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Abstract. We develop in this paper efficient and robust numerical methods for solv-
ing anisotropic Cahn-Hilliard systems. We construct energy stable schemes for the
time discretization of the highly nonlinear anisotropic Cahn-Hilliard systems by using
a stabilization technique. At each time step, these schemes lead to a sequence of lin-
ear coupled elliptic equations with constant coefficients that can be efficiently solved
by using a spectral-Galerkin method. We present numerical results that are consis-
tent with earlier work on this topic, and also carry out various simulations, such as
the linear bi-Laplacian regularization and the nonlinear Willmore regularization, to
demonstrate the efficiency and robustness of the new schemes.
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1 Introduction

The phase-field method has been frequently used in the study of the dynamics of het-
erogeneous materials, such as crystal growth, phase separations in binary mixtures, and
multi-phase fluid flows. Its ubiquitous advantage over the sharp-interface approach is
that there is no need to track the interface explicitly. Usual phase-field approaches often
lead to a second-order Allen-Cahn equations [1] or a fourth-order Cahn-Hilliard equa-
tion [3]. It is usually more challenging to solve the Cahn-Hilliard equation than the Allen-
Cahn equation due to its high-order nature and its stiffness caused by small parameters
in the physical system.

We consider in this paper a classical problem in materials science, namely, determin-
ing the equilibrium shape of a solid crystal in its own liquid matrix. When anisotropy
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of the micro-mechanical system is sufficiently strong, the surface energy function, f (φ),
may become too large or singular on certain orientations. Thus, these orientations may be
missing in the equilibrium shape (or Wulff shape) in order to achieve a well-defined en-
ergy for the system. Consequently, the equilibrium interface will not be a smooth curve,
but present facets and corners with slope discontinuities (cf. [17]). Fundamentally, the
gradient energy density loses its convexity (see a proof in the Appendix of [20]) when
the so-called ‘surface stiffness’ changes its sign (cf. [10] for the sharp interface approach
on the same topic). In this case, the corresponding Cahn-Hilliard equation is intrinsically
of a backward parabolic type. Thus it is an ill-posed problem and requires regulariza-
tions. The linear bi-Laplacian regularization and the nonlinear Willmore regularization
(cf. [6, 7, 11]) will be considered in this paper. While the former is easier to deal with
numerically, its asymptotic results does not match the correct physics. The latter is more
physically consistent, with sharp corners of the Wulff shape replaced by rounded cor-
ners while major parts of edges remains unchanged, but its free energy is also much
more complicated. Both regularizations lead to a sixth-order Cahn-Hilliard type equa-
tions which present significant challenges for developing efficient and accurate numer-
ical schemes. There are two main difficulties: (i) the presence of a small parameter ǫ,
representing the interfacial width, which makes the (time continuous) discretized system
very stiff; and (ii) the high-order spatial derivatives, which make the spatially discretized
system very difficult to solve.

In [8], the authors used a second-order central difference discretization in space for
solving the anisotropic Cahn-Hilliard equation. A convexification technique was em-
ployed so that the regularization was not needed. However, it used an explicit time
discretization, resulting in severe time step restrictions. In the recent work [18, 20], the
authors solved the regularized anisotropic Cahn-Hilliard system with an adaptive non-
linear multigrid finite difference method.

We propose to solve the regularized anisotropic Cahn-Hilliard systems with a sta-
bilized time discretization that allows large time steps and a spectral discretization in
space. Unlike in [18,20], our numerical schemes do not lead to a nonlinear system at each
time step, instead, only a system of three coupled linear elliptic equations with constant
coefficients that can be efficiently solved by a suitable spectral method.

The paper is organized as follows: in Section 2, we describe the governing PDE sys-
tem for the anisotropic crystal growth. The main idea of the paper is given in Section 3,
where we propose our time discretizations and spectral methods for the system. Numer-
ical tests and simulations are given in Section 4. We conclude with a few remarks in the
last section.

