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Abstract. In this paper, we consider variational approaches to handle the multiplica-
tive noise removal and deblurring problem. Based on rather reasonable physical
blurring-noisy assumptions, we derive a new variational model for this issue. After
the study of the basic properties, we propose to approximate it by a convex relax-
ation model which is a balance between the previous non-convex model and a convex
model. The relaxed model is solved by an alternating minimization approach. Numer-
ical examples are presented to illustrate the effectiveness and efficiency of the proposed
method.
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1 Introduction

The electromagnetic field is a physical field emitted by electrically charged objects and
which impacts the properties of charged objects in the neighborhood of the field. Visible
light is the electromagnetic field in certain range of frequencies. The electromagnetic
field always bears important information of the charged objects generating it. This is the
starting point of imaging formation. However, as the propagation of wave field usually
suffers modest blurring, the loss of information seems to be unavoidable. Moreover,
the observed field can be further affected by noise due to many known or unknown
factors. In real applications, similar problems always exist. For instance, the photos
of space targets produced by astronomical telescopes are often blurred by atmospheric
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turbulence. In these regards, image blur and noise are fundamental problems in the
domain of image processing and they continue to attract the attention of researchers.

Evidently, the deblurring process under noise is not well-posed in the sense of
Hadamard [13]. The observed blurred and noisy image only provides partial restric-
tions on the solution image. There exist various candidature images which can match the
observed degraded image under the given blur operator. Hence, the greatest challenge
in deblurring and denoising is to design methods for restoring solutions toward more
reasonable results adaptive to certain prior information [19].

In order to reconstruct the image, we need a mathematical description to show how
the noisy and blurry image is formed. If that is not available, there are many algorithms
to estimate the blur though it is beyond the scope of the current papers. In literatures,
one usually supposes that the degraded image f is formed as:

f =Hw+v, (1.1)

here f , w and v are an mn-by-1 vector corresponding to an m-by-n image, and they are
observed image, original image and additive noise respectively. And the matrix H ∈
R

mn×mn is the blur operator. Without loss of generality, here we assume that H≥0 holds
in component-wise meaning.

Under this additive noise scheme, various approaches have been studied to handle
the inverse problem (1.1). Among them, regularization methods which propose to find
a solution image satisfying the previous mentioned prior information seem to be rather
appealing. Many regularization techniques are established by least-square methods. As
the number of unknowns concerned might be huge, these approaches are commonly
iterative in nature. In the past decades, the total variation (TV) regularization functional
has become popular since it can efficiently reserve sharp edges of images, see [1, 3, 8, 22,
27, 28]. This type of algorithm minimizes a functional composing of two different terms.
One term is restricted on the blur operator and the other term corresponds to the TV
regularization for the solution image.

Note that there have been a great deal of deblurring approaches in literatures de-
voting to removing the additive noise. In recent years, in a different discipline, much
attention also has been paid increasingly to many other kinds of random noises. Such
noises include multiplicative noise, see for instance [2, 5, 14, 21]; impulse noise and Pois-
son noise etc., see for instance [4, 6, 7, 15, 26] and [9, 20]. In this paper, we focus on the
deblurring issues under the multiplicative noise.

The image reconstruction problem under multiplicative noise is evidently challenging
since this kind of noise contaminates images in a totally different way from additive
noise. That is, the observed image f is supposed to be the multiplication of the blurred
image Hw and the noise v:

f =Hwv, (1.2)

where again, H is the blur operator and w is the clean image. Note that here the noise v
could follow different statistics such as Gaussian, Gamma or other distributions. Without
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loss of generality, we assume that all the entries of w, v and f are positive. Due to this
degraded mechanism, most of the information in the original image might be distorted
seriously by multiplicative noise and the blur operator. The practical applications of
multiplicative noise models are numerous [21]. For example, the models of coherent
imaging systems, such as synthetic aperture radar (SAR), ultrasound imaging and laser
images, are of multiplicative nature [5].

In literatures, for the simplest case where H= Id, here Id denotes the identity matrix,
several variational approaches have been proposed to handle the multiplicative noise re-
moval problems. Among them, total variation based models (for instance, see [2, 21])
seem to be quite interesting since this idea has been adopted to maintain image edges in
the recovered images as the same purpose in additive noise restorations. Recently, Shi
and Osher [23] considered a noisy observation g= log f = logw+logv, which is obtained
by putting logarithm operation to both sides of the degradation model f =wv, here they
only considered the denoising case. They derived a total variation minimization model
for multiplicative noise removal problems. On the other hand, Aubert and Aujol [2] used
maximum a posteriori (MAP) regularization approach and proposed a functional whose
minimizer corresponds to the denoised image to be recovered in the multiplicative noise
removal problem. In their papers, the Gamma noise with mean one is considered. Al-
though their functional is not convex, they still proved that the existence of the minimizer
and demonstrated the capability of their model by numerical examples. As neither of
models in [2, 23] is convex, this poses serious numerical difficulties. In [14], Huang et al.
studied a convex model strongly related to the model proposed in [2]. Numerical results
have shown that this convex model can provide denoised images with higher SNRs and
better visual qualities, independent of the initial guesses. However, it is open question
to extend this technique to the deblurring case. In [5], a split-Bregman algorithm is pre-
sented to solve the model in [14] directly and it is quite numerically efficient. In [24],
Steidl and Teuber considered another variational restoration model consisting of the so
called I-divergence as data fitting term and the total variation regularization or nonlocal
means as regularizer for removing multiplicative Gamma noise. In [12], the multiplica-
tive noise removal problem is handled by using L1 fidelity term on frame coefficients.
The reported numerical results there clearly outperform the main alternative methods
especially for images containing tricky geometrical structures.

