -2.80e-3 — -2.80e-3 — 1.64e-2 — 3.89e+0 2.27e+1

κ=1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -7.97e-2 1.63 -2.94e-1 1.67 -2.94e-1 1.67 1.07e+0 2.00 3.69e+0 1.35e+1

128 -2.58e-2 1.78 -9.22e-2 1.73 -9.22e-2 1.73 2.70e-1 2.10 3.58e+0 1.05e+1

256 -7.50e-3 1.88 -2.77e-2 1.83 -2.77e-2 1.83 6.28e-2 2.15 3.70e+0 8.36e+0

512 -2.04e-3 — -7.83e-3 — -7.83e-3 — 1.41e-2 — 3.83e+0 6.90e+0

κ=10

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -1.40e-1 1.39 -4.79e-1 1.38 -4.79e-1 1.38 9.39e-1 2.22 3.41e+0 6.68e+0

128 -5.37e-2 1.64 -1.83e-1 1.57 -1.83e-1 1.57 2.01e-1 2.57 3.42e+0 3.75e+0

256 -1.72e-2 1.78 -6.16e-2 1.73 -6.16e-2 1.73 3.40e-2 2.02 1.97e+0 3.57e+0

512 -5.00e-3 — -1.86e-2 — -1.86e-2 — -8.39e-3 — 1.68e+0 3.71e+0

κ=100

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 -1.93e-1 0.99 -6.33e-1 1.10 -6.34e-1 1.10 1.07e+0 2.84 3.27e+0 5.55e+0

128 -9.73e-2 1.46 -2.96e-1 1.34 -2.96e-1 1.34 -1.50e-1 1.20 1.54e+0 3.05e+0

256 -3.53e-2 1.66 -1.17e-1 1.55 -1.17e-1 1.55 -6.50e-2 1.56 1.84e+0 3.32e+0

512 -1.11e-2 — -4.00e-2 — -4.00e-2 — -2.20e-2 — 1.98e+0 3.59e+0

tion of the first oscillation is approximately 3.125log10(κ)

κ 0.703125 for the range of boundary
stiffnesses considered. We perform simulations similar to those of Section 4.1.2, except
that here we allow the perturbed structure to undergo approximately three damped os-
cillations. Sample simulation results are shown in Fig. 4. Detailed results for N=64, 128,
256, and 512 are reported in Tables 9 and 10 for ν=1.0e-2 and for κ=0.1, 1, 10, and 100. All
schemes appear to be converging at near second-order rates, and the differences in accu-
racy between the solution methods is relatively small. Nonetheless, the staggered-grid
scheme still yields at least a modest improvement in total area conservation when com-
pared to the collocated discretizations. In some cases, however, the rate of area change
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Table 10: Rate of area loss (gain) for the dynamic elastic-shell test of Section 4.2.2 with ν=1.0e-2. The rate of
area loss (gain) is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC), cell-centered pressure-
increment exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx),
and cell-centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios
of the cell-centered and staggered-grid results for each value of N are reported in the right two columns. For this
test, the discrepancies between the solution methods are relatively small, although the staggered-grid scheme
still yields at least modestly improved volume conservation compared to the collocated discretizations except
for the largest value of the elastic stiffness κ, for which the pressure-free approximate projection method can
yield rates of area change that are smaller than those produced by the staggered-grid method.

ν=1.0e-2

κ=0.1

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 -1.05e-4 0.89 -2.16e-4 0.65 -2.16e-4 0.65 5.98e-3 1.01 2.06e+0 5.72e+1
128 -5.65e-5 0.92 -1.38e-4 0.64 -1.38e-4 0.64 2.96e-3 1.08 2.44e+0 5.24e+1
256 -2.99e-5 0.98 -8.84e-5 0.81 -8.84e-5 0.81 1.40e-3 1.13 2.95e+0 4.68e+1
512 -1.52e-5 — -5.05e-5 — -5.05e-5 — 6.38e-4 — 3.32e+0 4.20e+1