2 Phase-field models for anisotropic systems

Let Ω⊂R
d (d=2,3), and φ(x) be an order parameter that takes the values ±1 in the two

phases with a smooth transitional layer of thickness ǫ. We consider the following free
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energy density of Ginzburg-Landau type,

F(φ)=
γ(n)

ǫ

(

f (φ)+
ǫ2

2
|∇φ|2

)

, (2.1)

where γ(n) is a function describing the anisotropic property and n is the interface normal
defined as

n=(n1,n2)
T =

∇φ

|∇φ| , (2.2)

and the energy density f (φ) takes the usual form

f (φ)=
1

4
(φ2−1)2. (2.3)

Then, the surface energy of the system is given by

E(φ)=
∫

Ω
F(φ)dΩ. (2.4)

The difference between an isotropic system and an anisotropic one is reflected in different
choices of γ(n) in (2.1). When γ(n)≡ 1, we have an isotropic system, namely, the free
energy has no preference in orientations. In this case, the H−1-gradient flow of (2.4) leads
to the usual isotropic Cahn-Hilliard equation. In the anisotropic case, γ(n) depends on
n in a nontrivial manner. We consider in this paper the fourfold symmetric anisotropic
function,

γ(n)=1+αcos(4θ)=1+α
(

4
d

∑
i=1

n4
i −3

)

, (2.5)

where θ denotes the orientation angle of the interfacial normal to the interface. The non-
negative parameter α in (2.5) describes the intensity of anisotropy. When α=0, the system
is reduced to the isotropic case. As α increases, the system becomes more anisotropic. It
is indicated in [18,20] that a sufficient big α would produce a strongly anisotropic system,
i.e., the underline Cahn-Hilliard equation is ill-posed. In order to regularize the original
problem, an extra term, G, is added to (2.4) to penalize infinite curvatures in the resulting
corners. Consequently, the total system energy becomes

E(φ)=
∫

Ω

(

F+
β

2
G
)

dΩ, (2.6)

where β is a small regularization parameter. We consider two kinds of regularizations,
namely, two different forms of G.

The first one is the linear regularization based on the bi-Laplacian of the phase vari-
able,

GL(φ)=
1

ǫ3
(ǫ2∆φ)2=ǫ|∆φ|2. (2.7)
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By taking the H−1-gradient flow on (2.6), we derive the anisotropic Cahn-Hilliard system
with the linear regularization:























φt=
1

ǫ
∆µ,

µ=
γ(n)

ǫ
f ′(φ)−ǫ∇·m−β∆ω,

ω=−ǫ∆φ.

(2.8)

In the above, the chemical potential µ is the variational derivative of E , and the vector
field m is given by

m=γ(n)∇φ+P∇nγ(n)(
f

ǫ2|∇φ|+
1

2
|∇φ|) with P=I−n⊗n. (2.9)

In the isotropic case, i.e., with γ(n)=1 in the above, we obtain the isotropic Cahn-Hilliard
system with linear regularization























φt=
1

ǫ
∆µ,

µ=
δE
δφ

=
1

ǫ
f (φ)+ω−β∆ω,

ω=−ǫ∆φ.

(2.10)

The second choice, which is more effective as an approximation to the consistent
sharp-interface model as pointed out in [18], is the following nonlinear Willmore reg-
ularization,

GN(φ)=ω2, (2.11)

where ω is variational derivative of the isotropic part of F , i.e.,

ω=
1

ǫ
f ′(φ)−ǫ∆φ. (2.12)

By taking the H−1-gradient flow on (2.6), we derive the strongly anisotropic Cahn-Hilliard
system with the Willmore regularization:































φt=
1

ǫ
∇·[M(φ)∇µ],

µ=
δE
δφ

=
γ(n)

ǫ
f ′(φ)−ǫ∇·m+

β

ǫ2
ω f ′′(φ)−β∆ω,

ω=
1

ǫ
f ′(φ)−ǫ∆φ,

(2.13)
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where m is defined in (2.9). For simplicity, we focus on the bulk diffusion case and set
the mobility function M(φ) to be 1. The system (2.13) is supplemented with either the
homogeneous Neumann boundary condition,

∂φ

∂n

∣

∣

∣

∂Ω
=

∂µ

∂n

∣

∣

∣

∂Ω
=

∂ω

∂n

∣

∣

∣

∂Ω
=0, (2.14)

or the 2π-periodic boundary condition for φ, µ, and ω.
By taking the inner product of the first equation of (2.13) with µ, the second equation

with φt, and subtracting two resulted equations, one derives that the system (2.13) admits
the following energy law:

d

dt
E(φ)=−1

ǫ
‖∇µ‖2. (2.15)

Note that the expression for m may cause significant difficulties in numerical simula-

tion due to the presence of the term 1
ǫ

f
|∇φ| . Therefore, we follow [18] to use the following

approximate form
m≈γ(n)∇φ+|∇φ|P∇nγ(n), (2.16)

which is obtained by using the fact that near the interface we have (cf. [18])

f (φ)∼ (ǫ2/2)|∇φ|2. (2.17)

However, with this approximation, the systems (2.8) and (2.13) no longer satisfy the
energy law (2.15), but it has been numerically proven in [18] that the energy is non-
increasing.