However, as far as we know, there exist very few papers addressing the deblurring
problem under multiplicative noise. Indeed, this becomes extremely hard when H is not
identity operator since it brings other instable issues. In [21], Rudin, Lions and Osher
proposed two approaches: RLO-I, II (see below). The numerical results there seem to be
rather promising though in certain sense, it is somewhat limited. In [2], Aubert and Aujol
had also extended their model to handle the deblurring problem.

In this paper, inspired by the pioneer works [2, 21], we study the deblurring issues
under multiplicative noise. The outline of the paper is as follows. In Section 2, we briefly
review the previous work of [2,21]. In Section 3, based on a new mechanism of degraded
image formation, we propose a new model for multiplicative noise removal and deblur-
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ring. Some basic properties including the maximum principle are studied. In Section
4, we further propose a convex relaxation model. In Section 5, we show experimental
results to demonstrate the quality of the deblurring images and the efficiency of the pro-
posed method. Finally, concluding remarks are given in Section 6.

Comparing with previous works, our contributions are rather clear. First, we propose
a Tikhonov regularization technique to obtain a separable variable model which is much
easier to handle in practice. Second, we approximate the non-convex term invoked by the
multiplicative noise in the model by a convex relaxation one. This reduces significantly
the instable numerical problem. Third, an alternating minimization algorithm is given
and the convergence of the method is guaranteed.

2 Related works

Let us briefly review the previous works in [2, 21] since they should be considered as
starting point of our paper. Throughout the paper, for any image w, the notation w≥ 0
means that it is in the non-negative cone of R

mn.

2.1 Aubert-Aujol model

Suppose that observed image f is given by (1.2) where v is of Gamma distribution with
mean one. Note that, as pointed out in [21], this model has been treated in [10] by ho-
momorphic filtering. In Aubert-Aujol (AA) model, their functional in the discrete setting
can be described as follows:

min
w≥0

mn

∑
i=1

(
log([Hw]i)+

[ f ]i
[Hw]i

)
+λ‖w‖TV , (2.1)

where ‖w‖TV is the total variation (TV) regularization term and λ is the regularization
parameter which measures the trade off between the first term in (2.1) and a regularized
solution of (2.1). The discrete gradient operator ∇ :Rmn→R

mn is defined by:

(∇w)j,k=((∇w)x
j,k,(∇w)

y
j,k)

T

with

(∇w)x
j,k =

{
wj+1,k−wj,k, if j<n,
0, if j=n,

(∇w)
y
j,k =

{
wj,k+1−wj,k, if k<n,

0, if k=n,

for j=1,··· ,m,k=1,··· ,n. Here wj,k refers to the (jm+k)th entry of the vector w (it is the
(j,k)th pixel location of the image). The discrete total variation of w is defined by

‖w‖TV := ∑
1≤j≤m,1≤k≤n

|(∇w)j,k|2= ∑
1≤j≤m,1≤k≤n

√
|(∇w)x

j,k|2+|(∇w)
y
j,k|2.
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Model (2.1) was solved by gradient method in [2].

2.2 Rudin-Lions-Osher model

2.2.1 RLO-I model

Rudin-Lions-Osher model is slightly different from Aubert-Aujol model. Assume again
that the observed image f is obtained by (1.2) with v governed by multiplicative noise
of mean 1 and standard variance θ, in [21], the RLO-I model is designed as a constrained
optimization problem as follows:

min
w≥0

‖w‖TV ,

subject to:
mn

∑
i=1

[ f ]i
[Hw]i

=1,

mn

∑
i=1

(
[ f ]i

[Hw]i
−1)2= θ2.

(2.2)

2.2.2 RLO-II model

Different from RLO-I model, here we assume that the observed image f is obtained via:

f =Hw+wv,

where again H is a convolution operator, v is Gaussian white noise with mean zero and
standard variance θ.

The RLO-II model reads:

min
w≥0

‖w‖TV ,

subject to:
mn

∑
i=1

[ f −Hw]i
[w]i

=0,

mn

∑
i=1

(
[ f −Hw]i

[w]i
)2= θ2.

(2.3)

In [21], both proposed models were solved by the gradient projection method.
Let us mention that as none of the above three models is convex, the gradient projec-

tion method may stick at some local minimizers and the restoration results strongly rely
on the initial guesses and the numerical schemes. Moreover, as the blurring operator H
also involves another instable problem, it is rather difficult to get a steady state of the
above models in practice.

3 The proposed model

In order to handle the above difficulties, in this paper, we slightly modify the image
formation mechanism to derive a separable model and then study its convex relaxation.
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Figure 1: Physical imaging pipeline. After blurring and additive noise, the image is further degraded by
multiplicative noise.