κ=1

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 -7.92e-4 0.61 -1.69e-3 0.26 -1.69e-3 0.26 1.83e-2 1.02 2.13e+0 2.31e+1
128 -5.19e-4 0.78 -1.41e-3 0.55 -1.41e-3 0.55 8.99e-3 1.10 2.72e+0 1.73e+1
256 -3.02e-4 0.86 -9.63e-4 0.72 -9.63e-4 0.72 4.20e-3 1.14 3.19e+0 1.39e+1
512 -1.66e-4 — -5.84e-4 — -5.84e-4 — 1.91e-3 — 3.52e+0 1.15e+1

κ=10

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 -5.41e-3 0.39 -1.16e-2 -0.04 -1.16e-2 -0.04 5.29e-2 1.20 2.15e+0 9.78e+0
128 -4.14e-3 0.65 -1.19e-2 0.45 -1.19e-2 0.45 2.31e-2 1.42 2.88e+0 5.57e+0
256 -2.64e-3 0.78 -8.71e-3 0.66 -8.71e-3 0.66 8.62e-3 1.51 3.26e+0 3.29e+0
512 -1.54e-3 — -5.51e-3 — -5.51e-3 — 3.02e-3 — 1.96e+0 3.58e+0

κ=100

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 -2.55e-2 -0.07 -2.41e-2 -1.41 -2.41e-2 -1.41 1.99e-1 1.71 9.43e-1 7.80e+0
128 -2.68e-2 0.48 -6.38e-2 0.11 -6.39e-2 0.11 6.07e-2 4.94 2.27e+0 2.39e+0
256 -1.91e-2 0.69 -5.93e-2 0.51 -5.93e-2 0.51 1.98e-3 -2.65 1.03e-1 3.10e+0
512 -1.19e-2 — -4.17e-2 — -4.17e-2 — -1.24e-2 — 1.05e+0 3.51e+0

produced by the pressure-free approximate projection method is modestly smaller than
that of the other solution methods.

4.2.3 Elastic shell composed of circumferential and radial fibers

Our final set of tests uses the nonequilibrium configuration of the thick elastic shell com-
posed of both circumferential and radial fibers. Upon release at the beginning of the sim-
ulations, the elastic body undergoes damped oscillations. We empirically determined

that the duration of the first oscillation is approximately 2.75log10(κ)

κ 1.40625 for the range
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(a)

(b)

Figure 4: Results from the dynamic elastic shell test of Section 4.2.2. The top panels (a) show the pressure
generated by the staggered-grid scheme at equally spaced time intervals during the first oscillation. The bottom
panels (b) show the corresponding pressures generated by the pressure-increment approximate projection method.
In both cases, N=128, ν=1.0e-2, and κ=1.

(a)

(b)

Figure 5: Results from the dynamic elastic shell test of Section 4.2.3. The top panels (a) show the pressure
generated by the staggered-grid scheme at equally spaced time intervals during the first oscillation. The bottom
panels (b) show the corresponding pressures generated by the pressure-increment approximate projection method.
In both cases, N=128, ν=1.0e-2, and κ=1.
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Figure 6: Pressure along x2=0.5 for the staggered-grid (a and c) and pressure-increment approximate projection
(b and d) IB methods for the dynamic thin-interface test of Section 4.2.3. Although both schemes regularize
discontinuities in the pressure, notice the comparatively sharp resolution of the pressure discontinuity produced
by the staggered-grid scheme. By contrast, the collocated scheme generates significant nonphysical pressure
oscillations in the vicinity of such discontinuities.
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Table 11: Maximum percent area loss for the dynamic elastic-shell test of Section 4.2.3 with ν=1.0e-2. The max-
imum percent area loss is reported for N=64, 128, and 256 for the staggered-grid (MAC), cell-centered pressure-
increment exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx),
and cell-centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios
of the cell-centered and staggered-grid results for each value of N are reported in the right two columns. In this
case, the staggered-grid scheme yields area losses that are generally at least a factor of 5-20 smaller than those
produced by the collocated schemes. The differences between the schemes appear to decrease with increasing
elastic stiffness. Notice also that the pressure-free projection scheme yields unacceptably large area losses for
all grid spacings considered.