3 Numerical schemes

The nonlinear Cahn-Hilliard systems derived in the above all have sixth-order spatial
derivatives and develop interfaces with thickness of order ǫ. It is a great challenge to
develop efficient and stable numerical schemes for them.

The difficulty associated with the small interfacial width in a phase-field approach
is usually dealt with either the convex splitting method (cf., for instance, [9, 19]) or the
stabilized method (cf., for instance, [15, 21]).

We shall construct efficient numerical schemes for the three nonlinear Cahn-Hilliard
systems (2.10), (2.8), (2.13), and in the first case, prove rigorously that the proposed
scheme is energy stable. For the second and third cases, since their corresponding spa-
tial continuous cases do not satisfy the energy law (2.15), it is not possible to prove the
numerical schemes are energy stable.

We shall follow three general principles in designing time discretization schemes for
these systems: (i) all the diffusion terms should be treated implicitly, a necessary con-
dition for the scheme to be stable; (ii) all nonlinear terms are treated explicitly to avoid
solving nonlinear equations at each time step; (iii) adding a stabilizing term to avoid the
severe time step constraint due to the explicit treatment of nonlinear terms.
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3.1 Isotropic case with the linear regularization

We consider first the isotropic Cahn-Hilliard system (2.10). The full understanding of this
simpler problem is important because it provides guidance for designing better schemes
in the other two cases. We propose the following stabilized first-order scheme:























φn+1−φn

δt
=

1

ǫ
∆µn+1,

µn+1=
1

ǫ
f ′(φn)+ωn+1−β∆ωn+1+

s

ǫ
(φn+1−φn),

ωn+1=−ǫ∆φn+1,

(3.1)

where s is a stabilization constant.
We note that the additional stabilizing term s(φn+1−φn)/ǫ introduces a consistency

error of order O(s δt
ǫ ) that is of the same order as treating the term 1

ǫ f (φ) explicitly. We
refer to [15, 22] for remarks on similar schemes for the Allen-Cahn and Cahn-Hilliard
equations.

In order to describe the stability, we define the discrete energy En for (3.1) as

En,E(φn)=
∫

Ω
(F(φn)+

β

2
GL(φ

n))dΩ=
1

ǫ
( f (φn),1)+

ǫ

2
‖∇φn‖2+

βǫ

2
‖∆φn‖2. (3.2)

Theorem 3.1. The solution of (3.1) obeys the following discrete energy law:

1

δt
(En+1−En)6−1

ǫ
‖∇µn+1‖2, n=0,1,··· , (3.3)

if

δt≤ 4ǫ4

L2
when s=0, or s>

L

2
, (3.4)

where L,maxφ∈R | f ′′(φ)|.

Proof. Taking the inner product of the first equation of (3.1) with δtµn+1, we obtain

(φn+1−φn,µn+1)=−δt

ǫ
‖∇µn+1‖2. (3.5)

Taking the inner product of the second equation of (3.1) with φn+1−φn, we derive

(φn+1−φn,µn+1)= I+ I I, (3.6)

where

I=
1

ǫ
( f ′(φn),φn+1−φn), (3.7a)

I I=
(

ωn+1−β∆ωn+1+
s

ǫ
(φn+1−φn),φn+1−φn

)

. (3.7b)
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Expanding f (φn+1) at φn with Taylor formula, we have

f (φn+1)= f (φn)+ f ′(φn)(φn+1−φn)+
1

2
f ′′(ξn)(φn+1−φn)2, (3.8)

where ξn is between φn+1 and φn. Hence we can rewrite I as

I=
1

ǫ

(

f (φn+1)− f (φn),1
)

− 1

2ǫ

(

f ′′(ξn)(φn+1−φn),(φn+1−φn)
)

. (3.9)

Next we split I I into three parts,

I I= I Ia+ I Ib+ I Ic, (3.10)

where

I Ia=(ωn+1,φn+1−φn)=ǫ(∇φn+1,∇(φn+1−φn)), (3.11a)

I Ib=−β(∆ωn+1,φn+1−φn)=ǫβ(∆φn+1,∆(φn+1−φn)), (3.11b)

I Ic=
s

ǫ
(φn+1−φn,φn+1−φn)=

s

ǫ
‖φn+1−φn‖2. (3.11c)