3.1 Imaging pipeline

As both the RLO-I model and AA model assume that f = Hwv. We also keep this as a
basic pattern. Let us change it as:

f =(Hw+b)v, (3.1)

where f , H, v are the same as in model (1.2) and b is Gaussian white noise with standard
variance σ. In other words, here we suppose that Hw is also corrupted by some additive
Gaussian noise. In fact, when σ = 0, the model (3.1) will become the usual multiplica-
tive deblurring model (1.2). The imaging pipeline of (3.1) is illustrated in Fig. 1. After
blurring and additive noise, the image is further degraded by multiplicative noise. The
blurring could be caused by atmospheric attenuation or lens/geometric distortion, etc.;
the additive noise should be regarded as syntheses of many factors such as fixed pattern
noise, dark current noise, short noise or thermal noise (see [18, 25]), etc. And the multi-
plicative noise is caused by multiplicative nature which is common in coherent imaging
systems, such as synthetic aperture radar (SAR), ultrasound imaging and laser images.
Overall, (3.1) could be regarded as an integration of the CCD camera imaging pipeline
(see [18, 25]) with multiplicative noise.

In order to make the new mechanism much near the original system, we can further
assume that b is very small. Moreover, it is common assumption that inf f >0. Hence, we
suppose that:

0<σ≤2inf f .

The impact of right side of the above formula will be clarified later.
A MAP analysis on (3.1) suggests that we should consider the following model:

min
u>0,w

mn

∑
i=1

(
log[u]i+

[ f ]i
[u]i

)
+
‖Hw−u‖2

2σ2
+λφ(w), (3.2)

where u is an intermediate image, φ(w) is a convex regularization term. The unpleasant
restriction that u>0 (which is open) can be removed through the coming Proposition 3.3
(see below). Moreover, observing (3.2), we have another interpretation for (3.1). Indeed,
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we introduce an extra Tikhonov regularization term for the blurring operator. This is
helpful to get a stable solution for the variational model.

3.2 Remark on imaging formation

Note that another imaging formation pipeline could be:

f =Hwv+b, (3.3)

where again v is multiplicative noise and b is Gaussian noise. This imaging system will
lead to a non-separable variational model which is rather hard to handle. It is interesting
to point out that numerically, we observe that our model (3.2) also works rather well for
this system. We think that the reason might be as follows. In the multiplicative noise
settings, Gaussian additive noise presented in (3.3) could be considered as negligible (see
[12]). Moreover, as Gaussian noise in any direction is still Gaussian, roughly speaking,
the distribution of b

v can be approximated by another Gaussian distribution b′. Hence,
one can rewrite Hwv+b as (Hw+b′)v. That is to say, (3.3) can be regarded as a special
case of (3.1).

3.3 The MAP analysis

Now, let us present some discussion from the point of the MAP analysis. In order to
derive a variational model from (3.1), let’s introduce an intermediate image:

u=Hw+b,

which can be regarded as a convolution image with Gaussian noise. By this, the image
formation mechanism in (3.1) can be rewritten as:

f =uv, u=Hw+b. (3.4)

Denote p(x) as the probability of variable x and p(x|y) the probability of x on obser-
vation y. Using Bayes rules, we can calculate the post-posterior probability:

p(u,w| f )= p(u,w)p( f |u,w)

p( f )

=
p(w)p(u|w)p( f |u,w)

p( f )

=
p(w)p(u|w)p( f |u)

p( f )
.

Note that here we use the fact p( f |u,w)= p( f |u) which is due to (3.4).

Now let w follow Gibbs prior e−φ(w)

Z where Z is a normalization constant. We have:

p(u|w)=
1√
2πσ

e
− ‖Hw−u‖2

2σ2 .
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The calculation of p( f |u) is the same as AA model in [2]. Therefore, the maximization of
p(u,w| f ) leads to:

min
u>0,w

mn

∑
i=1

(
log[u]i+

[ f ]i
[u]i

)
+
‖Hw−u‖2

2σ2
+λφ(w). (3.5)

Note that the above MAP framework also works for other type of noises. For instance,
if we suppose that v follows Rayleigh distribution which is a rather common assumption
for speckle noise, then the objective function should be change as:

min
u>0,w

mn

∑
i=1

(
log[u]i+

1

2θ2

[ f ]2i
[u]2i

)
+
‖Hw−u‖2

2σ2
+λφ(w),

since the Rayleigh probability density function is:

p(x;θ)=
x

θ2
exp

(
− x2

2θ2

)
, x∈ [0,+∞).

Similarly, if v follows Gaussian distribution with mean 1 and standard variance θ,
then the corresponding variational model is:

min
u>0,w

1

2θ2

mn

∑
i=1

(
[ f ]i
[u]i

−1

)2

+
‖Hw−u‖2

2σ2
+λφ(w).

Let us mention that the techniques in this paper work directly for Rayleigh case. For the
Gaussian case, it remains open.

3.4 Basic properties

Evidently, the model (3.2) is more general than the ROL-I and AA model as we accept
small tolerance of Gaussian noise. Moreover, if we suppose that σ is small enough, then
the new model is component-wise convex.

Proposition 3.1. The problem (3.5) is component-wise convex if 0<σ≤2inf f .

Proof. Denote

E(u,w) :=
mn

∑
i=1

(
log[u]i+

[ f ]i
[u]i

)
+
‖Hw−u‖2

2σ2
.

The convex on w is obvious. Moreover, we have:

∂2E

∂u2
=− 1

u2
+

2 f

u3
+

1

σ2
.

When u∈ (0,2 f ], it is convex; when u∈ [σ,+∞), it is also convex. However, as σ≤2inf f ,
it is convex for all u∈ (0,+∞).
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In [2], the authors proved the maximum principle for (2.1) when H is the identify
operator and φ(·)=TV(·). We have some similar observation for (3.5).