ν=1.0e-2

κ=0.1

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 3.04e-1 0.84 5.24e+0 1.01 5.29e+0 1.01 9.43e+1 -0.03 1.72e+1 3.10e+2
128 1.70e-1 0.91 2.61e+0 1.02 2.63e+0 1.01 9.62e+1 0.24 1.53e+1 5.65e+2
256 9.03e-2 0.94 1.28e+0 0.99 1.30e+0 0.97 8.17e+1 0.68 1.42e+1 9.04e+2
512 4.70e-2 — 6.48e-1 — 6.66e-1 — 5.10e+1 — 1.38e+1 1.09e+3

κ=1

BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio

64 6.52e-1 0.95 7.99e+0 1.05 8.02e+0 1.05 9.45e+1 -0.02 1.23e+1 1.45e+2
128 3.37e-1 0.91 3.86e+0 1.03 3.88e+0 1.02 9.58e+1 0.31 1.14e+1 2.84e+2
256 1.80e-1 0.95 1.90e+0 1.00 1.92e+0 0.98 7.73e+1 0.59 1.05e+1 4.29e+2
512 9.33e-2 — 9.49e-1 — 9.75e-1 — 5.14e+1 — 1.02e+1 5.51e+2

κ=10

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 1.08e+0 0.85 1.09e+1 1.05 1.09e+1 1.05 9.47e+1 0.00 1.01e+1 8.77e+1
128 5.98e-1 0.92 5.25e+0 1.03 5.27e+0 1.03 9.44e+1 0.45 8.77e+0 1.58e+2
256 3.15e-1 0.94 2.56e+0 1.00 2.58e+0 0.98 6.89e+1 0.54 8.12e+0 2.18e+2

512 1.65e-1 — 1.28e+0 — 1.31e+0 — 4.74e+1 — 7.79e+0 2.88e+2

κ=100

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 1.48e+0 0.78 1.30e+1 1.07 1.30e+1 1.07 9.49e+1 0.06 8.75e+0 6.39e+1
128 8.67e-1 0.84 6.18e+0 1.06 6.19e+0 1.05 9.13e+1 0.59 7.13e+0 1.05e+2
256 4.84e-1 0.88 2.97e+0 0.99 2.99e+0 0.98 6.08e+1 0.52 6.15e+0 1.26e+2
512 2.62e-1 — 1.50e+0 — 1.51e+0 — 4.24e+1 — 5.72e+0 1.62e+2

of boundary stiffnesses considered. We perform simulations similar to those of Sec-
tion 4.1.3, except that here we allow the perturbed structure to undergo approximately
three damped oscillations. Sample simulation results are shown in Figs. 5 and 6. Detailed
results for N=64, 128, 256, and 512 are reported in Tables 11 and 12 for ν=1.0e-2 and for
κ=0.1, 1, 10, and 100. As was the case in the corresponding quasi-static tests, the pressure-
free approximate projection method yields extremely poor volume conservation for this
test, with area losses of over 90% in many cases. The volume conservation of the other
methods is comparatively good, especially the staggered-grid scheme, which yields area
losses of less than 1% in many cases, even at very large elastic stiffnesses.
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Table 12: Rate of area loss for the dynamic elastic-shell test of Section 4.2.3 with ν=1.0e-2. The rate of area
loss is reported for N=64, 128, 256, and 512 for the staggered-grid (MAC), cell-centered pressure-increment
exact projection (BCG-exact), cell-centered pressure-increment approximate projection (BCG-approx), and cell-
centered pressure-free approximate projection (KM-approx) solvers. The minimum and maximum ratios of the
cell-centered and staggered-grid results for each value of N are reported in the right two columns. In this case,
the staggered-grid scheme yields rates of area loss that are generally at least a factor of 5-10 smaller than those
produced by the collocated schemes. The differences between the schemes appear to decrease with increasing
elastic stiffness.