Using the algebraic identity,

2(a,a−b)= a2−b2+(a−b)2, (3.12)

we can rewrite I Ia and I Ib as

I Ia=
ǫ

2

(

‖∇φn+1‖2−‖∇φn‖2+‖∇(φn+1−φn)‖2
)

, (3.13a)

I Ib=
ǫβ

2

(

‖∆φn+1‖2−‖∆φn‖2+‖∆(φn+1−φn)‖2
)

. (3.13b)

Combining (3.5), (3.6), (3.9), (3.11) and (3.13), we obtain

En+1−En+
ǫ

2
‖∇(φn+1−φn)‖2+

δt

ǫ
‖∇µn+1‖2+

1

ǫ

(

s− 1

2
f ′′(ξn)

)

‖φn+1−φn‖2≤0. (3.14)

Case s=0: We take the inner product of (3.1) with ǫ
√

δt(φn+1−φn), obtaining

ǫ√
δt
‖φn+1−φn‖2 =−

√
δt(∇µn+1,∇(φn+1−φn))

≤ δt

2ǫ
‖∇µn+1‖2+

ǫ

2
‖∇(φn+1−φn)‖2. (3.15)

Summing up the last two relations, we get

En+1−En+
( ǫ√

δt
− 1

2ǫ
f ′′(ξn)

)

‖φn+1−φn‖2≤0. (3.16)

Hence, we have En+1−En ≤0 if δt≤ 4ǫ4

L2 .

Case s> 0: We obtain immediately from (3.14) that En+1−En ≤ 0 under the assumption
s≥ L

2 .
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Figure 1: f and f̃ with K=1.6.

Remark 3.1. Note that for the usual double-well potential f (φ), L= ∞. However, it is
shown in [2] that the solution of a usual Cahn-Hilliard system will not be affected if we
replace the quartic growth of f (φ) at infinities by quadratic growth, e.g.,

f̃ =































3K2−1

2
φ2−2K3φ+

1

4
(3K4+1), φ>K,

1

4
(φ2−1)2, φ∈ [−K,K],

3K2−1

2
φ2+2K3φ+

1

4
(3M4+1), φ<−K,

(3.17)

with a sufficiently large positive number K. Hence, we can expect that replacing f by f̃
will not affect the solution of system (2.10). For notational simplicity, we still denote f̃ by
f .

Remark 3.2. One can easily construct a second order stabilized scheme, for example:























3φn+1−4φn+φn−1

2δt
=

1

ǫ
∆µn+1,

µn+1=
1

ǫ
(2 f ′(φn)− f ′(φn−1))+ωn+1−β∆ωn+1+

s

ǫ
(φn+1−2φn+φn),

ωn+1=−ǫ∆φn+1.

(3.18)

However, this scheme is no longer unconditionally stable, but our numerical experiments
indicate that the allowable time step can be orders of magnitude larger than the usual
semi-implicit scheme (cf. also [15]). Note that one can construct second-order accurate
numerical schemes to gradient system with an unconditional energy stability by using
the convex splitting technique (cf. [9,14,19]). However, these schemes lead to a nonlinear
system at each time step.
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Remark 3.3. The proof of Theorem 3.1 is based on an energy argument with a weak
formulation of (3.1). Therefore, the proof can be carried over to the fully discrete case as
long as the spatial discretization is based on a consistent weak formulation.

3.2 Anisotropic case with the linear regularization

We now consider the anisotropic system with the linear bi-Laplacian regularization (2.8).
We propose the following first order stabilized scheme:























φn+1−φn

δt
=

1

ǫ
∆µn+1,

µn+1=
1

ǫ
[γ(nn) f ′(φn)−ǫ2∇·mn]−β∆ωn+1+

s

ǫ
(φn+1−φn)+ s̃(ωn+1−ωn),

ωn+1=−ǫ∆φn+1.

(3.19)

Different from the scheme (3.1), there are two stabilizing terms in the second equation of
the above scheme. As in (3.1), the first stabilizing term, s(φn+1−φn)/ǫ, is introduced to
balance the explicit treatment of 1

ǫ γ(n) f ′(φ), while the second stabilizing term, s̃(ωn+1−
ωn), is introduced to balance the explicit treatment of ǫ∇·m. In fact, when we take the
inner product of the second equation in (3.19) with φn+1−φn, we have s̃(ωn+1−ωn,φn+1−
φn)= s̃ǫ‖∇(φn+1−φn)‖2. Note that the term needs to be stabilized is

ǫ(∇·mn,φn+1−φn)=−ǫ(mn,∇(φn+1−φn)). (3.20)

Taking into account the approximate form of m given in (2.16), we see that this term
can be controlled by the stabilizing term for s̃ sufficiently large (but independent of ǫ).
Indeed, while it is not possible to prove an analog of Theorem 3.1 due to the fact that the
system (2.8) uses (2.16), but our numerical results indicate that for suitably large s̃ and s,
the scheme (3.21) is energy dissipative for arbitrary δt.