Proposition 3.2. Suppose that H≥0 and H1=1 where 1 is constant image with entries 1.
Taking φ(·)=TV(·), denote (u,w) as the solution of problem (3.5).

1. We have:
min(infw,inf f )≤u≤max(supw,sup f ).

2. If H= Id, then:
infw≥ infu≥ inf f , supw≤supu≤sup f .

Proof. Recall that inf f >0. For any i fixed, as the function

t→ logt+
[ f ]i

t
+
|[Hw]i−t|2

2σ2

is monotone decreasing when t∈ (0,min([ f ]i,[Hw]i)), we know that:

[u]i ≥min([ f ]i,[Hw]i).

This means:
u≥min(infHw,inf f ).

Using the fact that H ≥0 and for each i fixed, ∑j[H ]i,j =1, we have:

[Hw]i =∑
j

[H]i,jwj ≥∑
j

[H ]i,j(infw)= infw.

This is to say:
infHw≥ infw.

Overall, we obtain the left side of first assertion. By using the same argument, we have
the right side.

Now suppose that H= Id and consider:

min
‖w−u‖2

2σ2
+λφ(w), (3.6)

with u fixed and φ(w)=TV(w).
Denote β= infw and let w0=max(w,β). Using the property of TV(·) (see Lemma 1,

Section 4.3 of [17]), we know that:

TV(w0)≤TV(w). (3.7)

Moreover, for each i fixed, by the definition of w0, we have either:

[w0]i =[w]i or [w0]i =β≥ [w]i.
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As [u]i ≥β, both cases lead to:

([w0]i−[w]i)([w0]i+[w]i−2[u]i)≤0.

The vector form gives:

‖w0−u‖2≤‖w−u‖2.

Together with (3.7), we can see that: the replacing of w by w0 will decrease the objective
function value of (3.6). This implies that:

infw≥β= infu.

Combining with the fact that:

infu≥min(infw,inf f ),

we immediately have:

infu≥ inf f .

This finishes the proof of left part of the second assertion. With the same argument, the
rest part is also true.

Note that the condition H ≥ 0 and for each i, H1 = 1 is classical in the domain of
image processing. We also remark that the above proposition also holds in the continuous
settings. The same as in [2], the case with general H remains open.

Proposition 3.3. Suppose that φ(·)≥0. Denoting (u,w) as the solution of problem (3.5),
then there exist positive constants c1, c2 such that

c1≤
u

f
≤ c2.

Proof. Denote the objective function in (3.5) as E0(u,w). As φ(·)≥0, evidently we have:

mn

∑
i=1

(
log[u]i+

[ f ]i
[u]i

)
≤E0(u,w)≤E0( f ,0).

Fixing j, for each i, as the minimal point of the function:

t 7→ logt+
[ f ]i

t
,

is t0=[ f ]i, we then know that:

log[u]j+
[ f ]j
[u]j

+∑
i 6=j

(
log[ f ]i+

[ f ]i
[ f ]i

)
≤E0( f ,0).
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Denoting t as
[u]j
[ f ]j

. Simplifying the above formula, we have:

logt+
1

t
≤ c0, (3.8)

where

c0=1+
‖ f‖2

2σ2
+φ(0).

As c0>1, it is easy to know that the below Eq. (3.9) has two positive solutions:

logx+
1

x
= c0. (3.9)

Denote the left solution as K−1(c0), and the right one as c2 =K1(c0). From (3.8), we can
get:

0<K−1(c0)≤ t≤K1(c0).

As this is for any t=
[u]j
[ f ]j

, we know that:

K−1(c0)≤
u

f
≤K1(c0).

This finishes the proof by taking c1=K−1(c0), c2=K1(c0).

Let us remark that the above bounds c1,c2 are independent of H. Evidently, the num-
bers K−1(c0) and K1(c0) which are solutions of Eq. (3.9) should be strongly related to the
Lambert W function (see [11]). The latter is also called the Omega function or product
logarithm, and is a set of functions, namely the branches of the inverse relation of the
function

h(z)= zez ,

where z is any complex number.
Moreover, by Proposition 3.3, we immediately have:

u≥K−1(c0)inf f >0, (3.10)

thought we should be careful that the factor K−1(c0)> 0 here is rather small since σ is
small, and c0 is big. Anyway, the importance of (3.10) is that the unpleasant restriction
u>0 in (3.5) can be replaced by a close condition u≥ǫ where ǫ is a known small positive
number.

4 Convex relaxation model

Let’s examine the model (3.5). Typically, the term ‖w‖TV is convex. The above model is
very difficult to handle due to the non-convexity of the term logu. We are interested in a
convex relaxation model which has smaller non-convexity.
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4.1 Convex relaxation technique

Let’s present a simple idea to relax the shortcoming of non-convexity. Indeed, it is easy
to verify that:

g(u) :=
mn

∑
i=1

[u]i log[u]i,

is convex. As (3.5) is coercive (see Proposition 3.3), it does not matter if we restrict our u
on some low-bounded region:

{u : A+logu≥0},

where A is some constant. Inspired by Proposition 3.2, in practice we find that roughly
taking A≥−log(inf f ) has been already ok. Moreover, observing that:

logu+A=
u(logu+A)

u
,

and using the decouple idea which is common technique in nowadays image processing
domain, we should consider:

min
{(u,w,x): u≥e−A,x≥0}

α‖x−u‖2+
mn

∑
i=1

(
[u]i(log[u]i+A)

[x]i
+
[ f ]i
[u]i

)
+
‖Hw−u‖2

2σ2
+φ(w). (4.1)

The above model is convex if we fix x. In practice, if we assume that the pixel value
region u∈ [1,255], we can then take A=0 and the condition is thus u≥1. The small gap
between here with (3.10) usually would not affect the restoration quality significantly.