ν=1.0e-2

κ=0.1
BCG BCG KM min max

N MAC rate exact rate approx rate approx rate ratio ratio
64 2.25e-5 0.81 3.04e-4 0.98 3.04e-4 0.99 4.85e-3 -0.50 1.35e+1 2.15e+2

128 1.29e-5 0.92 1.54e-4 1.09 1.54e-4 1.08 6.88e-3 0.29 1.19e+1 5.34e+2
256 6.79e-6 0.94 7.24e-5 0.99 7.26e-5 0.99 5.64e-3 0.73 1.07e+1 8.30e+2
512 3.54e-6 — 3.64e-5 — 3.67e-5 — 3.40e-3 — 1.03e+1 9.63e+2

κ=1

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 1.76e-4 0.95 1.65e-3 1.13 1.65e-3 1.13 1.88e-2 -0.43 9.36e+0 1.07e+2
128 9.11e-5 0.91 7.54e-4 1.07 7.55e-4 1.06 2.54e-2 0.40 8.28e+0 2.79e+2
256 4.84e-5 0.95 3.59e-4 1.01 3.61e-4 1.00 1.92e-2 0.63 7.43e+0 3.96e+2
512 2.50e-5 — 1.78e-4 — 1.80e-4 — 1.24e-2 — 7.12e+0 4.96e+2

κ=10

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 1.06e-3 0.89 8.05e-3 1.18 8.03e-3 1.18 7.45e-2 -0.31 7.60e+0 7.05e+1
128 5.69e-4 0.95 3.54e-3 1.09 3.55e-3 1.08 9.23e-2 0.59 6.23e+0 1.62e+2
256 2.95e-4 0.95 1.67e-3 1.02 1.68e-3 1.00 6.15e-2 0.56 5.66e+0 2.08e+2
512 1.53e-4 — 8.25e-4 — 8.38e-4 — 4.16e-2 — 5.39e+0 2.72e+2

κ=100

BCG BCG KM min max
N MAC rate exact rate approx rate approx rate ratio ratio

64 5.37e-3 0.89 3.55e-2 1.28 3.53e-2 1.27 2.96e-1 -0.13 6.58e+0 5.52e+1
128 2.90e-3 0.89 1.46e-2 1.14 1.46e-2 1.14 3.23e-1 0.74 5.05e+0 1.11e+2
256 1.56e-3 0.90 6.63e-3 1.03 6.66e-3 1.02 1.94e-1 0.52 4.25e+0 1.24e+2
512 8.36e-4 — 3.25e-3 — 3.29e-3 — 1.35e-1 — 3.89e+0 1.61e+2

5 Conclusions

In this paper, we have presented empirical tests that examine the volume-conservation
properties of the IB method for several choices of Eulerian discretization and solution
methods. Our tests considered a broad range of boundary stiffnesses both for quasi-
static problems and also for dynamic problems at moderate-to-high Reynolds numbers.
For benchmark problems involving sharp discontinuities in the pressure, we found that
the spurious volume changes exhibited by the staggered-grid scheme are generally more
than an order of magnitude smaller than those of the collocated solution methods. For
problems that do not include such discontinuities, there is a smaller difference in the
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volume-conservation properties of the schemes, although the staggered-grid discretiza-
tion still generally yields modestly improved volume conservation in comparison to the
collocated schemes in such cases. We believe that these differences between collocated
and staggered-grid IB schemes are not well appreciated by the IB community, and we
hope these empirical observations will be useful to those who use the IB method and
who wish to improve the accuracy of IB or IB-like methods. At present, a theoretical ex-
planation for the differences in volume-conservation between staggered and collocated
IB methods is lacking, and a potentially important line of future research is to develop a
more complete understanding of the differences.