3.3 Anisotropic case with the Willmore regularization

We now construct a stabilized scheme for (2.13). Unlike in (2.8), there is a nonlinear term
in the expression for ω that needs to be stabilized. Hence, we consider the following
stabilized scheme:











































φn+1−φn

δt
=

1

ǫ
∆µn+1;

µn+1=
1

ǫ

[

γ(nn) f ′(φn)−ǫ2∇·mn
]

+
β

ǫ2

[

s̃(ωn+1−ω̃n)+ f ′′(φn)ω̃n
]

−β∆ωn+1,

where ω̃n=
1

ǫ
f ′(φn)−ǫ∆φn;

ωn+1=
1

ǫ

[

s(φn+1−φn)+ f ′(φn)−ǫ2∆φn+1
]

.

(3.21)
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We now explain why we use ω̃n, instead of ωn, in the expression for µn+1. We derive
from the last relation in the above scheme that

ωn+1−ωn =
s

ǫ
(φn+1−2φn+φn−1)+

1

ǫ
( f ′(φn)− f ′(φn−1)−ǫ(∆φn+1−∆φn). (3.22)

Hence, if we use, as the stabilization term, s̃(wn+1−wn), instead of s̃(wn+1−w̃n), in the
expression for µn+1, it will not provide enough stabilization due to the the second-order
term (φn+1−2φn+φn−1). Indeed, our numerical results show that the associated scheme
is not energy dissipative. On the other hand, we have

ωn+1−ω̃n =
s

ǫ
(φn+1−φn)−ǫ(∆φn+1−∆φn), (3.23)

so the inner product of this term with φn+1−φn provides sufficient stabilization.

As for the scheme (3.19), it is not possible to prove an analog of Theorem 3.1, but
our numerical results indicate that for suitably large s̃ and s, the scheme (3.21) is indeed
energy dissipative, hence stable, for arbitrary δt.

3.4 Spatial discretization

We recall that all the nonlinear terms in our schemes are explicitly treated so that we
have a linear system to solve at each time step. More precisely, for schemes (3.1), (3.19),
or (3.21), a system of three coupled elliptic equations needs to be solved at each time step.
Taking (3.21) as an example, it can be rearranged as



























ǫ

δt
φn+1−∆µn+1=

ǫ

δt
φn,

1

β
µn+1− s̃ωn+1

ǫ2
+∆ωn+1=

1

βǫ
(γ(nn) f ′(φn)−ǫ2∇·mn)+

1

ǫ2
f ′′(φn)ω̃n− s̃ω̃n

ǫ2
,

1

ǫ
ωn+1− s

ǫ2
φn+1+∆φn+1=− s

ǫ2
φn+

1

ǫ2
f ′(φn).

(3.24)

Hence, at each time step, we only need to solve the following prototype system of cou-
pled elliptic equations,











αu+βv+γw−η∆w= f ,

α̃u+ β̃v+γ̃w− η̃∆v= g,

˜̃αu+ ˜̃βv+ ˜̃γw− ˜̃η∆u=h,

(3.25)

where {u,v,w} are unknown solutions, { f ,g,h} are given right hand side functions, and
all the coefficients are constants. We shall use spectral methods to solve this system of
equations along with suitable boundary conditions.

If the system (3.25) is supplemented with the boundary conditions (2.14), we shall
use a new spectral-Galerkin method for solving systems of coupled elliptic equations
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recently developed in [5]. For the readers’ convenience, we provide below a very brief
description of the method in the two-dimensional case.