Moreover, the benefit of using (4.1) instead of (3.5) is that the convex relation tech-
nique here is useful to reduce the non-convexity of the objective function. Indeed, let us
define, for u≥1,

gα(u) :=min
x

α‖x−u‖2+
mn

∑
i=1

[u]i log[u]i
[x]i

. (4.2)

Note that g0(u) = 0 and g+∞(u) = ∑i log[u]i. Hence, the function gα(u) (with α ∈
(0,+∞)) can be regarded as a trade-off between the non-convex one and a convex one
and the replacing of ∑i log[u]i by gα(u) thus reduces the non-convexity. The selection of
α need a balance: the bigger α, the more correct of the statistics of the multiplicative noise
nature; the smaller α, the better convexity of the objective function in (4.1) which leads
to better stability. Interestingly, we numerically observe that the solution of (4.1) with a
rather small α is much more stable than (3.5) and also has rather good restoration quality.

4.2 Analysis on the convex relation technique

The model (4.1) can be solved via the classical alternating minimization method. Define

x∗(u) :=argminx gα(u),
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where gα(u) is given in (4.2). Readily, we can derive that x∗ is unique and:

x∗∈
(

u,u+

√
logu

α

)
.

For fixed u, we can find x∗(u) by solving a cubic equation. This can be done efficiently
by Newton method or explicit formula. Define the relative error as:

Rα(u) :=
x∗(u)−u

u
.

Assume that u is uniformly distributed on [1,255]. Taking α= 0.02, with the help of
computer simulation, easily we can get:

E(Rα) :=
1

255

255

∑
u=1

Rα(u)=0.004814.

Note that for α = 0.05, we have E(Rα) = 0.002079. It is even small. Hence, the relative
error is negligible and the replacing of (3.5) by (4.1) is reasonable even α is small. This
observation is important since smaller α provides better convexity.

4.3 Alternating minimization method

Let us consider to rewrite (4.1) as

min
{(u,w,x): u≥1,x≥0}

α‖x−u‖2+
mn

∑
i=1

(
[u]i(log[u]i)

[x]i
+
[ f ]i
[u]i

)
+
‖Hw−u‖2

2σ2
+φ(w). (4.3)

In this paper, we propose to use an alternating minimization algorithm to solve it and ev-
idently, other modern optimization techniques are also possible. Starting from an initial
guess u(0), the alternating minimization method computes a sequence of iterates

w(1),x(1),u(1),w(2),x(2),u(2),··· ,w(k),x(k),u(k),···

such that




w(k+1)=argminw
‖Hw−uk‖2

2σ2 +φ(w),

x(k+1)=argminx≥0α‖x−uk‖2+∑
mn
i=1

(
[uk]i(log[uk ]i)

[x]i

)
,

u(k+1)=argminu≥1α‖xk+1−u‖2+∑
mn
i=1

(
[u]i(log[u]i+A)

[xk+1]i
+ [ f ]i

[u]i

)
+ ‖Hwk+1−u‖2

2σ2 ,

(4.4)

for k=0,1,2,··· . Denote the above three operators as:

w(k+1) :=R(u(k)), x(k+1) :=S(u(k)), u(k+1) :=T (w(k+1),x(k+1)),
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we can express the following relationship between u(k+1) and u(k):

u(k+1)=T (R(u(k)),S(u(k))), k=0,1,2,··· .

Let us first study the computational cost of the alternating minimization algorithm.
The computation of R strongly depends on the choice of φ. In this paper, we consider:

φ(w) :=min
x

λTV(x)+β‖w−x‖2,

where λ,β are positive. Then R can be calculated via alternating minimization method
(see [16] for details).

The computation of S has closed form. The computation of T is also not difficult.
Note that we can use projection method to handle the constraints u≥1, x≥0 in the above
minimization procedures.

Again, the convergence of the algorithm is natural in the sense of objective function.
Indeed, in every step of the minimization approach (see (4.4)), the objective function
value in (4.3) decreases. Then it will converge to a local minimizer of the energy function.
Moreover, as the objective function is nearly convex, we numerically observe that the
minimizer is rather stable especially when α is rather small.

5 Numerical results

In this section, numerical simulations are performed to validate the efficiency of the pro-
posed method for deblurring and multiplicative noise removal simultaneously. The im-
ages “Lena”, “Rice”, “Earth from space” and “Moon surface” are used in our experiments
and the original images are shown in Fig. 2. The pixel values of these images are located
in the range [1, 255], so value A in model (4.1) is selected to be 0 in all experiments. In ad-
dition, in the experiments, the peak signal noise ratio (PSNR) and the relative error (ReEr)
are used to show the restoring quality of the recovered images quantitatively. Suppose
that the image size is m-by-n, PSNR value is defined as follows:

PSNR=10log10

(
V2

MSE

)
,

where MSE=∑
m
i=1∑

n
j=1(w̃(i, j)−w(i, j))2/mn, w, w̃ are the original image and the recov-

ered image respectively, and V =maxi,j(w̃(i, j),w(i, j))). With the same meanings of w
and w̃ in the definition of PSNR, the relative error of the recovered image w̃ is defined as

ReEr=
‖w̃−w‖2

‖w‖2
.