A possible route to improve further the volume conservation of the staggered-grid IB
method might be to employ a divergence-preserving interpolation scheme, like that of
Tóth and Roe [41], which ensures that the continuous divergence of the interpolated ve-
locity field in the interior of each Cartesian grid cell is equal to the discrete divergence of
the staggered-grid velocity field within that cell. (No such interpolation scheme appears
to exist for collocated velocity fields, be they cell- or node-centered.) One potential diffi-
culty of using the interpolation scheme of Tóth and Roe in the context of the IB method is
that this scheme yields an interpolated velocity field that is not continuous at the bound-
aries between the Cartesian grid cells. Consequently, the Lagrangian velocity field would
possess apparent mass sources or sinks at these boundaries, and therefore would not
yield exact discrete volume conservation in general. Further, it is generally thought to
be important to advect the curvilinear mesh nodes by a continuous Lagrangian veloc-
ity field [1], e.g., to prevent nonphysical self-intersections of the immersed boundary.
Nonetheless, it seems worthwhile to investigate interpolation schemes that attempt to
exploit the structure of the staggered-grid velocity field.

We also considered the effect on volume conservation of using cell-centered approx-
imate projection methods with the IB method. We found that the form of the approxi-
mate projection method has a large impact on the volume-conservation properties of the
scheme. Pressure-free approximate projection methods, in which no approximation to
the pressure gradient is included in the approximation to the momentum equation, were
found to yield extremely poor volume conservation for certain problems. By contrast, the
volume conservation of pressure-increment approximate projection methods, in which a
time step-lagged approximation to the pressure gradient is included when solving the
momentum equation, is similar to that of cell-centered exact projection IB methods. Con-
sequently, for problems in which a collocated IB method yields adequate volume con-
servation, as may be the case at lower Reynolds numbers, the accuracy yielded by an
appropriate approximate projection IB method may be comparable to that of a more ex-
pensive exact-projection IB method.

One limitation of this study is that we have not considered collocated discretizations
that define approximations to the pressure and velocity at different spatial locations, e.g.,
the scheme of Almgren et al. [16], which employs a cell-centered discretization of the ve-
locity and a node-centered discretization of the pressure. Such schemes might offer im-
proved volume conservation compared to purely cell-centered or purely node-centered
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discretizations, and they appear to be more straightforward to extend to adaptively re-
fined Cartesian grids [17] than staggered-grid Eulerian discretizations. An advantage of
the staggered-grid Eulerian discretization, however, is that it is stable and does not suffer
from spurious pressure modes that can lead to nonphysical instabilities, especially for
problems involving singular forcing terms.

A second limitation of this study is that we have not included a direct comparison
to the improved volume conservation IB method of Peskin and Printz [2]. We remark,
however, that Peskin and Printz report improvements in volume conservation that are
quantitatively similar to the difference between staggered-grid and collocated discretiza-
tions demonstrated in the present work. It may be possible to follow their approach
to derive modified staggered-grid finite-difference operators that further improve the
volume-conservation properties of the staggered-grid IB method. We anticipate, how-
ever, that the unmodified staggered-grid approach will prove more useful in practice
both because it is likely to be easier to implement and also because its extensions to
cases involving adaptive mesh refinement [23, 25, 26, 28, 29] or physical boundary con-
ditions [25,27,29] are significantly more straightforward. Such extensions, which we and
others are actively developing, are needed in the context of many of the applications of
the IB method to challenging problems of fluid-structure interaction.
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Birkhäuser Press, 1997.

[37] hypre: High performance preconditioners. http://www.llnl.gov/CASC/hypre.
[38] R. D. Falgout and U. M. Yang. hypre: a library of high performance preconditioners. In

P. M. A. Sloot, C. J. K. Tan, J. J. Dongarra, and A. G. Hoekstra, editors, Computational Science
- ICCS 2002 Part III, volume 2331 of Lecture Notes in Computer Science, pages 632–641.
Springer-Verlag, 2002. Also available as LLNL Technical Report UCRL-JC-146175.

[39] D. Boffi, L. Gastaldi, L. Heltai, and C. S. Peskin. On the hyper-elastic formulation of the
immersed boundary method. Comput. Meth. Appl. Mech. Engrg., 197(25–28): 2210–2231,
2008.

[40] B. E. Griffith and X. Luo. Hybrid finite difference/finite element version of the immersed
boundary method. Submitted, preprint available from
http://www.cims.nyu.edu/~griffith.

[41] G. Tóth and P. L. Roe. Divergence- and curl-preserving prolongation and restriction formu-
las. J. Comput. Phys., 180(2): 736–750, 2002.