Let us denote

XN ={v∈PN : ∂xv|±1 =0; XN =XN×XN}. (3.26)

Setting φk(x) = Lk(x)− k(k+1)
(k+2)(k+3)Lk+2(x), it is easy to check that XN = span{φk : k =

0,1,··· ,q=N−2} (cf. [12]). Expanding the approximate solutions to (u,v,w) as

(uN ,vN ,wN)=
q

∑
k=0

q

∑
j=0

(ũkj,ṽkj,w̃kj)φk(x)φj(y), (3.27)

and setting

Ukj = ũkj, Vkj = ṽkj, Wkj = w̃kj, Mkj =(φj,φk), Skj =(φ′
j,φ

′
k), (3.28a)

Fkj =(IN f ,φk(x)φy(y)), Gkj=(IN g,φk(x)φy(y)), Hkj =(INh,φk(x)φy(y)), (3.28b)

the Legendre-Galerkin method to (3.25) is equivalent to the following system of matrix
equations [12, 13]:











αMUM+βMVM+γMWM+η(SUM+MUS)=F,

α̃MUM+ β̃MVM+γ̃MWM+ η̃(SUM+MUS)=G,

˜̃αMUM+ ˜̃βMVM+ ˜̃γMWM+ ˜̃η(SUM+MUS)=H.

(3.29)

The above system can be solved efficiently by a matrix diagonalization method recently
developed in [5]. More precisely, the computational complexity for solving the system of
three coupled equations (3.25) is essentially three times of the cost for solving one Poisson
type equation by the efficient Legendre-Galerkin method [12]. Therefore, this method is
very efficient and spectrally accurate.

For the case of periodic boundary conditions, the system (3.25) can be solved very ef-
ficiently by a straightforward Fourier-Galerkin method (cf., for instance, [4,13]). Namely,
let f̃k, g̃k and h̃k be the k Fourier-coefficient of the given functions f ,g,h, and ũk, ṽk and
w̃k be the k Fourier-coefficient of the unknown functions u,v,w. Then, the system (3.25)
is reduced to a sequence of 3×3 algebraic system: for each k∈N

d, find ũk, ṽk and w̃k

from














αũk+βṽk+γw̃k+η|k|2w̃k= f̃k,

α̃ũk+ β̃ṽk+γ̃w̃k+ η̃|k|2ṽk = g̃k,

˜̃αũk+
˜̃βṽk+ ˜̃γw̃k+ ˜̃η|k|2ũk= h̃k,

(3.30)

which can be inverted directly.

Note that the explicit nonlinear terms in all cases are computed using the usual pseudo-
spectral approach.
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4 Numerical simulations and discussion

We present in this section various numerical examples to show the robustness and effec-
tiveness of our numerical schemes, and to validate the phase field model for the strongly
anisotropic system. In Subsection 4.1, we show time evolutions of phase interfaces for
the three different models using the corresponding schemes presented in Section 3. In
Subsection 4.2, we simulate the roughing process for a sinusoidal curve, and study quan-
titatively the anisotropy phenomenon of the Wulff shape. The impact of regularizations
is studied in Subsection 4.3 where we compare the linear regularization and Willmore
regularization by using the Legendre-Galerkin method. In addition, the asymptotic con-
vergence as β−→0 of Willmore regularizations is observed numerically.

In all simulations, we assume Ω=(−1,1)2 with the homogeneous Neumann bound-
ary conditions in (2.14), and use the Legendre-Galerkin method with 129×129 modes
described in the last section. We have used a time step δ= 10−3 in all simulations. This
choice is not made by stability requirement, as our schemes are all unconditionally stable,
rather, it is made by the accuracy requirement.

4.1 Effectiveness tests and time evolutions

For each of the examples show below using the (3.1), (3.19), or (3.21), we have numerically
verified that these schemes with s= s̃=2 are unconditionally stable with any δt. Hence,
the choice of time step δt is only dictated by the accuracy requirement, not the stability.

4.1.1 Isotropic case with the linear regularization

As the first example, consider the isotropic Cahn-Hilliard system with the linear regular-
ization, (2.10), and the corresponding scheme (3.1). We use the following parameters,

δt=10−3, T=0.7, ǫ=0.02, β=10−4, s=2, (4.1)

where δt is time step size, T the terminating time, ǫ proportional to the interfacial width,
β the regularization parameter, and s the stabilization parameter. We choose the initial
condition as

φ0(x,y)=
3

∑
i=1

tanh

√

(x−xi)2+(y−yi)2−ri

ǫ
−2, (4.2)

where {xi,yi}3
i=1 and {ri}3

i=1 are circle centers and radii. The time evolution of the zero-
isocontours of φ are shown in the top part of Fig. 2, while the energy evolution is shown
in the bottom of Fig. 2.