The stopping criterion for the experiments by the proposed method is that the relative
difference between the successive iterates of the restored images should satisfy the fol-
lowing inequality:

||w̃(i+1)−w̃(i)||2
||w̃(i+1)||2

<10−3.
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(a) (b)

(c) (d)

Figure 2: (a) The original “Lena” image; (b) the original “Rice” image; (c) the reference “Earth from space”
image; (d) the reference “Moon surface” image.

In all experiments, the initial guess in the alternating iterative algorithm is set to be the
observed image. All codes are written in MATLAB 7.0 and all experiments are imple-
mented on a personal computer with 2.80GHz central processing unit and 2.0G memory.

In the experiments, the multiplicative noise v appearing in (3.1) or (3.3) is a Gamma
noise γ or a Gaussian noise η, the mean value of both random noises is one. Their prob-
ability density function are given by

pGam(γ;L)=





LLγL−1

Γ(L)
e−Lγ, γ>0,

0, γ≤0,

(5.1)

and

pGaus(η;σ)=





1√
2πσ

e
− (η−1)2

2σ2 , η>0,

0, η≤0,

(5.2)

respectively. The level of the Gamma noise γ with the fixed mean value is determined
by the parameter L since the variance of γ equals the reciprocal value of L. Here σ in
(5.2) is the standard variance of the Gaussian noise η, the larger σ is, the more serious the
Gaussian noise is. The parameter α in (4.1) is set to be 0.05 in all experiments.

The following six experiments have been completed to show the effectiveness of the
proposed method.
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5.1 Experiment 1

In the first experiment, the original “Lena” image is blurred by Gaussian blur, motion
blur, average blur and defocus blur respectively, and then a small Gaussian noise with
standard variance(std) 1 is added, after that, the resulting images are further corrupted
by a multiplicative Gamma noise with variance 0.01, the degraded images are shown
in Figs. 3-6 (a). Figs. 3-6 (b) show the recovered images corresponding to (a) in each
figure and we can see both the blur and Gamma noise are removed efficiently in each
restoration. The relative errors of the degraded images and the relative errors, PSNRs
of the recovered images and computing times of the restorations are shown in Table 1.
The figures and the table clearly show that the proposed model (4.1) is very effective to
remove different kinds blurs and multiplicative noise simultaneously.

Table 1: The recovered results for Experiment 1.

Observed Recovered
blurs ReEr ReEr PSNR Time(s)
Gaussian 0.1376 0.0912 26.6 69.1
Motion 0.1713 0.0880 26.8 106.8
Average 0.1438 0.0934 26.3 72.2
Defocus 0.1307 0.0844 27.1 75.1

5.2 Experiment 2

In this experiment, larger Gaussian noise is imposed on the degradations. That is, Gaus-
sian noise with a larger std appears in model (3.1). In our simulations, Gaussian noises
with std 5 and 10 are added to the blurred “Lena” image respectively. And then a mul-
tiplicative Gamma noise with variance 0.01 is added. The degraded images and the cor-
responding recovered images are shown in Fig. 7 and Fig. 8 respectively. The relative
errors of the degraded images and the relative errors, PSNRs of the recovered images
and computing times of the restorations are shown in Table 2. These two figures and this
table demonstrate that the proposed model (4.1) is very effective to remove blurs and
multiplicative noise in model (3.1) with large Gaussian noise.

Table 2: The recovered results for Experiment 2.

Observed Recovered
std ReEr ReEr PSNR Time(s)
5 0.1424 0.0907 26.5 67.6
10 0.1566 0.0933 26.3 73.4
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(a) (b)

Figure 3: (a) The original “Lena” image is blurred by Gaussian blur fspecial(’gaussian’,5,2) and then a Gaussian
noise with standard variance 1 is added, after that, it is further corrupted by Gamma noise with variance 0.01;
(b) the recovered image by the proposed model (4.1).

(a) (b)

Figure 4: (a) The original “Lena” image is blurred by motion blur fspecial(’motion’,5) and then a Gaussian
noise with standard variance 1 is added, after that, it is further corrupted by Gamma noise with variance 0.01;
(b) the recovered image by the proposed model (4.1).

(a) (b)

Figure 5: (a) The original “Lena” image is blurred by average blur fspecial(’average’,5) and then a Gaussian
noise with standard variance 1 is added, after that, it is further corrupted by Gamma noise with variance 0.01;
(b) the recovered image by the proposed model (4.1).

(a) (b)

Figure 6: (a) The original “Lena” image is blurred by Defocus blur fspecial(’disk’,2) and then a Gaussian noise
with standard variance 1 is added, after that, it is further corrupted by Gamma noise with variance 0.01; (b)
the recovered image by the proposed model (4.1).
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(a) (b)

Figure 7: (a) The original “Lena” image is blurred by Gaussian blur fspecial(’gaussian’,5,2) and then a Gaussian
noise with standard variance 5 is added, after that, it is further corrupted by Gamma noise with variance 0.01;
(b) the recovered image by the proposed model (4.1).

(a) (b)

Figure 8: (a) The original “Lena” image is blurred by Gaussian blur fspecial(’gaussian’,5,2) and then a Gaussian
noise with standard variance 10 is added, after that, it is further corrupted by Gamma noise with variance 0.01;
(b) the recovered image by the proposed model (4.1).