We observe clearly the coarsening effect of the Cahn-Hilliard system, and the conser-
vation of volume fraction. We also observe that the energy is non-increasing, as proved
in Theorem 3.1, and achieves its equilibrium at around t=0.65 (650 time steps). Note in
particular that the energy undergoes a rapid decrease when the first and second small
circles are absorbed into the large circle.

We note that the scheme (3.1) (with s=0) would blow up quickly for all δt>10−7.
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Figure 2: The time evolution by the scheme of (3.1) with parameters in (4.1). Top: zero-isocontours of the
phase variable at ti= iT/4, for i=0,1,2,3,4. Bottom: the energy evolution in term of the number of time steps.

4.1.2 Anisotropic case with the linear regularization

We now consider the anisotropic Cahn-Hilliard system with the linear regularization,
(2.7), using the scheme (3.19) with the initial condition

φ0(x,y)= tanh
(

√

x2+y2−r

ǫ

)

, (4.3)

and the parameters

δt=10−3, T=0.22, ǫ=0.02, β=6×10−4, α=0.3, s=2, s̃=2, (4.4)

where α is the anisotropy parameter, r the radius of the initial circle, both s and s̃ stabi-
lization parameters, and other parameters have the same meaning as in (4.1).

The top row in Fig. 3 shows how an isotropic interface with full orientations evolves to
an anisotropic one with missing orientations at four corners. The energy (the bottom row
in Fig. 3) is also non-decreasing with the given choices of s and s̃. We note that, without
these stabilization terms, the scheme (3.19) (with s= s̃=0) would blow up quickly for all
δt>10−7.

4.1.3 Anisotropic case with the Willmore regularization

We now consider (2.13) using the scheme (3.21) with the parameters

δt=10−3, T=0.15, ǫ=0.02, β=5×10−4, α=0.3, s=2, s̃=2. (4.5)

In the first example, we use the initial condition given by (4.3) with r= 0.5. The left
plot in Fig. 4 shows how the interface evolves from a circle to a square of Wulff shape.
The right plot in Fig. 4 shows the energy evolution in time. These results are in very good
agreement with those presented in [20].
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Figure 3: The time evolution of the scheme of (3.19). Top: zero-isocontours of the phase variable at ti= iT/4,
for i=0,1,2,3,4. Bottom: the energy evolution in term of the number of time steps.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
t=0

t=T/3

t=2T/3

t=T

50 100 150
0.55

0.6

0.65

0.7

0.75

0.8

Figure 4: (Color online) The first example in Subsection 4.1.3. Left: zero-isocontours of the phase variable at
ti = iT/3, for i=0,1,2,3. Right: the energy evolution in term of the number of time steps.
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Figure 5: (Color online) The second example in Subsection 4.1.3. Left: zero-isocontours of the phase variable
at ti = iT/3, for i=0,1,2,3. Right: the energy evolution in term of the number of time steps.

In the second example, we start with the initial condition given in Fig. 5, and use the
same parameters as in (4.5) except a larger T to reach the equilibrium.

We observe two simultaneous effects in this evolution (cf. Fig. 5): the anisotropy effect
and the coarsening effect.
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The left of Fig. 5 shows that the anisotropy process takes place first, followed by the
coarsening process during which the two squares merge into one. The energy evolution
in the right of Fig. 5 shows that the merging completes at around T = 1.18 (1180 time
steps).

Once again, the scheme (3.21) without the stabilization terms (i.e., s= s̃=0) blows up
quickly for all δt>10−8.

4.2 Anisotropy and missing orientations

We study below the anisotropic effect by using two examples: (i) the roughing process of
a smooth curve; and (ii) missing orientations in the Wulff shape with different α values.
We demonstrate that our numerical simulations capture various anisotropy phenomena
effectively.

4.2.1 Strong anisotropy of a rough curve

An interesting example is the evolution of a sinusoidal interface to a facet interface with
corners and kinks [8, 20] (see the evolution in Fig. 6). We use the scheme (3.21) with the
following initial condition,

φ0(x,y)= tanh

(

y− r(x)
2

2
√

2ǫ

)

, (4.6)

where

r(x)=0.4cos(πx)+0.4cos(3πx)+0.2cos(5πx)+0.06cos(7πx). (4.7)

The following parameters are used,

δt=10−3, T=0.9, ǫ=0.03, β=0.004, α=0.3, s=2, s̃=2. (4.8)

We observe in Fig. 6 that the equilibrium shape is finally dominated by the largest initial
mode, which is 0.4cos(πx).
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Figure 6: The evolution of the interface from a sinusoidal curve to a facet curve.
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4.2.2 Missing orientations of the Wulff shape

We simulate below the missing orientations of the benchmark problem, i.e., the evolution
of a circle to a square shown in the first example of Subsection 4.1.3. We will show that
as α becomes sufficiently large, the solution will reach an anisotropic equilibrium.