5.3 Experiment 3

In this experiment, we show the restoring results of the images corrupted by serious blurs
and multiplicative Gamma noise with different levels. Since no Gaussian noise is added
in this experiment, the degradation model is same as the one in (1.2) and it is the pure
problem just only for blur and multiplicative noise removal. Therefore, we compare our
results with those obtained by RLO-I method (2.2) and AA method (2.1). The stopping
criteria for the latter two methods is that the iteration number achieves 1000 steps. Figs. 9-
12 show the results when the original images “Rice” is blurred by Gaussian blur and
then corrupted by multiplicative noise with variance 0.01; “Lena” is blurred by Motion
blur and then corrupted by multiplicative noise with variance 0.01; “Rice” is blurred by
Gaussian blur and then corrupted by multiplicative noise with variance 0.03; “Lena” is
blurred by Motion blur and then corrupted by multiplicative noise with variance 0.03.
From the recovered quantities shown in Tables 3-4, we can judge the recovered PSNRs
and relative errors by the proposed method are much better than those obtained by RLO-I
method and AA method. Furthermore, longer calculating times are required in the latter
two methods. In addition, the deblurring effect by the proposed method is superior to
that by RLO-I method and AA method in terms of recovering visual effect. For example,
in Fig. 12, the small trace of motion blur is still obvious in images (e) and (f) recovered by
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(a) (b) (c)

(d) (e) (f)

Figure 9: (a) The original “Rice” image; (b) (a) is blurred by Gaussian blur fspecial(’gaussian’,7,5) and no
Gaussian noise is added; (c) (b) further corrupted by Gamma noise with variance 0.01; (d) the recovered image
by the proposed model (4.1); (e)the recovered image by RLO-I; (f) the recovered image by AA.

(a) (b) (c)

(d) (e) (f)

Figure 10: (a) The original “Lena” image; (b) (a) is blurred by motion blur fspecial(’motion’,7) and no Gaussian
noise is added; (c) (b) further corrupted by Gamma noise with variance 0.01; (d) the recovered image by the
proposed model (4.1); (e) the recovered image by RLO-I; (f) the recovered image by AA.

RLO-I method and AA method respectively, but the blur is more faint in the recovered
image (d) by the proposed method. On the other hand, the recovered images by RLO-I
method and AA method are smooth so that the deblurred result is not so obvious. So,
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(a) (b) (c)

(d) (e) (f)

Figure 11: (a) The original “Rice” image; (b) (a) is blurred by Gaussian blur fspecial(’gaussian’,7,5) and no
Gaussian noise is added; (c) (b) further corrupted by Gamma noise with variance 0.03; (d) the recovered image
by the proposed model (4.1); (e)the recovered image by RLO-I; (f) the recovered image by AA.

(a) (b) (c)

(d) (e) (f)

Figure 12: (a) The original “Lena” image; (b) (a) is blurred by Gaussian blur fspecial(’motion’,7) and no
Gaussian noise is added; (c) (b) further corrupted by Gamma noise with variance 0.03; (d) the recovered image
by the proposed model (4.1); (e) the recovered image by RLO-I; (f) the recovered image by AA.

comparing to RLO-I method and AA method, we conclude that the proposed method
converges fast and can remove blurs and multiplicative noises simultaneously efficiently,
even both the blur and multiplicative noise are serious.



1086 Y. Huang, M. Ng and T. Zeng / Commun. Comput. Phys., 13 (2013), pp. 1066-1092

Table 3: The recovered results for Experiment 3 when the variance of Gamma noise is 0.01.

Observed Recovered
images method ReEr ReEr PSNR Time(s)

Proposed 0.1636 0.1034 25.3 51.2
“Rice” RLO-I 0.1636 0.1526 21.6 146.2

AA 0.1636 0.1257 22.7 157.5
Proposed 0.1930 0.0971 25.9 91.9

“Lena” RLO-I 0.1930 0.1651 21.3 135.6
AA 0.1930 0.1150 24.7 146.8

Table 4: The recovered results for Experiment 3 when the variance of Gamma noise is 0.03.

Observed Recovered
images method ReEr ReEr PSNR Time(s)

Proposed 0.2145 0.1179 24.3 82.9
“Rice” RLO-I 0.2145 0.1654 22.3 120.0

AA 0.2145 0.1336 23.3 156.3
Proposed 0.2386 0.1096 24.9 109.0

“Lena” RLO-I 0.2386 0.1707 21.0 134.9
AA 0.2386 0.1178 24.2 146.4

5.4 Experiment 4

The aerial image “Earth from space” is used to implement the numerical results in this
experiment. Figs. 13-14 show the recovered results under different degradation condi-
tions. The recovered quantities show in Table 5. These figures and Table 5 tell us that the
recovered images by RLO-I method and AA method are more smooth. But the proposed
method is also very effective for the restoration of aerial images.

Table 5: The recovered results for Experiment 4.

Observed Recovered
std method ReEr ReEr PSNR Time(s)
1 Proposed 0.1175 0.0734 29.3 297.9

Proposed 0.1978 0.0994 26.6 260.1
0 RLO-I 0.1978 0.1200 25.0 543.1

AA 0.1978 0.1078 25.9 573.5

5.5 Experiment 5

The formulation (4.1) is derived for removing multiplicative Gamma noise, and the above
four experiments are all performed for Gamma noise removal. In this experiment, we
give some tests to demonstrate that the proposed model is also very useful to remove
blurs and multiplicative Gaussian noise simultaneously. The image “Moon surface” is
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(a) (b)

(c) (d)

Figure 13: (a) The reference “Earth from space” image; (b) (a) is blurred by Defocus blur fspecial(’disk’,2)
and then a Gaussian noise with standard variance 1 is added; (c) (b) is further corrupted by Gamma noise with
variance 0.01; (d) the recovered image by the proposed model (4.1).

(a) (b) (c)

(d) (e) (f)

Figure 14: (a) The reference “Earth from space” image; (b) (a) is blurred by Defocus blur fspecial(’disk’,4) and
no Gaussian noise is added; (c) (b) is further corrupted by Gamma noise with variance 0.03; (d) the recovered
image by the proposed model (4.1); (d)the recovered image by RLO-I; (e) the recovered image by AA.
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used in this experiment, it is blurred by Gaussian blur with std
√

2 first. Then in the first
test, the blurred image is further added Gaussian noise and then corrupted by Gaussian
multiplicative noise with std 0.2. Which still follows the model (3.1) but the kind of mul-
tiplicative noise is Gaussian. The degraded and recovered images are shown in Fig. 15.
This test shows that the proposed model (4.1) can also restore images efficiently when the
multiplicative noise is Gaussian in (3.1). The second test is to directly corrupt the blurred
image by Gaussian multiplicative noise with std 0.2 and no additive Gaussian noise is
added. The same experiment appeared in [2, 21], so in the second test, we compare the
restored results by RLO-I method and AA method and the recovered images are shown
in Fig. 16. This figure and Table 6 clearly show that the proposed method (4.1) is more
helpful for the multiplicative Gaussian noise removal in image restorations than both
RLO-I method and AA method.

Table 6: The recovered results for Experiment 5.

Observed Recovered
std method ReEr ReEr PSNR Time(s)
5 Proposed 0.2130 0.0739 28.4 47.4

Proposed 0.2091 0.0721 28.7 40.8
0 RLO-I 0.2091 0.0912 26.6 90.2

AA 0.2091 0.0852 27.7 109.1

5.6 Experiment 6

In this experiment, we apply model (4.1) to test images degraded by (3.3). Three tests
corresponding to Figs. 7, 8 and Fig. 15 are performed. That is, in the first test, blurred
“Lena” image is corrupted by Gamma noise and then a Gaussian noise with std 5 is
added; in the second test, blurred “Lena” image is corrupted by Gamma noise and then a
Gaussian noise with std 10 is added; in the third test, blurred “Lena” image is corrupted
by Gaussian multiplicative noise and then a Gaussian noise with std 5 is added. The
degraded images and corresponding recovered images are shown in Fig. 17 and the re-
covered quantities are reported in Table 7. It is interesting to note that the PSNRs and
the computational times in this experiment are about the same as those recovered results
where images are degraded by (3.1) for both Gamma and Gaussian multiplicative noise.

Table 7: The recovered results for Experiment 6.

Observed Recovered
images std ReEr ReEr PSNR Time(s)
“Lena” 5 0.1423 0.0906 26.5 72.3

10 0.1564 0.0932 26.3 71.3
“Moon” 5 0.2128 0.0736 28.5 45.2
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(a) (b)

(c) (d)

Figure 15: (a) The original “Moon surface” image; (b) (a) is blurred by Gaussian blur fspecial(’gaussian’,7,2)
and then a Gaussian noise with standard variance 5 is added; (c) (b) is further corrupted by multiplicative
Gaussian noise with standard variance 0.2; (d) the recovered image by the proposed model (4.1).

(a) (b) (c)

(d) (e) (f)

Figure 16: (a) The original “Moon surface” image; (b) (a) is blurred by Gaussian blur fspecial(’gaussian’,7,2)
and no Gaussian noise is added; (c) (b) further corrupted by multiplicative Gaussian noise with standard variance
0.2; (d) the recovered image by the proposed model (4.1); (e) the recovered image by RLO-I; (f) the recovered
image by AA.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: (a) The original “Lena” image is blurred by Gaussian blur fspecial(’gaussian’,5,2), then it is corrupted
by Gamma noise with variance 0.01 and a Gaussian noise with std 5 is added; (b) the recovered image of (a)
by (4.1); (c) the “Lena” image is blurred by fspecial(’gaussian’,5,2), then it is corrupted by Gamma noise
with variance 0.01 and a Gaussian noise with std 10 is added; (d) the recovered image of (c) by (4.1); (e) the
original “Moon surface” image is blurred by fspecial(’gaussian’,7,2), then it is further corrupted by multiplicative
Gaussian noise with std 0.2 and a Gaussian noise with std 5 is added; (f) the recovered image of (e) by (4.1).

6 Concluding remarks

In this paper, we focus on variational approach to handle the deblurring problem under
multiplicative noise. Based on some physical blurring-noisy assumptions, we propose
a new variational model for this issue. Some basic properties including the maximal
principle are studied for this component-wise convex model. Moreover, as this is still
non-convex model, we then propose to approximate it by a convex relaxation model
which is a balance between the previous non-convex model and a convex model. As the
relaxed model has better convexity, it can be solved by the classical alternating minimiza-
tion approach which is stable. The convergence in the sense of objective function of this
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algorithm is guaranteed. Our experimental results show that the quality of deblurring
images by the proposed method is quite promising. The extension of our basic idea in
this paper to other non-convex model will also be extremely interesting.
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