We use the scheme (3.21) with the parameters in (4.5) except different α’s are used.

The equilibrium shapes with different α values are shown in the top panel of Fig. 7,
while the polar plots of the interface normal angles, θ, as a function of the coordinate
angel, ν, are given on the bottom panel. We observe that when α is relatively small,
e.g. α = 0.1 (the top left plot in Fig. 7), the anisotropy is not strong enough, so there
are no evident missing orientations. When the anisotropy is not sufficiently strong, θ
changes continuously from 0 to 2π as a function of ν. As α becomes larger, the gradient
energy function is non-convex and the equation becomes anisotropic and four missing
orientations appear in the four corners (the top middle and top right plots in Fig. 7).

We observe that there are clear discrepancies for the values of γ at θ=0,π/2,π,3π/2.
However, it is not completely discontinuous because of the regularizations. The four
sharp corners were rounded and there are still points in between the angles near cor-
ners in the polar plots. Fundamentally, the regularization changes the original ill-posed
problem into a different but well-posed one.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

(a) α=0.1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

(b) α=0.2

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

  2

  4

  6

  8

30

210

60

240

90

270

120

300

150

330

180 0

(c) α=0.3

Figure 7: Top: equilibrium shapes with different α values. Bottom: orientation angles in the polar coordinate.



F. Chen and J. Shen / Commun. Comput. Phys., 13 (2013), pp. 1189-1208 1205

4.3 Comparison between Linear and Willmore regularizations

In the last subsection of numerical simulations, we show that the nonlinear Willmore reg-
ularization yields more consistent asymptotic convergence towards the non-regularized
anisotropic Cahn-Hilliard equation than the linear regularization does, by comparing our
numerical results with the asymptotic analytic solution in [16]. We use the two schemes
(3.19) and (3.21) with the same initial condition of a circular interface with radius r=0.625.

For the linear regularization, the numerical solution reaches its equilibrium at around
T = 1. Comparing the regularized solution and the asymptotic solution (the left plot in
Fig. 8), one observes apparent mismatches on both the edges and corner parts, even with
very small β values (e.g. β = 10−4). The situation is different in case of the Willmore
regularization. The right plot in Fig. 8 contains equilibrium interfaces of Wulff shapes
with four different β values. All of their edges and corners match the asymptotic result
more closely than in the linear regularization. The plots with four different β values are
indistinguishable in Fig. 8, but one can see their differences in the zoomed Fig. 9. This
observation is also in agreement with the theoretical and numerical results in [18].
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Figure 8: (Color online) The comparison between the linear regularization and the Willmore regularization.

A closer look at Fig. 9 indicates that the numerical solution with anisotropic regular-
ization converges to the asymptotic solution as β approaches to zero. We also observe
from the energy evolution presented in Fig. 10 that different values of β may lead to dif-
ferent energy dissipating patterns. In particular, the case with β=4×10−4 corresponds to
the two-hill-one-valley structure evolution discussed in Subsection 4.1.3.

5 Conclusions

We developed in this paper efficient and robust numerical methods for solving anisotropic
Cahn-Hilliard systems that are sixth-order nonlinear parabolic type equations. These sys-
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Figure 10: (Color online) The energy evolutions with four different β used in Fig. 9.

tems are notoriously difficult to solve numerically due to stiffness caused by the small
parameter ǫ, and the high-order spatial derivatives.

We constructed stabilized time discretization schemes for the highly nonlinear
anisotropic Cahn-Hilliard systems. We showed rigorously in the simplest case and veri-
fied numerically in the other cases, that the scheme is unconditionally energy stable. At
each time step, these schemes lead to a sequence of linear coupled elliptic equations with
constant coefficients that can be efficiently solved by using a spectral-Galerkin method.
Thus, our numerical schemes are very efficient for solving the anisotropic Cahn-Hilliard
systems.

We presented ample numerical results that are consistent with earlier work, indi-
cating that our stabilized schemes are capable of capturing correct evolution dynamics
and equilibrium states. We also carried out various simulations, such as the linear bi-
Laplacian regularization and the nonlinear Willmore regularization, to demonstrate the
efficiency and robustness of the new schemes.
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